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A correlation-function hierarchy for intracavity quantum optical systems has been derived using
nonequilibrium Green function methods. A specific truncation is applied to study nonlinear quantum
fluctuations in an optical parametric oscillator near threshold. An analysis of the limitations of the
truncation and comparison of its efficiency and accuracy relative to coherent state phase space
methods and wave-function simulation methods is made.
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I. INTRODUCTION

Quantum noise becomes an increasingly important fac-
tor in the physics of dissipative optical systems as the
system size is scaled down. The issue of system size,
as measured by characteristic scales of photon or parti-
cle number, is therefore central to the physics of minia-
turized devices, for example, low threshold parametric
oscillators [1] or cavity quantum electrodynamic (QED)
lasers [2,3]. The basic reason is readily understood from
the following argument. The rms electric field of a single
photon state increases as the mode volume is reduced,
and thus the electric-field strength required to turn on a
nonlinear effect involves fewer and fewer photons in this
limit, provided the photon lifetime is kept constant.

In small systems, operation is strongly influenced by
quantum fluctuations whose magnitude depends on the
characteristic scales. Associated with this regime is the
long standing theoretical problem of how to extract dy-
namical information outside the application of lineariza-
tion theory in which dynamical correlations are indepen-
dent of system-size scales [4,5]. In previous works [6,7]
we have argued that an approach based on a truncated
hierarchy of photon Green functions has both conceptual
and practical advantages for this kind of problem. The
one- and two-photon Green functions themselves are di-
rectly related to certain dynamical correlations measured
by standard photodetection procedures.

In this paper we study system-size effects in a degen-
erate optical parametric oscillator (OPO), using an im-
proved version of our previous theory [6]. The principal
improvement is the inclusion of quantum corrections to
the classical intracavity mean fields, although anomalous
multiphoton polarization processes are also included. We
are primarily concerned with practical application of the
method, a careful assessment of the accuracy of the bare-
vertex approximation employed to truncate the hierar-
chy, and comparisons with alternative standard quan-
tum optical methods for dissipative systems where fea-
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sible [8,9]. In this regard we note that one should ex-
pect direct correlation-function methods to be efficient
for practical calculations since they discard extraneous
information contained in the density matrix, or stochas-
tic wave-function approaches. The OPO problem consid-
ered is, apart from its physical interest, a powerful test
of the approach in that it involves two quantized field
modes and thus rules out density matrix photon number
expansion methods, unless one operates in the extreme
quantum limit of a few photons, far from the domain of
current experiments [10], or one employs a purely numer-
ical course involving supercomputers and sparse matrix
storage techniques [11].

We consider the OPO in the regime just below the
classical threshold. The theoretical model is described
by the OPO master equation given in Ref. [8], in the
rotating frame with both modes at resonance

d K
d—f = 5[ Yas — ala?, p] + Ezlal — a2, 0]
2
+ > w{2apal —afarp —pafar},  (1.1)
k=1

where p is the density matrix, a; and al (k = 1,2) are
annihilation and creation operators for the subharmonic
(mode 1) and pump (mode 2) modes, & is the nonlinear
coupling constant, F, is the pump driving field, and
(k = 1,2) are the mode damping rates. Below thresh-
old the subharmonic has zero mean value and the pump,
which is driven by the external field E5, has classical am-
plitude a; determined by the steady-state classical equa-
tions. A unitary transformation with the coherent-state
displacement operator D(az) is performed on (1.1), us-
ing [D(az2)]fazD(a2) = a2 + a, so that the subharmonic
and pump annihilation operator represent the quantum
corrections to their respective classical values in the vac-
uum picture. The transformed master equation is given
by

dp _ 1
dr ~ ik

2
~ Yk ~ ~ ~
(H, 7]+ 3 T {2aupa] — alanp — pajar),
k=1

(1.2)
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where p is the transformed density operator, 7 = vt is
time measured in units of the inverse damping rate ;!

of the subharmonic mode, and the Hamiltonian is given
by

7
H = ’th[a;z - a%] -+ ﬁ[aIZaZ - afa;]. (13)
The device is governed by three parameters (the nota-
tion follows that of our earlier works [6,7]): v = v2/71,
the ratio of the cavity decay rates for pump (mode 2)
and subharmonic (mode 1), which have frequencies ws
and w;, respectively, with w, = 2w;; p, the dimension-
less classical pump amplitude scaled so that p = 1 cor-
responds to the classical threshold; n¢,, the pump pho-
ton number at threshold p = 1. System-size effects are
increasingly important as n., is reduced, i.e., for large
nonlinearities and small mode volumes, particularly as
the classical threshold is approached. In terms of the pa-
rameters in (1.1), p = k B3 /7172 and ny, = (71/k)2. At
threshold linearized theory spuriously predicts divergent
quadrature fluctuations and perfect squeezing of the two
subharmonic quadratures, respectively [12].

The remainder of the paper is organized as follows.
In Sec. IT we outline the basic elements of the Green
function theory and present the truncated hierarchy in
the bare-vertex approximation. In Sec. III we derive
some approximate analytical expressions and recover re-
sults previously found by Plimak and Walls [13], which
provide considerable insight into the nature of quantum
noise below the threshold where “condensation” of the
subharmonic is achieved. In Sec. IV we present an ana-
lytic criterion on the limits of validity of the bare vertex
approximation, and an approximate expression for the
bare vertex system-size expansion parameter. In Sec. V
we make explicit comparisons of stationary observables
and dynamical correlations using the analytical approx-
imations of Sec. III, the complex P distribution, and
the wave-function simulation method (see the Appendix).
Our conclusions are summarized at the end.

II. THEORY
A. Green function equations

The quantum field theoretic approach provides a hier-
archy of equations for correlation functions in the form
of Dyson equations [14]. In practice these must be trun-
cated in a physically reasonable way, taking into account
the most significant dynamical processes. In an earlier
paper [6] the authors derived Dyson equations for the
OPO using a diagrammatic method, and considered a
specific truncation: the so-called bare-vertex approzima-
tion — the vertex part is truncated at zeroth order in
the inverse of the threshold pump photon number, nyy,.
The earlier analysis was limited in that renormalization
of the intracavity mean field by nonlinear quantum fluc-
tuations was not included. Here we rectify this deficiency
and fully include both static and dynamic renormaliza-
tion of the pump mean field, and assess the validity and

efficiency of the Green function method from a practical
point of view.

The truncated Dyson equations are written in terms of
two types of one-photon Green functions:

iDCC (t,t) = (Te(alt(t), a8 ())),
DEC (t,1) = (To(ab(t),a¢ (),

(2.1)
(2.2)

where D¢ C','DC ¢" are the normal and anomalous prop-
agators, respectively; and (a,b) = (ab) — (a)(b). The
superscripts label the different operator orderings pre-
scribed by the Keldysh path ordering operator T. [6].
For example,

iD*(t,t') = (Te(a® 1(t),a* () = (T(a'(t), a(t)),

iD™ (t,t') = (T(a™ (), ™ (1)) = (T(a'(1), a(t"))),

iD™H(t,') = (To(a™ (), a™ (') = (a'(t),a(t)),

iD* (4,t') = (Te(a* 1(t),a™ (') = (a(t),a’ (1)),
(2.3)

and similarily for D¢ <'; T and T refer, respectively, to
the usual Dyson time- and antitime-ordering operators.
In the standard quantum optical formulation, the rotat-
ing wave approximation retains only energy conserving
scattering processes in intermediate as well as initial and
final states. For this reason it is useful to define the
photon Green functions directly in term of the positive
and negative frequency components of the electromag-
netic field, or specifically for a cavity system, in terms of
annihilation and creation operators for each of the cav-
ity modes, as indicated in (2.1)—(2.2). A brief summary
of the derivation of the full equations starting with the
quantum Langevin equations for a Markovian damped
system was reported elsewhere [7], and a more complete
description will be given in a forthcoming paper. Here
we instead concentrate on the practical application of the
approximate bare-vertex theory and its comparison with
other techniques.

The Dyson equations for the OPO below threshold in
the bare vertex approximation are then written in Fourier
space

D;(w) = Dy (w) + Dy (w)( — 2,(@)) Dy (w)

+21 (w)IL; (w) Dy (w), (2.4)
Dy (w) = (Dy(-w))" (- ¢} (@) Dy (w)

+(Dy(—w) T (I (—w)) "D, (w), (2.5)
D,(w) = 22(“’) + Qz(w)ﬂg(w)gz(w)

+D, (w),(w) Dy (w), (2.6)
Dy (@) = (D (=) (I (~w)) "Dy (w)

—(Dy(~w))T Py(w) Dy (w), (2.7)

where D; and D,; are the subharmonic, normal, and
anomalous Green function propagators, respectively, and
similarly for the pump mode (D, and D,), and w is the
frequency offset from resonance in units of ;. The ma-
trix structure of the Green functions is defined according
to [6]
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G(w) = (G++(“’§ G (@) ) (2.8)

T(w) G (w)

where G = D, or D, (k = 1,2). The inverse of the
empty-cavity Green functions for the subharmonic field
are given by

-1 (wi =28

D, (“’)‘< 0 —w+i)'
The empty-cavity pump Green functions are obtained
from (2.9) by letting 7 — iy. The nonlinear, many-
photon processes are incorporated in the so-called one-

loop polarization functions, where the normal polariza-
tion functions are given by

(2.9)

o ap *
—ilPP W) = oo | ' DEPWDE(W —w),
(2.10)
L4 (a4 a/g +m @ (s d
—illy #(w) = yr—— dw' DFP (') DFP (w — '),

(2.11)

and the anomalous polarization functions are

PPPW) = goo [ au DY) (05w - ),
a# B (2.12)
“+oo
Prow) = oo [ dw Dpe)

x(D;* ¥ (w — )", (2.13)
apB ap Yoo B a npaB '
PrPw) = o [ ! DY) D - ),

(2.14)
with
—_—— + — *
P = (o) L) e

and similarily for Py(w). The o functions represent the
renormalized pump amplitude. This renormalization in-
cludes a static contribution from the anomalous propa-
gator and a dynamical contribution from the anomalous
polarization (o, is the third Pauli matrix):

o,(w) =p" g, — Py(w), (2.16)

o1(w) =pa, + Py(w), (2.17)
_ (a2) 1 dw o
p_p+\/n2_th_p—2’7nth/_oo 5 Di Pw), (2.18)

for any a # (3, where p is the pump parameter propor-
tional to the classical intracavity pump amplitude de-
fined in the Introduction. The corresponding diagrams
are given in Fig. 1. Hence, there is a one-to-one cor-
respondence between the elements of the diagrams and
the Dyson equations, (2.4)—(2.7). Note that {a;) in Eq.
(2.18) represents the quantum correction to the classi-
cal pump amplitude /ng,p (i.e., we employ the vacuum

L0
s

FIG. 1. Diagrammatic representation of the Dyson equa-
tions. The meaning of the parts can be read off directly from
(2.4)-(2.7).

picture transformation as in Ref. [6]).

Mathematically, the Dyson equations are a coupled set
of nonlinear integral equations requiring a self-consistent
solution. We implement the following self-consistent iter-
ation scheme numerically: (1) start with analytical Green
functions obtained in the linearized theory [6] and evalu-
ate the normal and/or anomalous polarization functions,
at the same time renormalizing the pump field according

o (2.18); (2) substitute these into the right hand side
of Dyson’s equations to obtain updated Green functions;
(3) repeat to convergence. The converged Green func-
tions physically account for the photon dynamics taking
into account repeated resonant scattering between sub-
harmonic photons and the classical mean pump field to
all orders, as well as a class of resonant one-loop polar-
ization processes represented by the bubble diagrams in
Fig. 1 in which the pump field plays a dynamical role
as a quantized field. These nonlinear processes intro-
duce into the dynamics a dependence on system size, ny,.
It is important to appreciate that the condition for the
convergence of the iteration scheme in this bare vertex
approximation is distinct from the accuracy of the ap-
proximation itself, which is determined by the size of the
terms omitted, i.e., higher order many-photon polariza-
tion functions generated by vertex corrections. This is
discussed in detail in Sec. IV.

B. Field observables

The observables we wish to compute are the quadra-
ture fluctuation spectrum, intracavity photon numbers,
and the pump amplitude. The spectrum of output
quadrature fluctuations of the subharmonic with respect
to unit shot noise is given by

~+oo
V(X14,w) = TeT( X1+ (t+ 1), X14(2))
=1+4{iD7 " (w) £ Re[D} T (w)]}  (2.19)
where X, = al,out—!-alyout and X:1_ = (a1,0ut —aJ{’wt)/i
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are the output amplitude and phase quadrature oper-
ators. The boundary condition at the output mirror
has been properly accounted for by using the relation
a1,0ut(t) — a1,in(t) = v/2a1(t), to express (2.19) in terms
of internal field operators [15]. Thus the Green func-
tions, which are defined in terms of internal field oper-
ators, determine the spectrum directly. The intracavity
subharmonic and pump photon numbers are given by

(nk) = ((a] + o) (ar + o))

+o0
:/ dw iDy T (w) + |ow + (ar)|?,

— 00

(2.20)

where k£ =1,2 and o is the classical field amplitude [8].
The quantum correction (az) to the pump amplitude p
can be deduced from (2.18).

III. ANALYTICAL RESULTS: THE ONE-POLE
APPROXIMATION

Following Refs. [6] and [16], Plimak and Walls [13] have
derived an analytical result for the quadrature fluctua-
tions in an OPO below threshold. In this section we
derive these results from the bare-vertex equations, and
illustrate the underlying physics diagrammatically. In
addition, this discussion serves to motivate the numer-
ical comparisons discussed in Sec. V. The analysis is
based upon the important observation that under cer-
tain approximations the below threshold nonlinear the-
ory has a similar structure to the linearized theory above
threshold, p > 1. In particular, by comparing the dia-
grammatic structure of Figs. 2 and 3, one sees that the
nonlinear subharmonic fluctuations below threshold, de-
scribed by the one-loop polarization function, play a dy-
namical role analogous to the subharmonic mean field
above threshold. As a result, one can identify an effective
subharmonic mean field with the subharmonic quantum
fluctuations. This indicates how the subharmonic mean
field, which condenses at threshold in the classical theory,
arises from the growth of quantum fluctuations below the
classical threshold, consistent with the view that quan-
tum fluctuations smooth out the classical threshold.

Figure 2 shows the diagrams when only pump dissi-

2 2

1 1 1 1 1
> :‘+;I4|;

2
1 1 1 1

—— e+

1

2 2

——

FIG. 2. Diagrammatic representation of the Dyson equa-
tions in the adiabatic limit. The pump Green functions
are replaced by empty-cavity Green functions, i.e. only
Markovian dissipation is retained. The vertical, dashed lines
retain only static renormalization of the pump amplitude,
g, (w),o}(w) > po, in (2.16) and (2.17).

FIG. 3. Diagrammatic representation of linearized
above-threshold Dyson equations. The subharmonic mean
field, s, is represented by a vertical dashed line labeled 1.

pation is retained in the pump dynamics, i.e., the pump
propagators are approximated by the empty-cavity prop-
agators. The linearized above threshold theory of the
OPO is shown for comparison in Fig. 3, where scatter-
ing from the classical pump and subharmonic mean fields
takes place. The self-energy contribution in Fig. 3 may
be written down by inspection as szaﬁﬁgﬁ (w), where s?
(s? = |a1|?/n4n) comes from the two mean-field lines [6].
The corresponding polarization integral in Fig. 2, and
defined in (2.10), may be written in an analogous form
as

. +o00
17°w) = g [ ' DFP (@) DE (' —w)
~ ﬁaﬁ +°°d i i Dﬁa(w,)
~ affD5" (w) /_oo w' | 5o o~ 1
~ aBDP (w) [4] (3.1)
4nen (1 — p)

under the approximations that (i) the Green functions
in (3.1) are given by linearized below threshold Green
functions, (ii) only the dominant pole w = %i(1 —p) is
retained, and (iii) v > (1 — p). Thus in agreement with
Ref. [13], we may identify an effective subharmonic mean
field squared as

2 _ p
4nn (1 — p)

In addition, we may compute the renormalized pump am-
plitude (2.18)

(3.2)

p

P S A=) (3.3)

Z—) =
The last results, (3.2) and (3.3), may be improved upon
in the following way. One solves for the Green functions
of Fig. 2 with II; given in (3.1). Note that the pump
Green functions remain equal to the empty-cavity func-
tions which physically accounts only for Markovian dis-
sipation. Then derive a new expression for II; by using
the updated subharmonic Green functions to get

s2 = P

mew dngp(1—p+ s2/v)’

(3.4)

The new renormalized pump amplitude follows by using
the updated Green functions in (2.18):

P
8neny (1 — P+ s2/7)"

Pnew =P (3.5)
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Similarily, this requires (i) taking the dominant pole w =
+i(1-p+s%/v), and (ii) assuming v > (1 —p+s2/7). If
this procedure is repeated then we arrive at the iteration
scheme defined by the algebraic equations

_ P
p=p— — .
8niny (1 — P+ 52/7)

(3.7)

Once converged values for s? and § are found, the ob-
servables may then be obtained by substituting these into

§2 — p (3.6) well known expressions for the linearized above threshold
dngn(1 — p + s2/v)’ ' theory [12]. Thus
J
4p(w?® +7°)
V(Xie,w) =14 , 3.8
(X1x,w) WA Fp) + 52 — w22 + w2(1 + 4 £ p)2 (3.8)
+oo
(m1) = / dw iDH (W), (3.9)

— 00
where

1

1

iDy T (w) =

N RS

(w? +7?) {

A very practical feature of this result is that it involves
only iteration of algebraic equations rather than integral
equations. The theory clearly shows how nonlinear quan-
tum noise behaves dynamically like a mean field, which
influences the subharmonic fluctuations below the clas-
sical threshold in the same way that the subharmonic
mean field does in the linearized above threshold OPO.

The analytic results for subharmonic fluctuations ig-
nore the pump dynamics except for Markovian dissipa-
tion. In a regime where both the analytic solution and
the bare vertex theory are valid, differences in computed
quantities are due to the influence of nonlinear pump
fluctuations on the subharmonic dynamics. This is illus-
trated in Sec. V.

IV. BARE-VERTEX THEORY: EXPANSION
PARAMETER AND VALIDITY

In this section we explore the limitations of the bare-
vertex OPO theory leading to the Dyson equations (2.4)—
(2.7). There are two main issues to address: (1) the range
of validity of the bare-vertex approximation, and (2) the
convergence of the bare-vertex solutions (recall that the
Dyson equations are solved numerically by iterating the
integral equations [6]). These issues are distinct, and we
will find that the solutions can converge outside of the
range of validity of the bare-vertex approximation.

With regard to the bare-vertex approximation, recall
that the closed form Dyson equations are obtained by
truncating the vertex part at zeroth order in the thresh-
old pump photon number n, [6]. However this proce-
dure, like the linearization procedure, is not uniformly
valid in the pump parameter p, or equivalently, the dis-
tance to threshold 1 —p. We expect that complex photon
correlations arising from higher order photon polariza-
tion processes will become increasingly important near
to oscillation threshold. The validity of the method will
depend not only on ny, and 1 — p, but the other system
parameter v as well as frequency w.

The radius of convergence is likewise determined by

[Y(1—p)+s® - +w2(1+7—-p)%

} . (3.10)

(T+5) + 52 — 2 +w(1 47 1 p)?

f

Nith, 1—p, and y. The proper framework for its estimation
is multiplicative renormalization group theory (RGT),
which takes advantage of the invariance of Dyson’s equa-
tions to multiplicative transformations. We will not dis-
cuss this further here, but instead give an argument
which leads to the same result for the radius of conver-
gence.

A. Radius of convergence of bare-vertex equations

As discussed in Ref. [6], Fig. 2 is an equivalent repre-
sentation of the subharmonic propagators of Fig. 1 when
the polarization functions are evaluated using linearized
Green functions (see Sec. III). In this representation, the
nonlinear theory is obtained by renormalizing the empty-
cavity Green functions of the linearized theory. To obtain
the conditions for convergence near threshold (p = 1), it
is sufficient to consider the renormalized empty-cavity
Green function at zero frequency detuning, which we de-
note as D (0). Furthermore, we will consider the D *(0)
matrix element of D, (0). This is a reasonable reduction
since we expect the matrix elements of D,(0) to have
the same scaling behavior near threshold. The Dyson
equation is given by

D (0) = DF*(0) + DT ()T (0) Dy +(0),  (4.1)
where
~ —ip
O~ o, (42)

near threshold. The solution can be obtained alge-
braically, and is given by

D+ (0)

PO o)

— DS (D OIFO)". (43)
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Thus the Green function will converge absolutely if

1

= |Df YOI} (0) = ———— <
g = |DTT(0)II7(0)] dngy(1 - p)

1,  (44)

where we have identified the absolute value of the term
in parentheses in (4.3) as the effective expansion param-
eter of the bare-vertex theory. The algebraic structure of
the system-size expansion parameter is what we expect,
intuitively. We expect that the strength of the system-
size parameter should scale inversely with the distance
from threshold, the pump threshold photon number and
the cavity lifetime. Equation (4.4) is supported by RGT
methods, where g is known as the invariant coupling con-
stant.

We have obtained an approximate expression for the
radius of convergence, which predicts that an iterative
solution will not converge sufficiently close to threshold.
Apparently we also have a criterion for the validity of
the theory expressed as a condition on the distance from
threshold, (1 — p) > 1/4ng,y from (4.4). This would be
true if the size of the polarization processes left out of
the bare-vertex theory remained small compared to the
one-loop polarization processes retained in the theory.
The latter does not hold as we get closer to the classical
threshold point p = 1. We show in the following sec-
tion that the leading polarization corrections become im-
portant before the bare-vertex convergence breaks down.
Therefore, we arrive at a stricter validity criterion by re-
quiring that the leading polarization corrections remain
small compared to the one-loop polarization functions.

B. Validity: estimate of vertex corrections

In the bare-vertex approximation, the vertex part is
approximated by unity, giving the polarization functions,
(2.10)-(2.15), a simple bubble topology, as illustrated in
Fig. 1. We arrive at a validity citerion by requiring that
the leading polarization corrections remain small in com-
parison with the bare-vertex, or simple bubble type, po-
larization functions. As a specific example, consider the
leading 7, polarization correction in Fig. 4 that is gen-
erated by the corresponding vertex correction in Fig. 5.
Using the diagrams in Fig. 1, it is easy to see, by energy
conservation at the vertices, that the leading corrections
to the other polarization functions (x,, P,, and P5) will
also be generated by a vertex correction consisting of two
anomalous subharmonic Green functions and one anoma-
lous pump Green function. Therefore, m, typifies the
general behavior in regard to leading vertex corrections.

v 7
@ +
” 2
FIG. 4. Diagrammatic representation of the expansion of
the photon polarization, (4.6) and (4.8). The first term on

the right corresponds to the bare-vertex approximation, and
the second term is the leading correction given in (4.8).

= +

1 1

> - - S

FIG. 5. Diagrammatic representation of the expansion of
the vertex part (4.7). The triangle emphasizes that the vertex
part has three external vertices (see Fig. 4). The first term
on the right hand side is the bare vertex, represented by a
point, and the second term is the leading correction (4.9).

Furthermore, we will focus on one matrix element of 7,
namely 7 . This is a reasonable reduction since we ex-
pect the matrix elements of 7; to have the same scaling
behavior near threshold (p = 1), where vertex correction
become important.

The exact functional form for the 7{* polarization
function follows from the full matrix Dyson equations
[7] and is given by

) 1 +oo e
—'L'rrf+(w) = Fr— Cz; / dw' DI (—w')
1,62

+

—0o0

XD+ (o DS (w —w'),  (4.5)
where Df'*' and D; * are exact Green functions matrix
elements and I'¢11¢2 are exact vertex elements. There are
four terms that contribute to 7]t since ¢1,(; = + or —.
Assuming that all four vertex functions in (4.5) have the
same scaling behavior near threshold, the largest value
attainable in (4.5) is if all vertex functions add up co-
herently, and we evaluate 7]+ at w = 0. Therefore, to
consider the worst case scenario, we calculate one ver-
tex element explicitly and multiply by a factor of 4; for
example we take I'11¢z — 4I't++. Consequently, the
polarization and vertex functions to leading corrections,
corresponding to Figs. 4 and 5, respectively, are given by

71 (0) ~ I} 7 (0) + 811 +(0), (4.6)
Ittt (—w,0) & 14 6T+ (—w,0), (4.7)
where
i +oo
SO ~ 5 [ aw D)
x46TT 1 (', 0)DFt (—w') (4.8)
ST+ (—w,0) = 1 +o°dw’

2w Nth J -0
x(DI ™ (' +w)Dy ~ (@) D3 (w),
(4.9)

and II*(0) is given in (4.2). The bare-vertex polariza-
tion function in (4.2) was approximated using linearized
Green functions. Likewise, we will use linearized Green
functions to compute §IIFT, but first we must estimate
the vertex correction §T'+++.

The Green functions that enter into the vertex equa-
tion, (4.9), are obvious from the diagrams in Fig. 5 (the
explicit functional form is given in a forthcoming paper).
Note from the diagrams in Fig. 1 that there is no lin-
earized contribution to D,, i.e., the pump field is in a co-
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herent state in the linearized approximation. Therefore,
to obtain an analytical expression for D; *, we approx-
imate the anomalous pump Green function matrix (2.7)
by
R T R

Dy(w) = —(D2(-w))” Py(w)Dy(w). (4.10)
The integral in (4.9) is approximated by its dominant
terms arising from poles at —w +¢(1 — p), +i(1 — p), and
+2¢(1 — p), and the result is

5 Dy (~w).

+++ ~
T (w0 ~ 384nZ v2 (1 —p)d !

(4.11)

When the vertex correction (4.11) is substituted into
(4.8), the polarization correction reduces to

1 —5p
++ ~ =
ST (0) (27r2'> (3 x 27n3 v2(1 ~;;)4)

+oo (' + i)dw’
* Loo (W —iy)w” + (1 -p)??

The integral is approximated by its dominate term aris-
ing from the second order pole at +i(1 — p). Conse-
quently, we arive at the following expression:

(4.12)

5ip
3 x 2%23 v3(1 — p)

STI;(0) ~ syt —(1-p)1.

(4.13)

Consider the case where (1 — p) < 1,v. From (4.13) we
have

—b5ip

SIIF1(0) = .
1 (0) 3 x 2913, v3(1 — p)”?

(4.14)

We take (4.14) to be our final approximation to the po-
larization correction. Only in severe nonadiabatic condi-
tions will (4.14) not follow from (4.13), and §II] +(0) will
not simply scale as a product of ny,7y.

Recall that validity of the bare-vertex approximation
hinges on the requirement that the next higher order
corrections to the polarization functions remain small
compared to the simple bubble (bare-vertex) polariza-
tion functions. Thus from the above analysis the validity
criterion is established through

16117 *(0)]]
W < 1. (4.15)

Substituting (4.2) and (4.14) into (4.15), the validity cri-
terion for the bare-vertex approximation takes the form
of a restriction on the distance from threshold:

(1-p) > 0.48 ( )é : (4.16)

Nth?Y

The validity of the bare-vertex approximation has been
determined semiquantitatively. The diagrams in Fig. 1
correctly describe the quantum dynamics of the OPO
system when (4.16) is satisfied. When the criterion is vi-
olated, other photon scattering processes of the type in-

dicated in Fig. 4 become equally important, if not more
so, in accurately describing the dynamics of the system.
In practice, however, we find that the bare-vertex solu-
tions are accurate even when the distance from threshold
equals the RHS of (4.16). This is illustrated in Sec. V.

V. RESULTS

Here we discuss the influence of nonlinear quantum
noise on intracavity field amplitude and photon num-
ber, and output quadrature squeezing spectra for the
OPO. We further compare the accuracy and efficiency
of Green function computations with results generated
from the analytical complex P distribution (see the Ap-
pendix), the one-pole approximation [13] of Sec. III, and
the wavefunction simulation method (see the Appendix).
The analytical complex P method is restricted to eval-
uating moments in the adiabatic regime, v > 1. Al-
though one can obtain spectral quantities from the pos-
itive P distribution via stochastic simulations, the reli-
ability of this method in the nonlinear regime has been
questioned [5] and we have not investigated its use here.
In the nonadiabatic regime, we compare the Green func-
tion solutions with the one-pole approximation and the
wavefunction simulation method. The wavefunction sim-
ulation method can, in principle, also calculate spectral
quantities. However, the numerical computations are ex-
tremely time consuming and it is difficult to indepen-
dently assess the accuracy of the results. On the other
hand, the mean values and the spectral quantities are
obtained simultaneously, on the order of CPU seconds,
in the Green function method.

In Fig. 6 the bare-vertex solution to the intracavity
subharmonic photon number is shown for various pump
values versus the iteration number, in the adiabatic limit
v = 100 and ny, = 10. The iteration number indicates
the number of steps through the self-consistent iteration
scheme outlined in Secs. IT A and III. These results are
compared with the complex P distribution and the one-
pole approximation. For this parameter set, nyny = 103,
the validity criterion derived by Plimak and Walls [13]
specifies that p < 0.97. Our validity criterion, (4.16),
based on vertex estimates, specify that p < 0.95. Equa-
tion (4.16) appears to overestimate the error in the sense
that the bare-vertex equations are accurate all the way up
to the boundary of the criterion p = 0.95. Even beyond
the range of validity, the bare-vertex equations are in bet-
ter agreement with the complex P results than the one-
pole approximation. The comparison in Fig. 6 between
the bare-vertex theory and the one-pole approximation
illustrates the quantitative influence of nonlinear pump
fluctuations, which we retain in the bare-vertex theory,
on the subharmonic photon number. In Fig. 6(d), where
p = 0.99, we illustrate the breakdown of convergence of
the iterative solution of the Dyson equations. The crite-
rion of Sec. IV A predicts convergence of the bare-vertex
solutions is to be expected for p < 0.9998. Similar to the
validity criterion, convergence is found up to the bound-
ary of (4.4). It is interesting to note that the many-body
theory appears to converge to the correct solution before
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it breaks down, reminiscent of an asymptotic expansion.

In Fig. 7 we show the squeezing spectrum for a range
of pump values from p = 0.90 to p = 0.98. The values
for ny, and v are the same as those in Fig. 6. The one-
pole approximation agrees quantitatively with the bare-
vertex equations up to about p = 0.95, the boundary of
the validity criterion.

In Fig. 8 the bare-vertex solution to the intracavity
subharmonic photon number is shown for various pump
values versus the iteration number, in the nonadiabatic
limit where v = 0.1 and ny, = 103. These results are
compared with the wave-function simulation method and
the one-pole approximation. The one-pole approxima-
tion is not expected to be valid under these nonadia-
batic conditions, since v ~ (1 — p + s2/v); however, we
find that it is quite accurate for the chosen parameter
set of Fig. 8. For p = 0.80,0.85,0.90 the simulation re-
sults are calculated to a precision of +0.01; for p = 0.93,
the result is accurate to £0.1. For this parameter set,
gy = 100, the validity criterion (4.16) specifies that
p < 0.90. Similar to the adiabatic regime, we observe
that the bare-vertex solutions are valid up to the bound-
ary of the criterion (4.16). The computation time for
the bare-vertex equations, which include calculation of
dynamic spectra and stationary mean values for a given
parameter set, is of the order of CPU seconds on a modest
workstation. However, the stationary or equal time aver-
ages computed using a parallelized wave-function simula-
tion method, which ran on 32 processors simultaneously,
requires a computation time on the order of CPU hours
near threshold.

To calculate dynamic spectra with this approach re-
quires the simulation of auxiliary functions in addition

Iteration number

to the wave functions, according to the quantum regres-
sion theorem [9]. This is an extremely intensive numeri-
cal procedure in the application considered here. As an
illustration Fig. 9 shows the squeezing spectrum as calcu-
lated for p = 0.5, ny, = 100, and v = 1, and compared to
our bare-vertex results. In an effort to reduce the com-
putational expense we followed the method of Mglmer
and Dalibard and averaged one (as opposed to several)
set of auxiliary functions per wave function. This ap-
proach worked successfully in a test run of the analyt-
ically known linearized squeezing spectrum. The simu-
lation in Fig. 9 which used parallelized computer code
was run on a KSR2-64 using 32 processors simultane-
ously and took hundreds of CPU hours, averaging 49 000

|

Squeezing (dB)

U

—

= < — 2

=

=

a2

FIG. 7. Spectrum of squeezing versus distance from thresh-
old (1—p) and frequency w for ntn, = 10 and v = 100. Squeez-
ing is given by V(X:_,w) in (2.19).
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wave functions. The result is disappointing, and is not
yet fully converged. The simulations have converged to
the bare-vertex solution at low frequencies but not at
higher frequencies. We do observe a slow trend towards
the bare-vertex solution at higher frequencies as more
trajectories are averaged. It is likely that faster conver-
gence would be obtained by averaging sets of N auxiliary
functions per wave function, but still at an enormous ex-
pense compared to the bare-vertex method. We should
also note that with critical slowing down the simulation
method would be even more expensive in the region near
threshold where the bare-vertex method breaks down, so
it does not appear to present a practical alternative until
a significantly more efficient computational procedure is
found.

In Figs. 10 and 11 the bare-vertex solution for the

pump photon number and the quantum correction to the
classical pump amplitude (a3) are given, respectively,
versus iteration number for various pump values. The
pump observables are not accessible to the one-pole ap-
proximation, and so, we compare with wave-function sim-
ulations in the nonadiabatic regime where ny, = 102 and
¥ 0.1. By contrast with the subharmonic, the ac-
curacy of these pump observables is not restricted by
(4.16). This can be explained by the qualitatively differ-
ent dynamics of the pump and subharmonic near thresh-
old. The latter undergoes a “condensation” and is much
more sensitive to fluctuations.

In Fig. 12 we show the squeezing spectrum versus cav-
ity detuning for a range of pump values from p = 0.90 to
p = 0.96. The values for ny, and v are the same as those
in Figs. 8-11. Notice the qualitatively nonlinear feature
in the spectrum, the positive peak centered at w = 0.

Iteration number

This peak begins to emerge at p = 0.91, where the accu-
racy of the bare-vertex solutions begins to break down.
Higher pump values enhance this feature as indicated in
Fig. 12, and we expect the figure to qualitatively repre-
sent the true spectrum. The one-pole approximation also
gives a qualitatively similar spectrum for this parameter
set. Quantitative analysis of the growth of this feature as
the classical threshold is approached would require fully
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FIG. 9. Comparison of the squeezing spectrum versus fre-
quency w for the wave-function simulation method (dotted
line) and the Green function method (dashed line). The lin-
earized spectrum (solid line) is shown for comparison. Pa-
rameters are ngy, = 100, v = 1, and p = 0.5. Squeezing is
given by V(X:1-,w) in (2.19).
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FIG. 10. Comparison of pump intracav-
ity photon number (relative to the classi-
cal photon number a3) versus iteration num-
ber for the wave-function simulation method
(dashed line) and the Green function method
(asterisk). Error bars for the latter are
not visible on this scale. Parameters are
ny, = 1000 and v = 0.1 for (a) p = 0.80,
(b) p = 0.85, (c) p = 0.90, and (d) p = 0.93.

be expressed in terms of photon Green functions. In this

paper we have investigated the application of a method
which calculates such Green functions directly, to study
the influence of nonlinear quantum fluctuations near the
threshold of a degenerate OPO. New results on stationary
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intracavity field amplitude and photon number, and out-
put squeezing spectra have been computed in this way,

FIG. 11. Comparison of quantum correc-
tions to the classical pump amplitude (az)
versus iteration number for the wave-function
simulation method (dashed line with error
bars) and the Green function method (aster-
isk). Parameters are n¢n, = 1000 and v = 0.1
for (a) p = 0.80, (b) p = 0.85, (c) p = 0.90,
and (d) p = 0.93.
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FIG. 12. Spectrum of squeezing versus distance from

threshold (1—p) and frequency w. Parameters are ny, = 1000
and v = 0.1. Squeezing is given by V(X;_,w) in (2.19).

using both analytic approximations and numerical meth-
ods. The reduction of squeezing at low frequencies as
threshold is approached was shown, consistent with the
results of Refs. [6] and [13], to be due to nonlinear pho-
ton polarization (represented by a bubble diagram) which
mimics a finite electric-field amplitude, even when the
latter is zero.

With any theoretical method, a careful assessment of
its validity and how it compares with other approaches
is important. For this reason we have presented a de-
tailed discussion of the range of validity and convergence
properties of the bare-vertex approximation employed to
truncate the hierarchy. The criteria derived are in agree-
ment with the numerical results presented. Analytical
approximations to the photon Green functions capture
the qualitative features of the bare-vertex truncation, and
only quantitative differences due to nonlinear quantum
fluctuations of the pump are observed. An exact numer-
ical treatment of quantum correlations in the degener-
ate OPO is formidable by any method based on Fock
space expansions, except at very low photon numbers,
because one must deal with two quantized field modes
and very large basis sets. We have used the complex P
distribution, the wave-function simulation method and
analytic approximations to confirm the accuracy of the
Green function method for the calculation of stationary
states and quantum correlation functions. We find that
the calculation of single time averages alone using wave-
function simulations is more computationally intensive
than the calculation of both stationary states and sta-
tionary dynamic spectra using photon Green functions.
Moreover, two-time correlations and spectra require ex-
tensive auxiliary calculations with the wavefunction sim-
ulation method which makes it impractical by compari-
son. Spectral simulations of stochastic differential equa-
tions derived from the positive P distribution are more
competitive as they are based on coherent state rather
than number state expansions, but are not considered
here [17]. Density matrix methods are exact in princi-
ple, but near threshold would require both sparse stor-
age and supercomputing facilities. The reason the Green
function approach fairs so well by comparison is because
extraneous information retained in both density matrix

and wave-function simulation methods is discarded.

The nonlinear quantum fluctuations in the vicinity of
the OPO threshold are characteristic of the underlying
classical pitchfork bifurcation. By contrast in intracavity
second harmonic generation there is a Hopf bifurcation,
where the signature of nonlinear quantum fluctuations is
quite different. This will be reported in a forthcoming
paper along with results on the behavior of the OPO
above the classical threshold and a complete derivation of
the equations for the photon Green functions, including
those employed here.
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APPENDIX

Below we briefly describe two independent methods
that were used for comparison with the Green function
solutions. Mean values for the subharmonic photon num-
ber in the adiabatic regime, v > 1, are compared with
analytical values obtained via the complex P distribu-
tion [8]. In the nonadiabatic regime, mean values for the
pump field and intracavity photon numbers, and output
squeezing spectra are compared with the wave-function
simulation method [9].

1. Complex P distribution

By expanding the density operator in terms of the
complex P quasiprobability distribution, the OPO mas-
ter equation with the pump mode adiabatically elimi-
nated on the basis that v > 1, can be converted to
a Fokker-Planck equation [8]. This satisfies potential
conditions enabling the stationary probability distribu-
tion P(al,al) to be given explicitly. All normally or-
dered stationary moments of the subharmonic can then
be found by quadratures over contours in two copies of
the complex plane:

Lnp = (G'Tn i

// "o P(ay,al)dalda;. (A1)

The contours may be deformed so that the integrals de-
fine the Gauss hypergeometric function ,F;, hence,

nn"—NZ

x{2F1["(m +n )aja 2j7 2]}
X{ZFl["(m + n)’j) 2]7 2]}1

( C m+n ( )m+n

(A2)

where
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C=4/2npyp and j = 2ngy,y,

and N is the normalization constant.

(A3)

2. Wave-function simulation method

In the nonadiabatic limit, we follow the wave-function
simulation method set forth by Mglmer et al. [9]. In
this prescription a non-Hermitian Hamiltonian generates
a smooth evolution which is randomly interrupted by
quantum jumps. Quantum single-time expectation val-
ues may be constructed from the wave-function evolution
averaged over many trajectories. Two-time correlation
functions may be calculated by a similiar procedure de-
rived from application of the quantum regression theo-
rem, but involving the evolution of some auxiliary quan-
tities in addition to the wave function. The state vector
is expanded in a Fock basis of size (N +1)(N2 + 1), i.e.,
0 < n; < N1, 0 < ny < Ny, where Ny and N, are large
enough to neglect boundary effects,

N, N2

[T @) =D D byna(t) Inana).

n1=0n2=0

(A4)

Time evolution is governed by the effective non-
Hermitian OPO Hamiltonian H.¢; (we use same nota-
tion as earlier sections)

[O(t+0t) = (1 —iHess0t/R)|P(t)), (A5)
where
_ ih t2 2 ik 12 _ 2,1
He.ff - zp(al a1)+ m(a’l az a1a2)

2
— ik Z clck, (A8)
k=1

and the collapse operators are defined as

c = \/§a1 and Co2 = 4/ 2’)’(12.

The norm of the state operator is not preserved under
time evolution

(A7)

(T(t+6t)|T(t+dt)) = (T(t)|¥(t)) — 6 P, (A8)

where

SP=Y 6P and 8P =05t (¥(t)ckex|T(t)). (A9)

k=1

Here 6 P,, § P, are interpreted as the probabilities that
the state vector will collapse with a photon being lost
from the cavity subharmonic or pump mode, respectively.
The time step 0 ¢ is adjusted so that § P < 1. A uniform
random number 7; is drawn at each time step and when
6 P < rq, evolution proceeds as above for the next time
step, while if § P > r;, collapse occurs and a photon is
lost into one of the two decay channels. Another uniform
random number, 73, is then selected to determine which
channel is chosen. If § P,/6 P > r; the subharmonic
decays by emitting a photon from the cavity; otherwise,
the decay is via the pump mode; i.e., for 6 P1 /6 P > r;

ca|¥(2))

VOP /ot

while for § P; /8 P < ry the subscripts 1 and 2 are inter-
changed in (A10).

A grid with size N; = 32 and N, = 16 was employed
for the calculation of Fig. 9, large enough to ensure that
boundary effects were negligible.

[T(t+6t)) = (A10)
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