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Optical homodyne measurements and entangled coherent states
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We show that optical homodyne measurements of coherent states, and of superpositions of co-
herent states, can be described using the joint photon-number distribution for entangled coherent
states. The quadrature-phase distribution interference fringes for superpositions of macroscopically
distinct coherent states (the so-called "Schrodinger cat states") are shown to arise from interference
in the photon-number distribution for entangled coherent states. The entangled squeezed states are
introduced here as squeezed superposition states which are optically mixed with an antisqueezed
coherent local oscillator field (squeezing in the other quadrature) at a beam splitter, and we dis-
cuss the connection between entangled squeezed states and squeezed-state homodyne detection of
squeezed light. Finally the relationship between interference in phase space and fringes in the joint
photon-number distribution for the entangled squeezed state is explored.

PACS number(s): 42.50.Dv, 42.50.Ar, 03.65.Bz

I. INTRODUCTION

The superposition principle of quantum mechanics is
at the heart of the mystery of quantum theory, and
Schrodinger's cat paradox [1] illustrates the conceptual
difBculties with extending the superposition principle to
the macroscopic world. Consequently much interest has
focused on generating and detecting the optical manifes-
tation of the so-called "cat state" by producing a super-
position of two macroscopically distinct coherent states
[2—5], distinct SU(2) coherent states [6], distinct squeezed
states [4,7,8], and distinct phase states [9]. The accepted
signature for identifying the existence of a "cat state" is
the presence of interference fringes in a homodyne mea-
surement for particular choices of local oscillator phases
[3,4]. These fringes are characteristic of the superposi-
tion principle and do not arise for a mixture of coherent
states.

Two-system entanglement [10] allows more diverse
measurement schemes which can admit tests of local re-
alism. An extension of Schrodinger cat states to two-
system entanglements of coherent states [11—13] expands
the interest in macroscopic superposition states into a
realm where a variety of tests can be made. Although
measurements including conditional measurements on
one mode [11], joint photon-number distribution mea-
surements [12],and Bell inequality tests [11,14] have been
studied, a definitive signature of coherent state entangle-
ment, analogous to the signature of the cat state, has
not been identified. In this study we identify the joint

photon-number distribution as a natural measurement
for determining the presence of the entangled coherent
state.

Interference fringes in the photon-number distribution
are the signature of entanglement, and can be viewed as
arising due to interference in phase space [15—17]. Fur-
therrnore, the optical homodyne detection [18] of single-
mode states is obtained by reducing this joint photon-
number distribution to the photon-number difference dis-
tribution [19—21], and the interference fringes in the
photon-number difference distribution are the source of
the well-known fringes in the quadrature-phase distribu-
tion for superpositions of distinct states.

A squeezed. local oscillator can be introduced in ho-
modyne detection and it is interesting to consider the
mixing of a squeezed local oscillator at a beam split-
ter with a superposition of two distinct "antisqueezed"
(squeezing in the other quadrature) coherent states. The
fringes in the joint photon-number distribution persist
for the incoherent mixture of strongly squeezed states;
the nature of this interference and interference in two-
dimensional phase space [15,16] is discussed. The re-
duction of the joint photon-number distribution to the
quadrature-phase measurement case is also consid. ered.
Of particular interest is the very strong squeezing case
which exhibits features somewhat different from the co-
herent state local oscillator case.

II. OPTICAL HOMODYNE DETECTION

*Electronic address: barrympce. mq. edu. au
t Present address: Korea Atomic and Energy Research Insti-

tute, Daeduk Science Town P.O. Box 7, Daejon, Korea.
~Electronic address: mshkimccs. sogang. ac.kr

Optical homodyne detection [18,19] can be modeled as
the mixing of a local oscillator field, which could be a co-
herent or a squeezed state of light [19],with a signal field
at a beam splitter, and involves joint photon-number dis-
tribution measurements of the two output ports of the
mixing beam splitter. The signal Geld mode is repre-
sented by mode a and the local oscillator Geld mode is
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represented by b, and the corresponding annihilation op-
erators for the quantized Beld modes are a and b, respec-
tively. The two outputs are represented by c and d with
corresponding annihilation operators c and d. The out-
put Beld operators are related to the beam splitter input
fields by the transformation

S (g) = exp((ga —/*at ) /2) . (2.9)

~-(~ & n) = ~. '"(~ 4) + «'."'(~ &) (2.10)

The coherent state is, in the standard notation, ln)
in, ( = 0).

The density operator for the input signal state is

for

- (a) -t 1 fa —ib't
K2 &b —'r &dr

B = exp i~(atb+ abt)/4

(2.1) for

~. '"(~ 6) = [l~ 6)-(~ ql +
I

—~ &)-(—~, Cl] /2 (2 »)
the density matrix for the mixed state and

(2.2)
~'."'(~ &) =i[I —~ &)-(~ &I

—l~ &)-(—~ &I /2 (2»)
the unitary beam splitter operator for a 50:50 beam split-
ter [20].

Optical homodyne detection corresponds to a differ-
ence photon counting of the two output fields from the
beam splitter. An arbitrarily weighted photodifference
count corresponds to a measurement of the operator

pc c —vd (2.3)

P,d(m, n) =,g (m, nl p,d Im, n) g, (2 4)

for the output state

For p = 0 or v = 0, the photons in only one output
port are detected and, for a strong local oscillator, the
photon-number distribution can be normalized to pro-
duce the desired quadrature-phase measurement. Bal-
anced homodyne detection corresponds to the difference
measurement p = v in (2.3) and directly produces the
quadrature-phase measurement for a strong local oscilla-
tor field [19]. If an input signal state with density ma-
trix p mixes with a pure local oscillator state l@)i, the
photon-number distribution is

P, g(m —n) = ) P,d(m, nlm —n)
m, +n=o

(2.13)

and converges to the quadrature-phase distribution by
choosing a strong coherent local oscillator state and the
appropriate local oscillator phase. The mean of the dis-
tribution P, g(m —n) approximates the mean quadrature
phase, and the variance of the distribution approximates
the variance of the quadrature-phase variable.

the interference part of the density matrix. For g = 1
the state is the coherent superposition of macroscopically
distinct squeezed coherent states [4,8] and is the more
common superpositions of coherent states [2,3] for ( = 0.
An incoherent mixture of two squeezed coherent states 7t

out of phase arises in the limit that g —+ 0. The local
oscillator state is assumed to be a pure squeezed coherent
state IP, —() and reduces to the coherent local oscillator
for (=0.

Given the P,d, (m, n) distribution, the result of an ideal
homodyne detection measurement is readily calculated.
The photon-number di8'erence distribution is [21]

~' = &~- [I~).(~l) &" (2.5)

and III. COHERENT STATES

(ct)rn (dt)n
Im, ri) (g = I0) d

m! n!
(2 6)

l~ C)- = D-(~)s-(&)I0)- (2.7)

the two-mode number state. The distribution P,d(m, n)
generates the moments for the arbitrary number differ-
ence operator (2.3).

The signal input Beld state is assigned the density op-
erator p and we restrict our attention to the special case
that the state consists of a coherent superposition or in-
coherent mixture of squeezed coherent states [22]. The
squeezed coherent state is written as

1-
~.~ =

2 l~).(~l lb)~(bl

+I'». ('bl I

—'». (-'~l
+'~i(l'b). (~l I

—i~).(b

-I~).('bl I~).(-i~l) j, (3.1)

where

The signal field state is p (a, ( = 0; g) where n is as-
sumed, without loss of generality, to be real, and there is
no squeezing. The local oscillator state is assumed to be
in a coherent state with complex amplitude P = IPle*&,
and the local oscillator and the signal state p are mixed
at the beam splitter; the output state is then

where the unitary operator D is the displacement oper-
ator 1 (n+ ip)

2
and

1
(' +P) (32)

2
i).(c ) = exp (nat —c *a),

and S (() is the squeezing operator

(2.8)
For g = 1 the state p g can be written as the pure state
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where

~' = l~)(~l

1
I@) = (I~).l~)d + tlt'~).

l

—'~)~),
2

100

(3.3)

(3.4)

which can be shown to violate a Bell inequality [14] as
required for entangled states [23]. (For il g 1 the output
state is not pure and the Bell inequality as constructed
in Ref. [14] does not apply. )

In the following we are going to compare the joint
photon-number distributions when the output field is
pure (rI = 1) and not pure (il g 1). It is convenient
to de6ne the two phase parameters 0 and 4 such that

and

tail 20 = cos p
2nlPI

P2 n2

2n
cos 4 = sing.n2+ P2

(3 5)

(3.6)

100 100 Using these parameters, the general form of the joint
photon-number distribution is given by

ioo

P,q(m, n) =
-("+~~~')( '+IPI' I»nial)

+"
+ mI~t

x (cosh [(m —n) lnl tan(4/2) I]

—q sin [2(m —n) 8] ) . (3.7)
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FIG. 1. Contour plot of the joint photon-number dis-
tribution P,q(m, n) for the signal Field state p (n = 10,

0; il) and the coherent local oscillator field IP) i, for

(a) P = 10, g = 1, (b) P = 25, rl = 1, and (c) P = 25, il = 1/2.
The contour step size is one-fifth the peak height.

FIG. 2. Contour plot of the joint photon-number distribu-
tion P g(m, n) for the signal field state p (n = 5, ( = 0; il) and
the coherent local oscillator field IP)q for (a) P = 5i, rI = 1 and
(b) P = 7i, iI = 1. The contour step size is one-fifth the peak
height.
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The oscillatory term in the distribution (3.7), with rl as
a factor, vanishes for g = an
the signa e eing i1 fi ld b in an incoherent mixture o pro uc
coherent states.

rel ima-l oscillator amplitude P which is pure y imag-
inar the local oscillator phase is p = vr/ an e
photon-number distriuu ion or
beam splitter reduces to

O = tan n/P,
—1 (3.9)

P.„(m, n) =
(~2+p&)

(
2 p2)

rn+n

2m+~ I1~I

x (1 —rl sin [2(m —n) 0]), (3.10)

which may be written as

and the joint photon-number distribution is given by

P.d(m, n) =

x cosh (m —n) l

P.g(m, n) =
lo~+P2)

(
2 p2)

rn+n

2m+n

x cos [(m —n)O+ a/4] (3.11)

1&ml» &nl~) I'+1&ml~) &nl» I'
2

(3.8)

and the distribution (3.8) is independent of il. The
p hoton-number is ri u ib d t b tion is thus insensitive to the de-

h d corresponds to an averageree of quantum conerence an cor
onian distributions.

then the phase parameter 0 reduces to

ure si nal Geld state of g = 1. I o.p g

late at the very fine single-photonoton level. When the e
te is ure rl = ) ancl the local oscillator is in phase

bution oscillates as seen q . . d 3.8 .in E s. 3.5) and 3.8 . s e
ce in the entangled states is re uce

rl ( 1) or the local oscillator is out of p ase wi
1 ~ ~ 0& the oscillations become less pronouncesigna
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The fringes in the joint photon-number distribution are
evidence of entanglement and require a judicious choice
of local oscillator phase p to be visible: optimal visibility
is attained for y = 0 in example (3.11) for p = 0 and
zero visibility arises for p = m/2.

The joint photon-number distribution is depicted in
Figs. 1(a)—1(c) for the local oscillator state with real am-
plitude. The degree of quantum coherence g is varied
to study the effects on fringe visibility. The fringes are
visible in (a) and the very rapid oscillation is due to
the fact that P = n. Actual detection of these fringes
would require nearly perfect photodetectors to resolve
the fringes to the necessary single-photon level [16]. In
(b) the fringes are broader as P is much larger than o.. For
the case of a signal field which is partially incoherent, the
fringes are somewhat diminished by choosing rl = 1/2, as
shown in (c), but fringes are still visible. The presence of
fringes indicates that entanglement is still present with
less than perfect coherence in the two-mode superposi-
tion state.

The case of the local oscillator with imaginary ampli-
tude is treated in Figs. 2(a) and 2(b). In (a) the joint
photon-number distribution is plotted for n = lPl and
out of phase by 7r/2. The nature of the distribution
in (a) corresponds to that for the entanglement of the
coherent state with the vacuum state [12]; in (b) the am-
plitude of the local oscillator amplitude is chosen such
that u g +lPl.

The photon-number difference distributions corre-
sponding to the parameters of Figs. 1 and 2 are plotted
in Figs. 3(a)—3(d). The distributions approximate the
quadrature-phase distributions and the granularity is due
to the local oscillator field being weak [21]. The choice
of a stronger local oscillator in (c) produces smoother
distributions compared to that in (a). The fringes in (a)
and (c) are the signature for superpositions of macroscop-
ically distinct coherent states using homodyne detection
[3]. Fringes are not present in (b) because of the 7r/2
phase shift of the local oscillator, and the form of the dis-
tribution approaches the double-Gaussian distribution in
the limit of a strong local oscillator. The fringes in the
photon-number difference distribution (d) are quite di-
minished for il = 1/2 but are still evident; the joint pho-
ton distribution provides a somewhat clearer signature
of entanglement than does the photon-number difference
distribution.

and the mixed state is represented by the density opera-
tor (2.11).

For the pure state g = 1, and the squeezed coherent
local oscillator state lP, —g)~, the pure state output from
the beam splitter is

which is an entangled squeezed coherent state. The
state (4.2) cannot be expressed as a product state for gen-
eral choices of o., P, and ( and is therefore entangled; the
Schmidt form can be found for entangled squeezed coher-
ent states which exhibit the entanglement quite clearly
[14]. The c output is squeezed and the d output is an-
tisqueezed. The entangled coherent states are a spe-
cial case of the entangled squeezed coherent states (4.2)
for (=0.

The mixing of a squeezed coherent local oscillator with
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IV. SQUEEZED LOCAL OSCILLATOR

A squeezed local oscillator can offer improved sensitiv-
ity to interference fringes. The mixing of a superposition
of distinct squeezed coherent states, or "squeezed cat"
[4], with a squeezed local oscillator is calculated below.
The "squeezed cat" is produced by the ideal nonlinear
optical Kerr interaction from an initial squeezed state in
the same way that a "cat state" is produced from an ini-
tial coherent state [3]; the "squeezed cat" state is written
as

(4.1)

0.01:

0.00—50 —25 25 50

FIG. 4. Contour plot of (a) the joint photon-number
distribution P,d(m, , n) and (b) the photon-number difFer-
ence distribution P d(m, —n) for the signal field state
p (n = 10, ( = 0.5; rl = 1) and the squeezed coherent local
oscillator field lP = 10,( = 0 5)b The —con. tou. r step size is
one-fifth the peak height.
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a "squeezed cat state" (squeezing in the saine quadra-
ture) can be considered as well and the resolution of in-
terference &inges in the photon-number difference distri-
bution will be modified (see the discussion below). How-
ever, this input state is not considered here as the out-
put state is not an entangled squeezed state. Mixing
two squeezed states at a beam splitter will produce a
two-mode squeezed output state (for two difFerent spa-
tial modes) [24], but the choice of one squeezed state and
one antisqueezed state as beam splitter inputs produces a
product output state. tA'e exploit the advantages of mix-
ing squeezed and antisqueezed states at a beam splitter
to relate squeezed-state homodyne detection of "squeezed
cats" with the entangled coherent states.

In Figs. 4(a) and 4(b) the joint photon-number distri-
butions and the reduced photon-number difference dis-
tribution are presented for n = P = 10, ( = 0.5,
and g = l. Inter ference fringes are visible for the
squeezed entangled state as well as for the entangled co-
herent states. The photon-number difference distribu-

tion reveals fringes which are not as clear as for the un-
squeezed case. The reason for this reduction in &inge vis-
ibility in the difference distribution, and consequently in
the quadrature-phase measurement, is due to choosing a
squeezed local oscillator for an "anti-squeezed cat." The
photodifference measurements reveal good &inges near
the center of the distribution, but the fading of the fringes
further out is a consequence of the phase space overlap
between the local oscillator state and the "squeezed cat"
after mixing at the beam splitter. If the "cat" and the lo-
cal oscillator were squeezed in the same quadrature, then
the fringes could be improved.

The joint photon-number distributions and the re-
duced photon-number difFerence distribution are pre-
sented for the case of very strong squeezing in Figs. 5(a)
5(b), and 6. The degree of squeezing is large in order to
show that &inges in the joint photon-number distribution
persist even for the incoherent mixture g = 0 in Fig. 6.
The photon-number difference distribution in Fig. 5(b)
does not exhibit oscillations due to the strong antisqueez-
ing of the local oscillator with respect to the superposi-
tion of the squeezed states. As the local oscillator is
strongly antisqueezed, the phase space overlap between
the local oscillator and the signal smears out interference
&inges. The joint photon-number distribution for g = 0
is plotted in Fig. 6, but the corresponding photon-number
distribution is not plotted because, due to the noisy
homodyne detection using squeezed light for an "anti-
squeezed cat," the distribution does not differ in any no-
ticeable way from the pure state calculation depicted in
Fig. 5(b). The distribution fringes are an evidence of
phase space interference and the setting of q = 0, whilst
removing the four-dimensional phase space interference,
does not remove the two-dimensional interference that
produces interference in phase space and &inges in the
photon-number distribution for a single-mode squeezed
state [15,16]. The fringes are diminished for lower levels
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FIG. 5. Contour plot of (a) the joint photon-number
distribution P,q(m, n) and (b) the photon-number difFer-

ence distribution P, q(m —n) for the signal field state
p (n = 7, ( = 3.05; q = 1) and the squeezed coherent local
oscillator field ~P = 7, ( = —3.05)I, . The contour step size is
one-fifth the peak height.

FIG. 6. Contour plot of the joint photon-number distri-
bution P,q(m, n) for the signal field state
p (n = 7, ( = 3.05; I7 = 0) and the squeezed coherent local
oscillator field ~P = 7, ( = —3.05)I, . The contour step size is
one-fifth the peak height.
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of squeezing which corresponds to less prominent two-
dimensional phase space interference.

V. CONCLUSIONS

The joint photon-number distribution has been shown
to be an important quantity for distinguishing entangled
coherent states &om mixtures. Moreover, the photon-
number difference distribution, which is obtained by
reducing the joint photon-number distribution, corre-
sponds to the quadrature-phase measurements of cat
states in the limit of a strong local oscillator field. In-
terference fringes in the two distributions are very much
related and the homodyne measurement of "cat states"
reveals one aspect of detecting entangled coherent states.

The entangled coherent states are a special case of the
entangled squeezed states which have been introduced
here and arise if "squeezed cats" are mixed with an anti-
squeezed coherent local oscillator 6eld at the beam split-
ter. The entangled squeezed states present joint photon-
number distributions which exhibit interference fringes
even for the case that the "squeezed cat" is reduced to

an incoherent mixture of squeezed states. The persis-
tence of these interference fringes is a manifestation of
two-dimensional phase space interference for each of the
component squeezed states.

An important feature of the interference &inges in the
joint photon-number distribution is the fj.ne graining of
the oscillations. Measurements of the oscillations are
thus very difBcult with anything but a very high efB-
ciency photodetector. Despite the diKculty in detecting
this signature of entanglement, the joint photon-number
distribution is the natural distribution to search for ef-
fects due to entanglement and these &inges arise for the
appropriate choice of local oscillator phase.
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