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Pulse propagation near highly rejective surfaces: Applications to photonic band-gap structures
and the question of superluminal tunneling times
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We address the physics of pulse propagation, energy flow, and field dynamics as described by
Maxwell's equations. After deriving the form of the Poynting vector for pulses that vary slowly in time
only, we show that interference terms nontrivially a6'ect the momentum and the energy density of an
electromagnetic pulse that scatters from highly reflective materials. Inside such materials, we conclude
that the magnetic- and electric-field amplitudes are strongly out of phase. We then apply our findings to
the study of layered periodic structures; specifically, we examine the propagation of apparently "super-
luminal" pulses. By monitoring the local momentum and energy densities in the structure at all times,
we explicitly show that the canonical energy velocity can never exceed the vacuum speed of light c at any
point in the crystal.

PACS number(s): 42.50.Rh, 42.25.Bs, 42.25.&y, 73.40.Gk

I. INTRODUCTION

The issues of propagation, energy Bow, and field dy-
namics in electromagnetism have been of primary impor-
tance ever since the equations that describe these phe-
nomena were first formulated in their entirety by
Maxwell [1]. The validity of the theoretical predictions
of Maxwell's equations rests on an overwhelming body of
experimental evidence that has never been known to be in
contradiction with the basic postulates of the theory, at
least in the classical domain. These equations, therefore,
form the basic underpinnings of all of modern optics, in-
cluding nonlinear and quantum optics.

Although Maxwell's equations lay claim to all phe-
nomena in classical optics, in practice many restrictive
assumptions must be made in order to render the equa-
tions tractable. Chief among such approximations is the
plane-wave limit that is typically applied in propagation
problems. There is a danger, however, that the simplicity
and omnipresence of the plane-wave approach can lead to
a false sense of security and hence a tendency to overlook
some of the more interesting physics that are involved in,
say, pulse propagation or transverse effects. For instance,
the study of propagating fields in nonlinear media in the
plane-wave approximation overlooks interesting diffrac-
tion effects that become apparent only when the plane-
wave limit is relaxed [2].

The study of two- and three-dimensional, periodic,
dielectric structures —the so-called photonic band-gap
(PBG) structures —has flourished in the past few years
[3,4]. One-dimensional PBG structures have provided
proof-of-principle results, and the prediction of new
physical phenomena, such as band-gap solitons [5] and all
optical switching [6]. In one dimension, these structures
can be composed of alternating dielectric layers of
difFerent materials such that the index of refraction alter-

nates between a high and a low value, as in a quarter-
wave-stack reAective coating. In three dimensions, a to-
pologically complicated periodic index variation is re-
quired in order to obtain an omnidirectional band-gap
structure [4]. The PBG crystal transmits a certain range
of frequencies, while rejecting others. The name is ap-
plied in analogy to electronic semiconductor band gaps
that arise in periodic crystal lattices in solid-state physics.

Recently, the dynamical characteristics of a pulse in-
cident on a one-dimensional PBG material have been ex-
amined in the context of the numerical demonstration of
a photonic band-edge laser [7], a nonlinear ultrafast opti-
cal limiter and switch [8], and a nonlinear optical diode
[9]. In part, the work presented in this paper has been
motivated by the recent controversy surrounding the
definition and notion of a "tunneling time" associated
with the speed at which an evanescent wave traverses a
potential barrier [10]. A physically meaningful charac-
terization of this time is desirable from a practical point
of view in order to optimize high-speed, electronic nano-
structures that utilize quantum tunneling, such as tunnel
diodes. Chiao has pointed out that there are in fact
several different characteristic velocities one may associ-
ate with an evanescent wave: the phase, group, energy,
and front velocities [11]. In a series of experiments,
Chiao and co-workers have measured the group velocity
of single-photon wave packets traversing one-dimensional
PBG structures. The photon frequency was chosen to
correspond to the frequency at center gap, and although
the tunneling appeared to be superluminal, they argued
that it was a causal effect resulting from simple pulse
reshaping [12]. Additional recent theoretical work by
Chiao's group seems to indicate that in a linear gain
medium, even the energy velocity can become superlumi-
nal [13].

With these considerations in mind, we will reexamine
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the definition of energy velocity as it is usually applied to
plane waves. In extending these considerations to pulses,
we find some hitherto unknown features (to our
knowledge) that form the major results of this paper. To
begin, let us recall that the energy velocity V, of a plane
wave in a medium whose linear index profile is given by
n (z), where z is the direction of propagation, is usually
defined as

e

where S is the wave Poynting vector, and U is the local
energy density of the electromagnetic field. However,
this does not always agree with the wave group velocity,
defined by

de)
(2)

II. FORMALISM

We begin by writing the set of well-known Maxwell's
equations. In Cxaussian units, they are [14,15]

7'.B=0,
V.D =4~p,

4m 1 BD
c c Bt

1 BBVXE= ——
c Bt

(4)

(6)

In particular, V, is a spatially local, time-dependent
quantity, while V is not. These expressions are also
commonly used to describe wave propagation in non-
linear media. However, in regions of strong dispersion,
different parts of the pulse may travel with quite different
velocities, so much so that the assumption of a pulse with
a well-defined peak moving in a single direction —used to
derive V~ —breaks down. Under these circumstances,
the time the wave packet takes to traverse a predeter-
mined structure can be defined almost arbitrarily. From
a physical standpoint, propagation in these structures is
governed by Maxwell's equations, and one should then
more properly refer to the Poynting vector as a natural
measure of energy-transfer rates in any structure.

It is within the context of the discussion above that we
undertake the study of the properties of electromagnetic
pulses near highly reflective surfaces, starting only with
Maxwell's equations. We will show that, even in the
one-dimensional case, the magnetic and electric fields are
not related in a simple way as they are for plane waves.
In fact, interference terms affect the Poynting vector in a
nontrivial fashion and also alter the usual notions of the
momentum and the energy density of a traveling elec-
tromagnetic pulse. We will show that the magnetic field
depends on the spatial curvature of the electric-field en-
velope and, near rejective surfaces, the two fields are spa-
tially anticorrelated. In other words, where the electric
field is a maximum, a minimum occurs in the magnetic
field, and vice versa.

where for simplicity we have assumed that 8=H, i.e., we
deal with nonmagnetic materials for which p=1. In ad-
dition, we make use of the constitutive relation

D=E+4mP=cE .

Here, D and P are the electric-field displacement and
volume polarization, respectively. The dielectric con-
stant is c, and it is related to the index of refraction by
e=n (z). Now we further assume that there are no free2

currents or charges, and that the electric and magnetic
fields are linearly polarized. Then the fields are given by

E(z, t) = —,
' [E(z, t)e'"' "+c.c.]x,

B(z, t) =
—,
' [B(z,t)e'"' "+c.c. ]y, (9)

where F. (z, t) and B (z, t) are envelope functions, x and y
are the usual x and y unit vectors, and k =(cole)no is as-
sumed to be a constant initial value. Here no is the real
index of refraction of the background, or host medium,
and it is assumed to be unity (i.e., the vacuum) without
loss of generality. All phase-modulation effects that may
result from propagation are, therefore, contained in the
envelope functions. We neglect transverse effects and re-
tain the longitudinal and temporal dynamics of the fields.
We stress that Eqs. (8) and (9) for the fields merely consti-
tute an initial condition, that is, the pulse is initially lo-
cated in a host medium of uniform index no=1, and is
traveling along the positive z direction.

A. Energy velocity for pulses

Substituting Eqs. (8) and (9) for the electric and mag-
netic fields into Maxwell Eq. (6), we immediately obtain

aE . .~ 1 aB+ikE =i—B——
az c c Bt

(10)

For pulses, this equation has an immediate solution for
the magnetic field if we assume that the slowly varying
envelope approximation in time holds (SVEAT), i.e. ,

coB
I
» 8B

at

. c aEB=E—i-
ce Bz

(12)

This simple result points to the important conclusion that
the magnetic field is sensitive to the spatial modulation of
the electric-field envelope. If the spatial modulation is
small, i.e., if the pulse does not encounter a boundary, we
may also neglect the spatial derivative term. Then B =E,
which is the correct result in the plane-wave limit.

An expression similar to Eq. (11) holds for the electric
field. The SVEAT implies that pulses should be at least
100 optical cycles long. Typical propagation distances do
not exceed a full pulse width because structures can be
extremely short. For example, if A, =1 pm, a 100-optical
cycle pulse can still be less than 1 ps, while a one-
dimensional PBG crystal can be between 5 and 10 wave-
lengths long. As a result of the SVEAT, we can write Eq.
(10) now as
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The important result here is that the spatial modula-
tion of the electric field generates a phase shift in the
magnetic field. This shift is dynamic and is significant
when a field is incident on a highly rejective surface.
Perhaps more importantly, this effect leads to a
modification of the electromagnetic momentum and ener-

gy inside and, in general, near the surface of the struc-
ture. The Poynting vector is defined by [14,15]

1 Sg= — EXB=
4~c c

(14)

As a result, using the definition of the fields in Eqs. (8)
and (9) above, and neglecting terms that oscillate at twice
the optical frequency, we find that the electromagnetic
momentum density is

g= [EB*+E*B].1

16~c

Using Eq. (12), relating 8 to E and its spatial derivative,
this expression becomes

l~l'+
8ETC 1 67TCO

BE* ~ BE
z Bz

(16)

Similarly, if the macroscopic medium [i.e., the absolute
index of refraction n (z) ] is assumed to be dispersionless
and absorptionless over a finite range of frequencies, and
strictly linear in both electric- and magnetic-field proper-
ties, the electromagnetic field energy density is given by
[14,15]

U= (E D+8 8) .= 1

8~
(17)

Again using Eqs. (7)—(9) and (12), the energy density can
be recast as

iE~ +l
16m 16m' Bz Bz

c' BE
16m'

(18)

Our results suggest that the field envelope "curvature"
resulting from interference effects can significantly alter
the dynamical behavior of electromagnetic momentum
and energy density near or inside a highly reAective struc-

S= — EXB,
4~

while the electromagnetic momentum density is given by
[14]

ture such as a PBG material. In particular, the addition-
al term present in the Poynting vector, from Eq. (16),
containing factors of BE/Bz is reminiscent of the
quantum-mechanical Schrodinger current density J in
one dimension, given by [16]

i A B%'* B4
2m Bz Bz

(19)

where A is Planck's constant divided by 2m and I is the
electronic mass. The similarity is striking and comes as a
result of our reformulation in terms of slowly varying
variables in time. In this case, the approximated
Maxwell's wave equation is first order in time and second
order in space, in analogy to the Schrodinger equation.

The identification with the Schrodinger current should
not be extended too far, and we merely point out that
both wave equations are parabolic differential equations
of the same type, and both lead to similar mathematical
statements for energy and momentum conservation. In
fact, the leading term on the right-hand side of Eq. (16)
for the Poynting vector has no counterpart in Eq. (19).
However, we stress here the new terms that appear in the
Poynting vector, the momentum density and the energy
density, are, to our knowledge, not normally taken into
account. Their appearance strongly suggests the pres-
ence of additional, somewhat anomalous, local momen-
tum and energy Aow as a result of interference effects.
Typically, the electromagnetic field is assumed to be near-
ly monochromatic, and the electric and magnetic fields
are always in phase, even when the dispersion relation is
quite complicated. We show below that these additional
curvature effects can be quite dramatic when we consider
pulse propagation inside a PBG structure, where a com-
bination of velocity dispersion [17] (i.e., an implicit
dependence of the effective index of refraction on fre-
quency) and high refiectivity [7—9] yield complicated spa-
tial field profiles. These profiles lead to significant phase
shifts of the magnetic field with respect to the electric
field.

One can see that if we wish to address momentum den-
sity, or total momentum in the electromagnetic field, the
natural choice dictated by Maxwells' equations is Eq.
(16). On the other hand, the canonical energy velocity of
light can also be derived from these quantities, as
specified by Eq. (1). By using Eq. (16) for the Poynting
vector and Eq. (18) for the energy density, Eq. (1) reduces
to

lzl'+i z2' Bz Bz

'( )+l
l

l, . BZ*,BZ ' BZE +t
2 2' Bz Bz 2~~ Bz

2 (20)
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We interpret this velocity to mean the speed at which
electromagnetic energy is Aowing locally, and it is a time-
and position-dependent quantity. A brief examination
shows that in the limit that the spatial variation of the in-
dex of refraction can be neglected, i.e., no boundaries are
encountered and BE/Bz =0, the index of refraction
n(z)=1 (the background index remains unmodulated),
and the energy velocity is c, the speed of light in the
medium. Further examination shows that the denomina-
tor of this expression can never be smaller than the
numerator for real n (z), leading to the conclusion that
this expression for the energy velocity always yields a ve-
locity less than or at most equal to the speed of light in
the medium, in this case the vacuum.

B. Integrability of the energy density

Loudon has previously shown that an expression for
the energy density, and consequently the energy velocity,
can be derived in closed form for an incident plane-wave
interacting with an oscillator medium [18]. Although
Loudon's arguments and results were strictly model
dependent, he found that the speed of light in an absorb-
ing oscillator medium is subluminal. Chiao and co-
workers have shown that in a gain medium modeled by
harmonic oscillators far from resonance, in the steady-
state limit, the imaginary part of the index of refraction
can apparently lead to superluminal energy velocities for
pulses [13]. However, we emphasize here that the basic
assumption that we used to arrive at our expression for
the energy density was that the medium was strictly
linear and dispersionless, without any gain or loss [14,19].
If this is not the case, the general statement of energy
conservation does not provide an explicit functional
dependence of the energy density upon the fields. Other
workers [19] also conclude that, in general, a simple ex-
pression for the energy density in terms of the fields can
only be arrived at in the case of nondispersive propaga-
tion, a case that also includes the absence of absorption
or gain. We now show this explicitly. Using energy con-
servation arguments, Maxwell's equations (3)—(6) lead to
[14]

f J EdV= — J cV (EXH)+E.1 BD
v 4~ v

+H. dV .
Bt

(21)

The volume integral is over all space, and in the absence
of free charges and currents, this expression can be recast
as

' +VS=0,
Bt

where the Poynting vector S is given by Eq. (13), and

ergy conservation. Now, using the definitions of Eqs. (8)
and (9) for the electric and magnetic fields, and assuming
that the polarization can also be written in similar form,
Eq. (23) becomes

([/ 2+ [g( )+
Bt 16~ Bt 4 Bt Bt

+i (EP—' E"—P),
4

(24)

where I' is the polarization envelope function. Each of
the terms on the right-hand side of Eq. (24) can be given
its own physical meaning. The first term is clearly the
rate of change of the energy present in the field. The
second and third terms are a measure of the energy ex-
changed between the electric field and the bound current
density. Hence, these terms include the work done by the
field on the bound charges, as well as the rate at which
energy is transferred to and from the medium.

One can see that, in general, a simple expression for U,
the energy density, cannot be easily arrived at unless the
medium response is linear. If, for example, P = [ ( n—1)/4~]E as in Eq. (7), and n is purely real and time in-
dependent, Eq. (17) can be recovered from Eq. (24).
However, if n is complex and of the form n =n„+in;,
where n; can be positive or negative, linear gain or loss is
possible. It is then easy to verify that Eq. (24) becomes

(n —
pi )[//

Bt 16~ Bt

2inn; BE BE* 4conn;+ "' ~*' —E—' —+
16~ Bt Bt 16~

A closed-form integration for the energy density cannot
be obtained from this expression unless the field in the
medium is known a priori. In any case, the fact that Eqs.
(24) and (25) cannot in general be further simplified
prevents us from reaching any definite conclusion as to
the value of the energy velocity V, . In other words, sub-
stituting the plane-wave results for S and U into the
definition of V„Eq. (1), may lead to incorrect results for
a linear gain medium because, as we have seen, it is near-
ly impossible to produce a self-consistent expression for
the time-integrated energy density U from Eq. (25).
Hence we caution that the interpretation of a superlumi-
nal energy velocity in a linear gain medium material de-
pends crucially on how the energy density is defined. The
plane-wave approximation for S and U may yield answers
that are perhaps too simplistic or misleading.

Another case of interest that does allow the derivation
of an explicit form of the energy density U is the interac-
tion of ultrashort pulses with a dilute set of two-level
atoms. The equations of motion that describe the dynam-
ics are known as the optical Bloch equations, and they
can be written as [20]

BU 1 E. BD+B- B

Bt 4~ Bt Bt
(23) (ER * E*R), —

Bt A'

As before, we assume no magnetic effects in the material,
and take B=H. Equation (22) above guarantees total en-

=i 6R —i ~E8', (27)
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where 8' and P =2NpR are the medium inversion and
polarization, respectively, X is the atomic density, p is
the atomic dipole moment, and 6=~—coo. Here, ciao is
the two-level atom frequency spacing, and 6 is, therefore,
a small detuning from resonance. Equation (26)
represents the rate at which atoms are excited, while Eq.
(27) gives the dynamics of the complex nonlinear index of
refraction. Notice that all relaxation rates have been
neglected because we assume extremely short interaction
times. In this case, using Eqs. (26) and (27), Eq. (24) can
be integrated directly, unlike the previous example with a
linear gain material. The electromagnetic energy density
reduces to

U= (~F~ + ~8~ )+ (&+1) .
XAcuo

16~ 4
(28)

The factor ( W'+ I) follows from the definition of the
ground state at W = —1 [20]. Again, we emphasize that
both energy density and the Poynting vector are local,
time-dependent quantities. Although the second term is
proportional to ~o regardless of detuning, the temporal
evolution of the inversion preserves information about
detuning via the dynamics of Eqs. (26) and (27). Upon
neglecting refiections, i.e., n(z)=1, BE/Bz &&kE, and
8 =E, the electromagnetic energy velocity is given by

c
2rrNAcoo( W+ 1)

1+
(29)

Clearly, this velocity is intensity dependent, although, as
we pointed out, the inversion retains an implicit depen-
dence on detuning, time, and field amplitude as well.
Nevertheless, from Eq. (29) one can conclude that the en-
ergy velocity V, is always smaller than c, regardless of the
state of excitation of the medium. Although we will not
dwell on this point here, it is interesting to note that the
limit V, =c is obtained when the medium is in the ground
state (for small field values 8' = —1) and for very high in-
tensities, while V, is a minimum when the medium is
completely excited ( 8' = 1).

To conclude this section, we point out that, in general,
Eq. (21) suggests that the Poynting vector and momen-
tum density remain unafFected for nonlinear media. Al-
though some controversy still remains about the actual
form of the momentum density, most workers agree on
the definition of Eq. (14). The alternative definition, due
to Minkowski, uses D instead of E, and can sometimes
also be found in the literature [21]. However, the Min-
kowski form is often viewed as unacceptable because it
yields a stress-energy tensor that lacks symmetry [14].

III. KXAMPI.E: PHOTONIC BAND-GAP STRUCTURES

In order to illustrate some of the results presented in
the previous sections, we consider pulse propagation in-
side a PBG structure. We consider a multilayer stack of
dielectric material that is arranged in such a way that al-
ternating layers have a high index of refraction n2, and a
low n, . The thickness of each layer also alternates and is
such that a =A/(4ni) and , b =I(4/n ),2where , A, is the

free-space wavelength. This dielectric stack forms a
reflective dielectric coating, and it is usually referred to as
a distributed Bragg reflector. For normally incident
light, a range of wavelengths centered about A, , the
wavelength at center gap will be rejected, that is, propa-
gation of those wavelengths is not allowed inside the
structure and only evanescently decreasing or tunneling
modes are allowed.

A. Numerical model for pulse propagation in PBG structures

We use a numerical model to solve for the dynamics of
the fields [7—9,22]. We assume that the field propagates
in the z direction, it is paraxial, and that it separates into
an envelope function that varies slowly in time, and a
rapidly oscillating factor, as per Eq. (8). Upon direct sub-
stitution, Maxwell's equation for the propagation of an
electric field in a one-dimensional photonic band-gap ma-
terial can be written in dimensionless form as

B E . BE . BE+4~I, +4m
co Bg' Bg Br

(30)

Here, g=z/A, , is the longitudinal coordinate scaled by
the wavelength at center gap, co, is the corresponding
center gap frequency, r =et/A, , is the time scaled by the
corresponding optical period, and n(g) is the refractive
index of the medium that contains information regarding
the linear response of the structure. We neglect any non-
linear effects, and choose A, to be the carrier wavelength.
Equation (30) for the electric field is supplemented by Eq.
(12), the copropagating magnetic field B. In dimension-
less form, Eq. (12) above can be rewritten as

BE
2~ Bg

(31)

For simplicity, the field envelope E is assumed to have a
Gaussian profile that is initially located outside the struc-
ture traveling with group (or phase) velocity c. Its width
when the amplitude is 1/e of its peak values is taken to
be nearly 160 optical cycles, thus ensuring that the slowly
varying envelope approximation in time is well satisfied.
The linear index profile for the Bragg reQector is depicted
in Fig. 1.

We now discuss our results. We choose n, =1, and
nz=1. 41, a total of 39 layers, and tune the incoming
pulse so that its carrier frequency is in the photonic pass
band, but near the band edge at the low-frequency side of
the quarter-wave band gap, so that co/co, =0.885, and
nearly 50% of the pulse is transmitted [7—9]. This
transmission (or refiection) is due to the fact that the
pulse contains a finite spread of frequencies. Tuning the
carrier frequency near the band edge causes some fre-
quencies to be reAected more than others, resulting, in
this case, in nearly one half of the energy being transmit-
ted.

In Fig. 2, we plot the ~E~ profile obtained through
direct integration of the E propagation Eq. (30) (solid
line), and the accompanying magnetic field obtained us-

ing the auxiliary Eq. (31) (dotted line). This plot shows
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1.2

1.0
13

the field eigenmodes, and it corresponds to a moment
when the pulse is interacting strongly with the structure.
The effective index profile is also depicted in the figure.
The figure shows that the fields are strongly out of phase
(nearly m. /2) inside the structure, and that a local max-
imum (or minimum) of the electric field corresponds to a
zero of the magnetic field. Under the circumstances de-
scribed at the end of the preceding paragraph, effective
transmission ( ~ 90% ) cannot occur since locally EX8—
and hence S—is small, and the fields nearly become
standing waves. We point out that in order to have
effective transmission, both fields should always be in

FIG. 1. Typical one-dimensional photonic band-gap crystal.
It consists of alternating dielectric layers of high and low index
of refraction. In this case, n,

&
=1, and n2 =1.41. The width of

each layer is chosen to be about one quarter of the local value of
the wavelength. The longitudinal coordinate g is given in units
of the wavelength at center gap, A,,g.

phase, although some overlap of the field wave packets
can also lead to significant transmission, as in this case.
We emphasize that while the magnitude of the Poynting
vector does not vary drastically as a function of frequen-
cy near the band edge, it may actually become several or-
ders of magnitude smaller and nonoscillatory for a pulse
tuned near the center of the gap. That it does not oscil-
late and its magnitude is greatly reduced inside the gap
should be expected; this is in fact an indication that
evanescently decaying modes are excited inside the struc-
ture, and that no eigenmodes are supported by the struc-
ture at those frequencies.

An analogous circumstance occurs in metals or good
conductors [15], where the fields undergo a quadrature
phase shift similar to what we have reported above, and
nearly complete reAection occurs. In that case, however,
the large phase shift between the fields comes about be-
cause the propagation vector is complex [15]. We point
out that near the band edge of the PBG crystal, the fields
are also nearly standing waves, leading to large
rejections. We note that far enough away from the
structure the condition 8 =E is well satisfied, and the
fields are in phase and overlap.

B. Midgap pulse tunneling

We now address the question of electromagnetic
momentum and the apparent superluminal behavior asso-
ciated with the group velocity of pulses propagating
through PBG structures [11]. We calculate the momen-
tum density using Eqs. (12) and (15). Let us consider a
PBG structure with a total of 14 layers, and we tune the
incoming pulse in the center of the gap, as was done un-
der experimental conditions by Chiao and co-workers
[11,12]. Actually, this structure does not have a true gap
in the sense that the minimum transmission at gap center
is greater than 5%. This can be seen in Fig. 3, where we
plot the input and the scattered electromagnetic momen-
tum density of the pulse as a function of the longitudinal
coordinate. Note that the rejected pulse acquires nega-
tive momentum (the pulse undergoes a ~ fiip upon

5 7 9 1l 13

FIG. 2. Electric- (solid line) and magnetic-field (dotted line)
profiles inside and near the PBG crystal (solid line, not to scale),
as a function of position inside the crystal. The coordinate g is
scaled as in Fig. 1. The pulse is incident from the left, and its
1/e width is nearly 160 optical cycles, and co/co, g

=0.885. Inside
and to the left of the structure, the fields are spatially strongly
anticorrelated. Far and to the right of the structures, the fields
are in phase and overlap because the interference of left- and
right-propagating waves either subsides (far from the PBG), or
does not occur (everywhere to the right of the PBG).

-2
-200 -1 00 100 200

FIG. 3. Incident and scattered electromagnetic momentum
density as a function of position for a pulse tuned to the fre-
quency at center gap (m/cu, g=1) of a 14-layer structure. The in-
itial pulse is that of Fig. 2, and g is in units of the wavelength at
center gap. Note the sign change for the momentum of the
reAected pulse.
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refiection), and that the total momentum is not con-
served; this is due to the fact that we assume that the
structure has infinite mass, and so it acts like a "source"
of momentum.

In Fig. 4, we compare the transmitted pulse of Fig. 3
with a pulse that propagates in vacuum. The figure
shows that for similar propagation times, the amplitude
of the leading edge of the pulse that propagates in free
space is much larger than the leading edge of the pulse
that propagates through the structure. Now at least
some part of the tunneling pulse would have to be in
front in order to achieve superluminal behavior. Howev-
er, no part of the tunneling pulse ever crosses or leads the
freely propagating pulse, and propagation therefore
remains causal at all times. The inset of Fig. 4, however,
shows the fields normalized to unity. Here, the peak of
the pulse that propagates in vacuum lags behind the peak
of the tunneling pulse by several optical wavelengths.
The lag time depends on the number of layers, and in this
case, the lag time increases (i.e., larger forward shifts
occur) with the addition of more layers. The process of
adding more layers, however, increases the depth and
sharpens the width of the band gap, reducing the
transmitted peak intensity, along with the transmitted en-
ergy, by several more orders of magnitude. Numerically,
the transmission becomes essentially zero ( ~ 10 ) when
the total number of layers is over 20. Our calculations
confirm that while the energy velocity V, of Eq. (20) can
change quite rapidly between layers, we find that it al-
ways remains smaller than the vacuum value. The ob-
served forward shift of the peak of the pulse can then be
understood only as a reshaping of the wave packet, and
not as an effect due to superluminal energy velocity com-
ponents. This fact was recently pointed out by Chiao and
co-workers [11],and here we have explicitly shown how

this works with both the derivation of Eq. (20), and with
a numerical simulation.

C. Pulse propagation at band-edge frequencies

For completeness, we point out that we have also in-
vestigated velocity distributions for other pulses with fre-
quencies near the band edge, (as opposed to gap center)
and different pulse shapes, such as a hyperbolic secant,
and broader Gaussian functions. All of them gave results
consistent with what we have reported above, that is, the
local energy velocity never exceeds the velocity of light in
a vacuum in a linear system without gain or loss. In ad-
dition, the transmitted pulse appears to retain its original
shape only if the incident pulse is tuned near the frequen-
cy at center gap. This was reported in the Berkeley ex-
periment of Ref. [12] (this point is discussed in Ref. [13]
and references therein), and held true in our numerical
simulations for the various pulse shape we investigated.
Although the actual energy and momentum densities
may exceed vacuum levels manyfold for pulses with a
control frequency near the band edge, this is an effect
that comes as a result of increased Bragg scattering. A
decrease in group velocity takes place, hence a slow down
of the pulse occurs. This, in turn, increases photon densi-
ty, which translates to an increase in both momentum
and energy densities inside the crystal. The transmitted
pulse then clearly lags behind the pulse that propagates
in free space, as shown in Fig. 5. In this case, while the
incident pulse is Gaussian in shape, the transmitted wave
packet is not. This implies that the large velocity disper-
sion that occurs at the band edge, coupled to the larger
interaction time, is enough to induce changes in pulse
shape. This does not happen for the pulse tuned at center
gap because the transmission is nearly the same for all
frequencies within the pulse, which in turn hardly experi-
ences any dispersion.

D. A new measure of tunneling time

1.0
Finally, we address the question of tunneling time.

From our point of view, the interaction time of a pulse

1.0
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FIG. 4. Spatial distribution of the transmitted ~E~ profiles
for a pulse that propagates in free space (solid line), and for a
pulse tuned at the midgap frequency that tunnels through a
structure that is located at the origin {dashed line). The param-
eters and units are those of Figs. 2 and 3. The amplitude of the
tunneling pulse is everywhere much smaller than the amplitude
of the pulse that propagates in free space. Because the fields
never cross, the tunneling pulse can never lead, and propagation
is causal.
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FIG. 5. Comparison between a pulse that propagates in free
space (solid line), and a pulse tuned near the band edge of the
structure of Fig. 1 (dashed line). Parameters and units are the
same as those of Fig. 2.
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FIG. 6. Total energy as a function of time within a specified
volume for the three cases we have discussed, that is, for the
case of a pulse that propagates in free space (curve a, solid line),
the case of propagation at the band edge (curve b, dashes of al-
ternating length), and the case of a pulse tuned at center gap
(curve c, short dashes). The time is scaled in units of the optical
period that corresponds to the wavelength at center gap. Our
control parameters are provided by the pulse that propagates in
free space. The width of these curves corresponds to the pulse
dwell time inside the PBG structure.

with an arbitrary structure must be nonzero and cannot
be retrieved from a steady-state wave-function distribu-
tion such as an exponential evanescent wave [10]because
this tunneling description process explicitly neglects the
dynamical development of the system. Although a satis-
factory definition of a tunneling time still remains elusive,
we would like to propose a definition of the tunneling
time simply as the time the pulse spends inside the struc-
ture. Recently, St@vneng has explicitly shown that this
time is actually the only physically meaningful represen-
tation of a tunneling time [23].

We now use our numerical model to calculate the pulse
dwell time inside the structure. We monitor the total
spatially integrated energy within the crystal as a func-
tion of time, and compare the three cases we have investi-
gated above, namely, free-space propagation, propagation
at gap center, and propagation near the band edge. We
do not resort to invoking the concept of group velocity
because, while it can be defined near the band edge, at
center gap it becomes analytically ambiguous [7,10—13].
Instead, we simply allow the pulse to propagate through
the crystal, and measure energy buildup time for these
three separate cases. We first begin with a pulse that
propagates in free space, which we will use as our
"stopwatch" to time the others. Because the length of
the interval is much smaller than the pulse width, the in-
teraction time is then roughly equivalent to the duration
of the pulse. This interaction time is to be distinguished
from the transit time, which may be very different for
different pulse widths. In Fig. 6, curve a, we plot the to-
tal energy as a function of time within the specified inter-
val for a pulse propagating in vacuum. Curve b in the
figure is the total energy in the structure as a function of
time for a pulse tuned near the band edge, and the pa-
rameters used are those of Fig. 2. The delay that is ap-

parent between the two curves is due to the low group ve-
locity that the pulse acquires when tuned near the band
edge. In other words, the pulse peak is shifted backward
in time, as expected. The fact that the width of the
band-edge energy curve is much broader indicates a long
dwell time, in concert with a small group velocity and
effective dispersion.

Finally, curve c represents the total energy as a func-
tion of time for a pulse tuned at center gap, where tunnel-
ing occurs. This energy curve is for the pulse of Fig. 4,
whose physical peak is shifted forward in space by several
optical periods when compared to free-space propaga-
tion. Accordingly, here we find this energy curve peak is
shifted forward in time, i.e., shifted to the left. However,
we stress that the widths of the free-space propagation
energy curve a and the curve that evolves at center gap c
are essentially the same to within one tenth of an optical
cycle, except for the small peak-to-peak time shift. That
is, the interaction times depicted in Fig. 6 for curves a
and c are the same to approximately one part in one
thousand. This difference is insignificant, if taken within
the context of the SVEAT approximation.

If we now combine the results of our numerical "exper-
iment" of the previous sections, with our analytical re-
sults, which show that the local energy velocity remains
subluminal inside the structure, Eq. (20), then the interac-
tion or dwell time of a tunneling pulse appears to be the
same as that of a pulse propagating in free space. From a
physical standpoint, the fact that the energy velocity, Eq.
(20), does not exceed the vacuum velocity c was expected.
What is perhaps more remarkable, as well as surprising,
is the fact that a pulse that propagates in matter may in
fact tunnel through the structure as if it were propagating
in free space —an event to which some theories ascribe
infinite speed [10]. The pulse is essentially trying to do
the best it can to achieve this as it propagates through the
structure, and our conclusion, based on both our numeri-
cal and analytical results, is that the transfer of energy
through the structure occurs at the rate at which energy
would be transferred in vacuum, in full accord with
Einstein's causality. Again we have tested this result for
several pulse shapes, and different values of the refractive
indices, and we reach the same conclusion.

This conclusion does not in any way contradict our
finding that the peak of the pulse that propagates at the
center gap frequency is shifted forward in time when
compared to free-space propagation. The reshaping of
the wave packet only assigns an apparent superluminality
to the probability of detection of a photon; however, to
date no information can be transmitted in this fashion by
any known process. The probability of detection has
nothing to do with the implication of our results, which
are: (1) For linear systems, electromagnetic energy can-
not be transmitted locally or globally at speeds higher
than c, and (2) a pulse tuned at the midgap frequency
propagates with a tunneling velocity at or near the vacu-
um velocity of light.

IV. CONCLUSION

In conclusion, we have shown that pulse dynamics near
and inside highly rejective structures can be quite com-
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plicated leading to a nontrivial relationship between the
electric- and magnetic-field envelopes. A significant
phase shift arises in the magnetic field as a result of a
strong spatial modulation of the electric field, leading in
the SVEAT to an auxiliary curvature equation for the
magnetic field, Eq. (12). This constraint on the form of 8
yields an equation in E for energy Aow that is similar in
form to the Schrodinger current. These curvature effects
can dominate when there is a strong spatial modulation
of the electric-field envelope, as there is near highly
refIective surfaces, or in photonic band-gap structures.
The spatial decoupling that occurs between the electric
and magnetic fields can be important in isolating and
studying either electric or magnetic effects independently.
Field dynamics are driven by frequency filtering, velocity
dispersion [17],and interference effects that are especially
strong near the band edge. These effects may lead to a
reshaping and a forward shift of the wave packet as it
tunnels through the PBG structure, as observed in exper-
iments [12]. However, we have shown that the velocity
distribution of the pulse does not exceed the velocity of
light in vacuum, and that the minimum time necessary
for the field-matter interaction to occur is not smaller
than the free-space propagation interaction time.

It appears then, from our dwell-time simulations and
the analytical results of Eq. (20), that the tunneling of a
pulse through a linear photonic band-gap material takes
place at a speed at, or nearly equal to, the vacuum veloci-
ty of light. It is gratifying to find that it is no faster than
this —but somewhat remarkable that it does not appear
to be slower than this, considering that the pulse propa-
gates through matter. We have also shown that, in gen-

eral, for nonlinear or dispersive systems an explicit ex-
pression for the energy density U cannot be obtained, and
the form of Eq. (24) precludes us from reaching any a
priori definite conclusions about the energy velocity of
light in such materials, since the V, of Eq. (1) cannot be
solved for in closed form. To date, the dynamical charac-
teristics of the system remain poorly understood. Be-
cause of its very fundamental nature, this problem will
remain an interesting one, and promises to remain fertile
ground for many future investigations.

Finally, we point out that the derivation of Eq. (20) for
the canonical energy velocity of a pulse can trivially be
extended to three dimensions. However, because the vec-
tor qualities of the electromagnetic field must then be re-
tained in the numerical simulations as well, the pulse
propagation algorithm that we have used [7—9,22] must
be appropriately modified.
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