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Spontaneous emission from a three-level atom
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Quantum interference between decay processes from two upper levels, which are coupled by the same
vacuum modes to a lower level, have been investigated and its effects on the spontaneous emission spec-
trum have been studied. The interference can result in spectral narrowing and a black dark line in the
spectrum. The population in the upper levels is not a simple exponential decay due to the interference.
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I. INTRODUCTION

Recently quantum interference and coherence in a
multilevel atomic system have attracted a lot of attention,
because they can lead to absorption cancellation [1—9],
electromagnetically induced transparency (EIT) [2,7,8],
and population inversion without emission [3]. These
quantum interference eIIFects may result in a new type of
laser system operating without population inversion
(LWI) [1—5] and transparent high-index materials [10].
The EIT [7,8] and LWI [11]have been experimentally ob-
served. It is well known that the quantum-noise limit re-
sults from the atomic spontaneous emission. The spec-
trum of spontaneous emission from a two-level atom i~

Lorentzian with a peak at the atomic transition frequen-
cy, and the width of the spectrum depends on the decay
rate of the upper level. It was pointed out that the noise
of the radiation field from the new-type laser systems
(LWI) might be less compared to the noise of a laser light
from two-level laser systems [3,12]. In this paper we in-
vestigate the spontaneous emission from a three-level
atom with two upper levels coupled by the same vacuum
modes [13,14] and how the quantum interference aff'ects

the spontaneous emission process and its spectrum.

Ig(o) &
= A"'(o) lat & Io&+ A"'(o)la2 & lo& . (2)

The evolution of the state vector obeys the Schrodinger
equation

d
dt

lq(t) &
= —iI' g(t) ) .

The state vector at time t can be written as

(3)

lg(t)&=A"'(t)la &Io&+A'"(t)la &Io&

+yB„(t)b„'lo&lb & .

where co, &, ~, & are the frequency difFerences between

levels Iat ), la&) and lb ), bk (bk) is the annihilation
(creation) operator for the kth vacuum mode with fre-
quency cok, and g&' ' are the coupling constants between
the kth vacuum mode and the atomic transitions from

I
a t ) and

I az ) to
I
b ) . Here k stands for both momentum

and polarization of the vacuum modes, and 6= 1 and real
gk' ' have been assumed. This Hamiltonian controls the
spontaneous emission of the atom initially in the upper
levels. The initial-state vector can be written as

II. BASIC THEORY Substituting Eq. (4) into (3), we can obtain

Consider a three-level atom with two upper levels a, )
and la&), as shown in Fig. 1. The two upper levels are
coupled by the same vacuum modes to the lower level
lb). The interaction Hamiltonian of the system com-
posed of the atom and the vacuum modes in the interac-
tion picture can be written as

i(~. bI'= g[g„"' " b„l, & & b
I

k

I (cc) b cok )t
+g„'"e " b„la, &&b I]

—i(~. b
—~, )~

b,'lb &&a, l

k
—i(~, b

—~~~~
+gk"bke FIG. 1. Three-level atom.
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a (t)= —g"'A'"(t)e

(5b)

III. EVOLUTION OF THE UPPER-LEVEL
POPULATIONS

The populations in the two upper levels are equal to
~

A"'(t) and
~

A' '(t)~, respectively, which can be ob-
tained from Eqs. (7).

A. The ~»WO case

' (~tt
(2) A (2)(t)e (5c)

Formally integrating Eq. (Sc), and then substituting into
Eqs. (5a) and (Sb), we find

A '"(t)= — A "'(t)— A "'(t)e
dt 2 2

(6a)

A (2)( t) — A (2)( t ) A ( I )( t)e 12 (6b)
dt 2 2

where co&z is the frequency di6'erence between the two
upper levels and is assumed to be much less than cu, b,

1

y(=2(mg"') D (co(), and ye=2m(g' ') D (a)z). Here
g"',D(ai&) and g' ),D(co&) are calculated at frequencies
co, b and co, s, respectively, and D (co) is the mode densi-

1 2

ty. In obtaining Eqs. (6) co(z«co, b, a), b have been as-
1 2

sumed (but not co&z «y&, yz) and we have assumed that
the two dipole moments of the two transitions are paral-
lel to each other (antiparallel will be the same). Here we
did not neglect the time-dependent exponential factors

+co j 2t(e "), as was done in a previous similar work [6].
From Eqs. (6) we can obtain the equation of motion for
the reduced density matrix of the atom [15]. In order to
obtain the spontaneous spectrum, however, Eq. (Sc) is
necessary, which includes the information of the field ra-
diated by the atom. Similar equations can be found in the
problem of photoionization [16]. Solving Eq. (6), we ob-
tain the solution for A '"(t) and A ' '(t),

In this case, the population in the two upper levels
tends to zero as time goes to infinity. If ~a))z~ is larger
than y, and yz, the last term in Eq. (6a) or (6b) can be
neglected, and consequently the population of the upper
levels decays to the lower level. For co(z~ much less than

y, and yz, assuming ~a)»~ &&0.5(y, +y, ), it can be prov-
en (see the Appendix) that the real parts of S;—0.5y
(i,j =1,2) are negative. That is to say, from Eqs. (6), no
population is in the upper levels at time equal to infinity.

+col2t
Here we can conclude that neglecting the factors (e "

)

[6] may lead to some error.
However, during the time evolution one of the upper-

level populations may increase first, even if initially there
is no population in it. Let the atom initially be in level

~a, ). The evolution of the populations in both upper lev-

els is shown in Fig. 2. The population in level ~az),
which is initially zero, increases from zero to a maximum
(about 0.1) and then declines to zero, while the popula-
tion in level ~a& ) monotonically decreases to zero. The
population in an initially empty level could reach a max-
imum value of a little less than 0.25 under certain condi-
tions (one of them is small a)(z). In Fig. 3(a), we plot the
evolution of an initially empty upper level with
co»=0.2y, , y, =y, . The ma~i~urn population in this
level is 0.237.

In some situations, the population of an initially empty
level (also the other upper level) oscillates for several cy-
cles, and then tends to zero [see Fig. 3(b)]. The decay
rate of the total population of the two upper levels not
only depends on the decay rate y& and yz, but also de-

A'"(t)=(C e ' +C e ' )e (7a) 1.Q

A"'(t) =—
V'y(yz

(7b)

0.8—

where S& z are two roots of the equation
S AS 0.25& &&~=0

0.4—

s, ~= ,'(A, ++A, +—y,y~),

~= p(y( y2)+'~12 ~

s, A"'(o)+o. s&y, y, A"'(o)
1

S~ —S)

(gb)

(8c)
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pends on the frequency separation of the two upper lev-
els, and the initial coherence of the two upper levels. In
Fig. 4, we plot the total upper-level population as a func-
tion of time for diferent ~,2 with the same y, and y2.
Therefore, the decay process from one of the two upper
levels or that from the total population decay are no
longer simple exponential ones.

The increase of population in one of the two upper lev-
els is due to the interference between the two transitions,
which are coupled by the same vacuum modes. We may
consider the population increase results from the interac-
tion between the corresponding transition (in the above
example, between level ~az ) and the lower level) and the
radiation field emitted by the other transition (between
level ~a, ) and the lower level). However, this is not ex-
actly the situation. There is strong interference between
the two decay channels, which will become clear in Sec.
IV.

~11 ~22
1.0

0.4—

0.2

0 0 I' I I' I I'
/

I' I' I' I' /' I' I I' I I I I' I

0.0 1.(D 2.0 3.0 4.& 5.0

FIG. 4. Time evolution of the total population in the two

upper levels with y2=y& and (a) ~»=2y, and (b) ~»=0.5y, .

P22

0.24 B. The m»=0case

0.2— In this case, Eqs. (7) reduce to

0, 16—
——( + )tAI "(t)=C,+C e (9a)

0.12— 3'"(t)=—
1/2

71
1/2

VI

——'( + )t
C e ' ' ' (9b)
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It is clear from the above equations that the upper-level
populations may not totally decay to a lower level when
time goes to infinity, if C, WO. That is to say, some popu-
lation may be trapped in the upper levels [17,18]. For ex-
ample, if the atom is initially in level ~a, ), we have

C, =yz/(y&+yz). The population trapped in the upper
levels will be yz/(yz+y&). Some population initially in
level ~a, ) is transferred to level ~az) and stays there.
The amount of transferred population is y, yz/(y, +yz) .
Some part of the population y, /(y, +yz) goes to the
lower level.

As discussed above, there is no population trapping for
co,zAO. However, if the atoms are coupled by a coherent
field to another level, the population trapping can still be
realized for the co,z&0 case.

0.8—
IV. BARK LINES ANB SPECTRAL NARROWING

0.4—

0.0
0.0

I I
J

I I I I
/

I I I I
f

I " I I

1.0 2.0 3.0 4.0 5.0

The spontaneous spectrum of the atom $(co) is the
Fourier transform of

FIG. 3. {a) Temporary population in ~az) reaches a max-
imum of 0.237 (co»=0.2yl, y2=y&). (b) Oscillation of the pop-
ulation in ~a, ) {co,z=5y„y2=y, ).

k, k' t = oo

Substituting Eq. (4) into (10) we have

(10)
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(E (t+r)E+(t)),

= g B„"(~ ) B„(~ )e' "'
k

= I dcoD(co)Bk(oo)Bk(oo)e'

From Eq. (11)we find

S(~k)=ylBk(~ )I'/2~g'. (12)

S(co k)
0.8

The spontaneous spectrum is proportional to IBk(oo )I .
Substituting Eqs. (7) into (Sc), and then integrating Eq.
(Sc), we can obtain

Bk( oo )=
S) y, /—2 i (0—. 5co,2

—5k )

"'C2( 1 —2S2/y ~ )+
S2 —y, /2 —i (0.Sco,2

—5„)

where 5k =cok —0.5(co, +co, )+cob is the detuning of the
1 2

kth vacuum mode with respect to the central frequency
(from the middle point of the two upper levels to the
lower level). The spontaneous spectrum can be obtained
by taking the absolute square of Eq. (10), which not only
depends on the square of each term in the above equa-
tion, but also on their interference terms. The interfer-
ence results in some very interesting features.

A. Dark lines

For a two-level atom, its spontaneous spectrum is
Lorentzian and peaked at its transition frequency due to
the population transfer from its upper level to the lower
level. In the three-level atom case, the population initial-
ly in one upper level (say, a, ) ) is partly transferred to
another upper level (say, la2 ) ) during the time evolution.
It is expected that the spontaneous spectrum of the
three-level atom will differ from its counterpart of a two-
level atom due to the transferred population in la2).
This population in la2) will eventually decay to the
lower level. Therefore, a major difference will be the
weight of the frequency components around the transi-
tion frequency from la2 ) to lower (co, —cob ) in the spon-

2

taneous emission spectrum. The weight of these com-
ponents might be larger for the three-level atom than that
for a two-level atom. In Fig. 5, we plot two spontaneous
emission spectra as functions of the detuning 5k, one for
the three-level atom and one for a two-level atom. The
three-level atom is initially in upper level aI ). Compar-
ing the two curves, we find that some components of the
three-level spectrum at the neighborhood of ~, —cob are
much larger than their counterpart of a two-level spec-
trum. If we simply added the two spontaneous decay
processes together, we might conclude that the spectrum
would have two peaks at the two transition frequencies.
However, the spontaneous emission spectrum of the
three-level atom is not a simple two-peak distribution
peaked at the two transitions from levels Ia, ) and Ia2)
to the lower level. There is strong interference between
the two processes. Therefore, the spectrum of the three-

00 I I I I
I

I I I I I! I I I
I

I I I I
I

I I I I
I

I I I I

—1.5 —1.0 —0, 5 0.0 0.5 1.0 1.5

FIG. 5. Spontaneous emission spectrum for (a) the three-level
atom with co&2=0.6y& and y2=0. 1y&, and I,

'b) a two-level atom.

4gk C2S2( Si —0.5y2)/y, y2+
S2 0 5& ] iso&2

4gk"'(SiC, +S2C2)
(14)

In obtaining the above equation

7 172
1 2 4

S, +S2 =0.5(y, y2)+ ico,2—
(15a)

(15b)

have been used. Because the atom is initially in Ia, ), we
have A I "(0)=1and AI I(0)=0. From Eqs. (Sc) and (gd)
we can find S&C, +S2C2=0, which yields Bk(oo )=0.
From Eq. (12) we get S(cok =co, &)=0. This tells us that
not only is there a dark line in the spontaneous emission

level atom is not a two-peak one with the two peaks lo-
cated on the two sides of the central frequency. The in-
terference leads to a dark line in the spontaneous spec-
trum. In Fig. 5, we plot the spontaneous spectra for a
three-level atom and a two-level atom, where it can be
seen very clearly that there is a dark line in the spectrum
of the three-level atom at the frequency of the transition
from la2) to the lower level. The dark line results from
the interference. In fact, it can be proven that Bk( oo ) =0
at mk is equal to the frequency of one transition, when
the atom is initially in the upper level of the other transi-
tion.

Assume the atom is initially in level
I a, ) and consider

Bk( oo ) at cok =co, b (5k = —0.5co,2). Subst&tut&Ilg
2

5k = —0.Sco,2 in Eq. (13), we can obtain

gk"Ci(1 —2Si /y i) gk"C2(1 —2S2/y i)
Bk( oo )= +

S] 0.5& ] iso&2 S2 0.5P ] iso&2

4g„'"CiS i ( —S2 —0. 5y 2) /y, y 2

S] Oe 5& ] l co]2
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spectrum, but also that the center of the dark line is abso-
lutely black, independent of y„y2, and co&2, as long as the
two coupling constants are not equal to zero (if one of
them is zero, the three-level atom reduces to a two-level
one). In addition, we can see in Fig. 5 that there was an
attempt to build a peak at the dark line position due to
the transferred population.

The width of the dark line depends on the decay rate of
the upper level of the corresponding transition. In Fig. 6,
we show two spontaneous emission spectra of the three-
level atom initially in ~a, ), with the same y, and co,2 but
different y2 (=0.5y, and 0.05y, ). It is clear that the
larger the decay rate of the corresponding upper level
(~az) in this example), the wider the width of the dark
line will be. As y2 (or yi) tends to zero, the dark line be-
comes narrower and narrower (and will finally disappear),
and the spectrum becomes closer and closer to a
Lorentzian distribution.

B. Spectral narrowing

S(co k )
1.8

—2.0 —1.0 0.0 1.0 2.0

FIG-. 7. Spectral narrowing by increasing the ratio y2/y&=
(a) 0.01, (b) 0.5, and (c) 2, with h=y&.

As mentioned above, the dark line is absolutely black
at its center, and its width depends on the decay rate of
the corresponding upper level. A larger decay rate re-
sults in a wider width. In the above example we use a
small value for yz (more precisely, yz/yi) in order to
show clear dark lines. On the other hand, if y2 is of the
same order or is ever larger than y&, the width of the
dark line will be big enough to depress one of the two
wings of the spectrum. Consequently, the spontaneous
emission spectrum can be greatly narrowed. In Fig. 7, we
plot the spectra of the three-level atom for different
values of the ratios y2/y, =0.01, 0.5, and 2, where we
can see that the width of the dark line increases and the
spectrum becomes narrower as the ratio increases. In
Fig. 8, we compare the spectrum of the three-level atom
with that of a two-level atom. The parameters used for
the two-level atom are the same as those used for the
three-level atom, except y2=0 (because there is no level

~a2)). The width of the spontaneous spectrum for the
three-level atom is much narrower than that for a two-
level atom.

The spectrum may have three peaks, as shown in Fig.
5, and may have two peaks, as shown in Fig. 8, depending
on the parameters y &, y2, and co,2. From
dS(a~k )/desk =0 we can obtain a fifth-order polynomial,
which may have five real roots corresponding to three
peaks, and may have three real roots corresponding to
two peaks. One of the roots corresponds to the dark line.

In the above, we assumed that the atom is initially in
one of the upper levels. If the atom were initially in a su-
perposition of the two upper levels, we might still have
the dark lines. In Fig. 9 we give three spectra for three
different combinations of superposition. Each spectrum
has a dark line, but at different frequencies.

S(co k)
0.8—

S(co k)
1,8-.

0.9—

0.2—

I I I
/

I I I !

—2.0 —1.0 0.0 1.0 2.0
k

0.0
—2.7

I

—1.8

I
I

—0.9 0.0 0.9 1.8
~

2.7
k

FIG. 6. Dark lines in the spontaneous emission spectrum of
the three-level atom with co»=y&, and (a) yz=0. 5y& and (b)
y2=0. 05y1

FIG. 8. Spectral narrowing: (a) the spectrum of the three-
level atom with co»=y& and y2=2y& and (b) the spectrum of a
two-level atom with a decay rate y&.
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S(m k)
1.6
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APPENDIX: FINAL POPULATION ZERO
IN THE UPPER LEVELS FOR co)2%0

The two eigenvalues S1 2 are

S, 2
=

—,
' [—,'(y, y2—)+icoi2

+V'-.'(yi+y2) ~12+ ~12(yl ~2)]

=
—,
' [—,'(y, y2—)+ice,2+(a +ib)],

where

a =&r -cos(P/2),

b =&r sin(P/2),

r =V'[-.'(y i
—y»' —~f2]'+ ~f2(y i

—y2)'

(A2)

(A3)

(A4)

V. CONCLUSION P =arctan
0.25(y, +y2) +co,2

(A5)

We studied the spontaneous emission spectrum of a
three-level atom with two upper levels and compared it
with the counterpart of a two-level atom. The additional
upper level (the corresponding transition) results in a
dark line in the spectrum of the three-level atom due to
the interference between the two transitions. The center
of the dark line is absolutely black, and the width of the
dark line depends on the decay rate of the additional
upper level.

These properties can be used to greatly narrow the
spontaneous emission spectrum. In real atomic systems,
the separation between the two upper levels is quite large.
For a large separation, narrowing is small and the dark
line is difficult to be measured. There are two ways to
overcome the difficulty in making the experimental proof
of the narrowing and dark lines of the quantum interfer-
ence effects achievable. The first one is using a strong
coherence field to couple the two upper levels with anoth-
er level lying above them. With the strong applied field,
the dark line and narrowing will still be quite remarkable
and the two quantum interference effects can still be ob-
served, even though the separation is several hundreds
times the decay rate. The second method is using one
upper-level (and one lower-level) atom and a strong
coherent field to couple the sole upper level to a third lev-
el. This coupling between the upper level and the
coherent field creates two dressed upper levels. We plan
to publish the details of the two methods in a future
work.

For coiz & (y)+y2) we can write

(y —y )

0.5(y&+y2)
(A6)

cos(P/2) = 1 —0. 5
Yl Y2

Y1+ Y2
X

2

(A7)

a =
—,'(y&+y2) 1 ——x +—1 2 1 71 Y2

2 2 P1+ Y2
x, (A8)

where

2co12

Y1+ Y2
(A9)

Substituting Eqs. (A6) —(A8) into (Al), we can obtain
'2

'Y2
X

1+3 2

Re(S& —0.5y, ) = —0.5 1— (A10)

Re(S2 —0.5y, ) = —0.5(y, +y2)

—0.25(y, +y2) 1—
2

Y1+ Y2
X2.

(Al 1)

These two equations tell us that both the real parts of
S1 —0.5y 1 and S2 —0.5y1 are negative. Similarly,
Re(S,. —0.5y2) (i = 1,2) are also negative.
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