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Stimulated Raman scattering with a Gaussian pump beam in Hz gas

S. Logl, M. Scherm, and Max Maier
1Vaturwissenschaftliche Fakultat II Phy—sik, Uniuersitiit Regensburg, D 930-40Regensburg, Germany

(Received 7 November 1994)

Raman scattering of the Q(1) line in H2 gas was investigated from the spontaneous to the stimulated
scattering region using a frequency-doubled g-switched Nd:YAG laser (where YAG denotes yttrium
aluminum garnet). We measured the Raman Stokes energy as a function of the laser power and the radi-
al distribution of the Stokes intensity for the unfocused and the focused Gaussian laser beam. There is
good agreement between the experiments and the results of a nonorthogonal mode theory in the region
of stimulated Raman scattering. For cell lengths short compared to the Rayleigh range of the laser
beam or for Raman cells far from the beam waist, stimulated Raman scattering is described in a good
approximation by an adapted plane-wave theory. In the region of spontaneous Raman scattering, the
measured dependence on cell length, solid angle, and focusing conditions is not in accordance with the
nonorthogonal mode theory, but agrees with the standard theory of spontaneous Raman scattering.

PACS number(s): 42.65.Dr, 42.55.Ye, 42.50.Lc, 33.20.Fb

I. INTRODUCTION

Since the first observation of stimulated Raman
scattering (SRS) numerous investigations on experimental
and theoretical aspects of this eFect have been published
(for a review see [1—5]). For quasistationary SRS the
comparison between measurements and calculations has
been hampered by various problems. In many Raman ac-
tive substances there are competing nonlinear processes,
e.g., self-focusing of laser light [6] and stimulated Bril-
louin scattering [7]. In media such as H2 gas and liquid
N2, where SRS is the dominant process, an unexpected
steep rise of the Raman Stokes energy as a function of
laser intensity has been measured [8—11]. An explana-
tion of this efFect was given in terms of feedback by
disuse rejections from the cell windows and optical ele-
ments [12—14]. It was shown that for Raman cells longer
than the laser pulse length, SRS showed no anomalous
behavior [14]. Therefore, from the experimental point of
view H2 gas in a long cell is a suitable medium for the
comparison of theory and experiments of SRS.

Most of the theories developed for SRS are based on
plane waves [1—5]. However, in the experiments, the
pump laser beam has a radial and axial intensity distribu-
tion; for example, often the lowest-order mode with a
Gaussian radial distribution is used. The problem is to
adapt the plane-wave theories to the real experimental
situation. Various approaches to the problem of focused
laser beams have been treated in the literature [15—19].
Recently, a nonorthogonal mode theory of Raman
scattering with a focused laser beam was presented [20],
which described quantitatively SRS in Hz gas under vari-
ous experimental conditions [14,20].

In this paper we present the results of theoretical and
experimental investigations of stationary Raman scatter-
ing in H2 gas from the spontaneous to the stimulated
scattering region (excluding saturation). The experiments
on SRS were carried out with a frequency-doubled Q-

switched Nd:YAG laser (where YAG denotes yttrium
aluminum garnet) with a long Hz cell (824 cm) to avoid
feedback problems. We measured the Raman Stokes en-
ergy as a function of the laser power and the radial inten-
sity distribution of the Stokes beam for dift'erent experi-
mental conditions. The experimental results are com-
pared with the results of the nonorthogonal mode theory
[20]. In addition, we discuss the conditions under which
the measurements are described correctly by an appropri-
ate adapted plane-wave theory. Particular emphasis is
given to spontaneous Raman scattering where the easure-
ments are compared with both the nonorthogonal mode
theory [20] and the standard theory of spontaneous Ra-
man scattering [21].

In Sec. II the main results of the nonorthogonal mode
theory of SRS for the Raman gain, the Stokes power, and
the radial intensity distribution of the Stokes beam are
described. Sections III and IV treat adapted plane-wave
theories and the comparison with the nonorthogonal
mode theory, respectively. In Sec. V the results of the
calculations of spontaneous Raman scattering using the
nonorthogonal mode theory and the standard theory are
compared. The experimental setup is described in Sec.
VI. The experimental results on spontaneous and stimu-
lated Raman scattering are compared with the theoretical
calculations in Sec. VII. The conclusions are given in
Sec. VIII.

II. NONORTHOGONAL MODE THEORY

The nonorthogonal mode theory of Raman scattering
with focused laser beams has been treated in detail in
Refs. [15,20]. In the following a brief description of the
underlying principles and the main results, which are
needed for the discussion of the experiments, is given.

A. Solution of the wave equation

The electric-field operator for a Stokes wave traveling
in the z direction can be written as
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2i—ks +iksg(z, r) Es '(z, r)= —477k'Pt, (,—,),~az

(2)

where VT=B /Bx +B /By and g(z, r) is the Raman
gain. To account for spontaneous scattering, a quantum
Langevin operator P, (z, r ) has been included, which
represents the quantum Auctuations in the polarization of
the medium. We treat a laser beam with power Pl and a
radial and axial intensity distribution I.L (z, r), which is
described by the lowest-order Gauss-Laguerre mode of
the free space (see below). In this case, the spatial nonun-
iform gain is given by

PI
g(z, r) =goII (z, r)=go, exp[ r'/ro(—z)] .

r 0(z)rr
(3)

go is the Raman gain factor and ro(z) is the 1/e radius of
the radial intensity distribution of the laser beam, which
is connected to the spot size wo(z) of the laser field by
ro(z)=wo(z)/&2. The z dependence of the laser beam
radius is given by

ro(z)=ro(0)[l+(z/zo) ] . (4)

Es(t, z, r ) =Ps '(z, r )exp[i (ksz co—st)]

+Es '(z, r )exp[ i—(ksz —cost)]

where k& and co+ are the wave vector and the frequency
of the Raman Stokes light. The amplification of the
Stokes field, whose amplitude is assumed to vary slowly
with distance z, is described by the wave equation in the
steady-state paraxial limit.

into Eq. (7) and using the orthogonality relation for the
U„' leads to a di6'erential equation for the free-space
coei%cients b„,which are, in general, complex. To sim-
plify this equation the variable z is changed to the propa-
gation variable

0=tan '(z/zo) .

In addition, the free-space coefficients are written as

b„' =exp( i 2p—'0)y„'~ (10)

Using Eqs. (7)—(10) we arrive at a system of coupled ei-
genvalue equations for y„

(2ip' —A,'„)y'„,+ —,'pGR„Qy'„Q', (p) =0,

where the mode filling factor p, the Raman gain Gz„
within the Rayleigh range, and the polynomial Q will
be defined below. With the solution of this system the
Raman Stokes modes can be written as

P'„(z,r ) =g exp[ —i2p tan '(z/zo)]y'„~ U~(z, r ) .
P

(12)

In Eq. (11) the Raman gain Gz„within the Rayleigh
range zo is given by

is the eigenvalue associated with the mode P„(z,r )

The indices n and I correspond to the radial and the an-
gular degrees of freedom, respectively.

It has been shown [15,20] to be useful to expand the
modes P'„(z,r ) in terms of the free-space Gauss-Laguerre
modes U„'(z,r ) which satisfy the free-space paraxial wave
equation and are complete and orthogonal modes. Sub-
stituting the expansion

P'„(z,r )=gb„' U'(z, r )

Gz„=goIL(0,0)zo, (13)
ro(0) is the radius in the beam waist and zo is the Ray-
leigh range, equal to one-half of the confocal parameter.
For the lowest-order Gauss-Laguerre mode Uo they are
related by

zo=kL ro(0),

where kL is the wave vector of the laser light.
The presence of the gain term in Eq. (2) makes the

wave equation non-Hermitian. To solve the wave equa-
tion, the amplified Stokes field is expanded into a set of
nonorthogonal modes

E' '(z, r ) =g 8„'(z)P'„(z,r ), (6)
n, l

where a„' is a generalized creation operator for photons
in the nonorthogonal mode P'„(z,r ). The modes are re-
quired to satisfy the eigenvalue equation

T~T —2iks +iksg (z, r) P'„(z,r )

(7)

where IL(0,0) is the laser intensity in the center of the
beam waist (at z=0 and r=0). Introducing the laser
power Pl, the laser intensity can be written as
IL (0,0)=Pl /[pro(0)]. Using this expression and Eq. (5)
we get for the Raman gain G&, within the Rayleigh range

G~„ktgoPL/m . — (14)

Gz„is independent of the Rayleigh range zo, i.e., it is in-
dependent of the focusing conditions, but it depends on
the laser power PI . The mode filling factor p is defined
as

p=ks/(ks+kL) .

Q (p) is a polynomial in p, which has been calculated
in Ref. [15] for the case that g(z, r)=goPL ~UO(z, r)~ .
This corresponds to the Gaussian intensity distribution of
the laser beam given in Eq. (3).

As a consequence of the non-Hermitian nature of the
wave equation the usual power orthogonality conditions
do not hold for the modes P„(z,r). They are supplanted
by
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Equation (16) represents a measure of the overlap be-
tween the nonorthogonal modes. The quantity (B„'„)is
referred to as the excess noise factor [22] or Petermann
factor [23] and is equal to or greater than unity.

There is a biorthogonality relationship with another set
of modes P'„(z,r ), referred to as adjoint modes. They are
obtained from the solution of the Hermitian adjoint of
the differential operator in Eq. (7). The biorthogonality
condition is given by

f d2 qleyl (17)

Using the properties of the biorthogonal modes, Eq. (17)
can be written as

8, =tan '[(8,„+8)/zo]—tan '(8,„/zo) . (25)

It is interesting to consider the special case that the
output is dominated by the lowest-order nonorthogonal
Stokes mode Po. Then the Stokes power is given by

Ps ihais~vR (+00 ) [exp[2 Re(~o)8 ]—1]

In the Ion-gain regime the eigenvalue of this mode is

(26)

Ps(8t)=&ais6vtt g (8„' )'[exp[A, '„+A,'*)8, ]—1] .
n, m, l

(24)

The value of the propagation parameter 0, =0„—0,
„

is
obtained from Eq. (9) at the entrance (z=Z,„)and exit
(z=P,„=P,„+8)of the Raman medium:

2 Re(A&) =p, Gii„. (27)
1 1X Xm, pXn, p ~m, n

The results of Eqs. (23)—(27) will be compared with the
results of the adapted plane-wave theories in Sec. IV. In
order to account approximately for spectral narrowing of
the Stokes light, the Raman linewidth 5v~ will be re-
placed by 5v~ /(pG+„8,+1)' in Eqs. (23) and (24) [20].

This equation is used to normalize the eigenfunctions
, which are solutions of the eigenvalue equation (11).

After the modes P'„ofthe Raman generator have been
determined, the z dependence of the operators &„' has to
be found. Substituting the field expansion Eq. (6) into the
wave equation (2) leads to an equation of motion for a„',

2miks—P, (.z, r) . (19)
Bz kL ro(z)

B. Numerical results

l. Raman gain

We calculated first the eigenvalues A,„',which deter-
mine the Raman gain, by solving the coupled equations
(11). It can be seen from Eq. (11) that the eigenvalues de-
pend only on the mode filling factor p and the Rayleigh
range gain Gz„.Equation (14) shows that Gii„is propor-
tional to the laser power I'I, but it is independent of the
Rayleigh range z0. This means that for an unfocused
beam and for beams focused with different focal lengths
the same eigenvalues A, '„areobtained for a definite laser
power (with wave vector kt ) in a specific Raman medi-
um.

The calculations were carried out for SRS in H2 gas
(Raman shift 4155 cm ') with the second harmonic of
the Nd:YAG laser, kL =118105 cm ' and @=0.4379
[from Eq. (15)]. We used a Raman gain factor of
go=2. 6X10 cm/MW (at 532 nm) and a spontaneous
Raman linewidth of 5vz =4.6X10 s ' (at 100 bar). The
equations were usually solved for n„p'=0,1, . . . , 40 and
I =0, 1, . . . , 6. Figure 1 shows as an example the normal-
ized real parts of the eigenvalues A,„asa function of the
Rayleigh range gain GR„(lower scale). On the upper
scale the laser power PL is plotted. It should be em-
phasized that all eigenvalues depend nonlinearly on Gz„,
i.e., on the laser power I'I. This is in contrast to the
linear dependence obtained in the plane-wave theory (see
Sec. III).

The following details are of interest.
(i) Lotoest order nono-rthogonal mode (n =l=0). For

low laser power I'I & 0. 1 MW, the real part of the eigen-
value is given by 2 Re(AO)=pGz„(see Fig. 1). In this re-
gion the main contribution to $0 comes from the lowest-
order free-space Stokes mode U0, which has about the

The solution of this equation has been treated in detail in
Ref. [20].

We are interested in the radial intensity distribution
Is(z, r) of the Stokes light

(d„'&~ )PJ*P'„
n,j,m, l

(20)

and the Stokes power

Ps=2m f Is(z, r)r dr .
0

(21)

The spontaneous polarization correlation function

(22)

is used for the calculation of the correlation function
(a„a~) in Eq. (20). Ave is the Raman linewidth [full
width at half maximum (FWHM)]. It is presupposed that
the population of the vibrational ground state of the mol-
ecule is not changed by stimulated Raman scattering.

From the solutions of the Eqs. (11), (12), and (19) we
calculate the Raman Stokes intensity

Is(r) =Acos5v~ g 8„' [exp[(A, '„+A,'*)8, ]—1]
n, m, l

X P'*(8,„,r)$'„(8,„,r) (23)

and the Stokes power

A5v~
(P,p(z, r)P, (z', r')) = g(z, r)6(z z')5(r r')— —

2mks
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FIG. 1. Normalized real part 2Re{k„)/Gz„ofthe eigenval-
ues of Eq. (11) versus the Rayleigh range gain G&„(lower scale)
and the laser power PI (upper scale) ~

2. human Stokes power

It can be seen from Eq. (24) that the important param-
eters entering the Stokes power. P& are the factors
(8„' ), which are a measure of the overlap between the
nonorthogonal modes, and the product of the eigenvalues
A, „' with the propagation parameter 0, . 0, is equal to the
di6'erence of the propagation parameters at the exit and
entrance of the Raman medium. It depends on the posi-
tion of the Raman cell (entrance z=E,„),its length 8
(exit z=8,„=g,„+8)and the Rayleigh range zo [Eq.
(25)], which is determined by the focal length f of the
focusing lens. For a singlepass cell, the maximum value
of 0, is m. For a multipass cell, Battle and co-workers
[20] have shown that 9, can be much larger than m, de-
pending on the number of passages of the laser beam
through the Raman cell.

We have calculated the Raman Stokes power Pz for
three cases.

(i) The Raman cell is short compared to the Rayleigh
range ( 8 « zo ) or far away from the focal region
(8,„))zo).In this case 0, is small. We used a value of

same diameter as the laser beam. The overlap of the laser
and the Stokes beams is responsible for the mode filling
factor p in the real part of the eigenvalue A,o. For very
high laser power I'L ))1 MW, we get 2 Re(AO) =Gz„,be-
cause the Stokes beam radius is much smaller than the
laser beam radius (see Fig. 4, 0, =0.1) and the Stokes
light is amplified by the peak intensity in the center of the
laser beam.

(ii) Higher order nonort-hogonal modes. The eigenval-
ues of these modes are close together for low laser power,
i.e., all these modes are important for the calculation of
the Stokes power.
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FIG. 2. (a) Logarithm of the Stokes power Ps versus Raman
gain G. The solid, the dashed, and the dash-dotted lines were
calculated according to the nonorthogonal mode theory, the
one-mode theory, and the adapted plane-wave theory, respec-
tively. (b) Normalized real part of the eigenvalue A, & versus Ra-
man gain G.

0, =0.1 in the calculations, which can be realized experi-
mentally in diA'erent ways. For example, for an un-
focused laser beam with z0=500 cm and a long cell
length 8=824 cm far from the beam waist ( 8,„=1594
cm), or a tightly focused laser beam (z0= 5 cm) and a
short cell (8=3.2 cm) at 8,„=10 cm, a value of 8, =0. 1

is obtained from Eq. (25).
(ii) A Raman cell, which is longer than zo, is in the fo-

cal region of a tightly focused laser beam. In this case,
we get 0, =m.

(iii) A multipass Raman cell is in the focal region, hav-
ing enough passages to get a value of 0, =30.

In all calculations of the Stokes power Pz the Raman
linewidth 5v~ in Eq. (24) has been replaced by
5v~/(6+1)' to account approximately for spectral
narrowing of the Stokes light [20]. The results of our cal-
culations of the Stokes power are shown in Fig. 2. The
Stokes power Pz is plotted on a logarithmic scale versus
the Raman gain G=pgoII (0,0)zoo, =@6~„9,. We have
chosen this expression for the gain because the calcula-
tions have shown that in the stimulated scattering re-
gime, often the lowest-order Stokes mode dominates. In
the low gain case the exponent in the expression of the
Stokes power I's [Eq. (26)] is then 2 Re(AO)0, =G, using
Eqs. (13) and (27). Figure 2(a) shows three solid lines for
0, =0. 1, ~, and 30 calculated according to the
nonorthogonal mode theory [Eq. (24)] and a dashed and a
dash-dotted line calculated with the one-mode theory and
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the adapted plane-wave theory, respectively, which will
be discussed in Sec. IV. It should be noted that the deter-
mining quantity for the gain dependence of the Stokes
power is the propagation parameter 0, . The details of the
focusing conditions and the position and length of the
Raman cell enter only through the value of 0, .

Figure 2(b) shows the normalized eigenvalue
2 Re(A,O)/Gz„versus Raman gain G. The normalized ei-
genvalues do not depend on the propagation parameter
0„butwe get different curves for the three values of 0,
because the Raman gain 6, which is plotted on the
abscissa, is proportional to 0, .

Next we discuss the slopes of the three curves for the
Stokes power in Fig. 2(a) in the region of nearly exponen-
tial growth (G )7). In this region the lowest-order
nonorthogonal mode dominates and the slope
SG =d(log, oPs )/dG is calculated from Eq. (26). We get

2 Re(A.O)
SG =—log, o(e) (28)

p Rr

where log, o(e) is the common logarithm of the number
e =2.71828. We have expressed SG in terms of the nor-
malized eigenvalue 2 Re(AO)/Gz„, which is plotted in Fig.
2(b) versus G. For 8, =0. 1 the normalized eigenvalue has
a high value almost over the complete range of G. There-
fore, the Stokes power Ps exhibits the steepest rise [Eq.
(28)]. In contrast, 2 Re(A, O)/Gz, stays at its lowest value

p over the whole gain regime for 8, =30 [Fig. 2(b)]. This
means that the slope of the corresponding Stokes power
is low [Fig. 2(a)]. The curve for 8, =m. lies in between.

The different gain dependence of the real part of the ei-
genvalue A, o in Fig. 2(b) can be understood from the radial
intensity distributions of the laser and Stokes beams,
which are shown in Fig. 4 for large gain (G) 13). For
8, =0. 1 (inside solid line) the Stokes beam diameter is
much smaller than the laser beam diameter (dotted line).
Therefore, the Stokes beam is amplified almost complete-
ly with the peak intensity in the center of the laser beam,
corresponding to a large value of the real part of the ei-
genvalue 2Re(Ao)=Gz„[see Fig. 2(b)]. For 8, =30 (out-
side solid line in Fig. 4) the Stokes beam diameter is of
the order of the laser beam diameter (dotted line in Fig.
4). This leads to a smaller overall amplification, which is
determined by the mode filling factor p. In this case, a
smaller value of the real part of the eigenvalue is obtained
2 Re(AO) =pGz„[see Fig. 2(b)]. These examples show
that the overlap of the laser and the Stokes beams is
relevant for the real parts of the eigenvalues that enter
the Raman amplification.

For a comparison with the experiments it is interesting
to plot the Stokes power log, o(Ps) versus the laser power
PL [see Fig. 3(a)]. In this case the slope S~ is given by

log&0(e) 2 Re(lo)
Sp= kL, so (29)

7I Rr

The important difference to Eq. (28) is that the slope Sz
in Fig. 3(a) is proportional to the normalized eigenvalue
2Re(AO)/Gz„ times 8, . As a consequence, the slope for
8, =0. 1 is the smallest, although 2 Re(AO)/Gz„has al-
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FIG. 3. (a) Logarithm of the Stokes power Pz versus laser
power Pl, calculated according to the nonorthogonal mode
theory. (b) Normalized real part of the eigenvalue A,o versus
laser power PL.

most its full value [Fig. 3(b)]. The slope for 8, =30 is
large [Fig. 3(a)] because 8, is large [Eq. (29)]. These re-
sults can also be understood from the following qualita-
tive considerations. For 0, =30 the multipass Raman cell
is in the focal region with high laser intensity, therefore a
low laser power is needed for high amplification. In con-
trast, the singlepass Raman cell is far from the focus for
0, =0.1. Far from the focus the laser beam diameter is
large, therefore a high laser power is required to get
sufhcient laser intensity to generate intense Raman light.

3. Radial intensity distribution of the Stokes beam

We have calculated the Raman Stokes intensity Is(r)
according to Eq. (23) for different values of the propaga-
tion parameter 0„which determines the exponential
amplification of the modes together with their eigenval-
ues A,„.The radial intensity distribution depends on the
radial distribution of the modes P„(8,„,r) at the exit of
the Raman medium. The Stokes intensity I&(r) was cal-
culated for 0„=1.5 and 0, =0.1, m, and 30 using gain
values of 6 =14, 20, and 26, respectively, which corre-
spond to a Stokes power of about 100 W [dashed horizon-
tal line in Fig. 2(a)].

Figure 4 shows the normalized Stokes intensity
Is ( r ) /Is (0) versus the normalized radial coordinate
r/ro(E, „).The solid lines correspond to the results of the
nonorthogonal mode theory for 0, =0.1, ~, and 30. The
dashed, the dash-dotted, and the dotted lines represent
the Stokes intensity distributions of the one-mode theory,
the adapted plane-wave theory (see Sec. IV) and the laser
intensity distribution, respectively. The half-width of the
Stokes beam is smaller for smaller values of 0, . Chain nar-
rowing of the Stokes beam is observed for 0, =0. 1 and m..
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1 modified Bessel functions F
y. 0 an

'
ns. or true plane

waves the Raman gain is given by

G I(pw)g (31)

where I' ' is the
''s e intensity of the plane wave. For hi h

Raman gain G ))1pw, t e Stokes intensity assumes the
ave. or ig

well-known form

I =—'A'cos =
—, co+ m. A I' exp(G )

QG
PW

PW

(32)
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=G+„8,exp[ r /r p ( 8—,„)] . (33)

The radial intensity distribution of the laser beam deter-
mines via Eqs. (30) and (33) the radial intensity distribu-
tion of the Stokes beam. When the Gaussian distribution
in Eq. (33) is approximated by a parabolic distribution, it
can be shown that the ratio of the Stokes beam radius to
the laser beam radius is (Gz„8,) ' . For G~„8,=25 the
Stokes beam radius is —,

' of the laser beam radius. The
Stokes power Ps is calculated by integrating numerically
the Stokes intensity Is(r) [Eq. (30)] over the Stokes beam
cross section.

IV. COMPARISON
OF THE NONORTHOGONAL MODE THEORY

AND THE ADAPTED PLANE-WAVE THEORIES

Two cases of the plane-wave theory adapted to a
Gaussian laser beam have been discussed in the preceding
section. When only the lowest-order free-space Stokes
mode Up is considered [24], case (i), the radial Stokes in-

tensity distribution Is(r) is given by this mode. Is(r) is
shown as a dashed line in Fig. 4, which can hardly be
distinguished from the solid line for 0, =30. The reason
for this good agreement comes from the fact that for
8, =30 the lowest-order nonorthogonal mode Pp, which
dominates, consists mainly of the lowest-order free-space
mode Up [Fig. 5(b)].

The Stokes power for case (i) was calculated introduc-
ing the gain G =pgpIL (0,0)zp8, in Eq. (30) and multiply-
ing with the beam area A. The result is shown in Fig.
2(a) as a dashed line. In the region of stimulated Raman
scattering (G )7) there is satisfactory agreement between
the slopes of the one-mode theory and the nonorthogonal
mode theory for 0, =30, which correspond to the mul-

tipass cell. This can be understood from Fig. 2(b) where
the normalized eigenvalue of the lowest-order Stokes
mode is plotted versus G. It can be seen that
2 Re(A,p)8, =pG+„8,=G. This agrees with the gain of the
one-mode theory. The results of the nonorthogonal mode
theory for the singlepass cell (8=0.1 and rr) deviate
strongly from the one-mode theory [dashed line in Fig.
2(a)].

In case (ii) [25] the radial intensity distribution of the
laser beam [Eq. (33)] has been introduced in Eq. (30).
The radial intensity distribution of the Stokes beam de-
pends on the gain Gz„8, [Eq. (33)]. Using the relation
G+„8,=G/p, we have calculated Iz(r) from Eq. (30) for
6 = 14 and 0, =0.1. The result is shown as a dash-dotted
line in Fig. 4. The half-width of this curve is only slightly

the I/e radius of the laser beam. The spot size ws of the
Stokes field is related by rs to rs =ws/&2. Since kL )ks
the Stokes beam radius is slightly larger than the laser
beam radius. The Stokes power Ps is obtained by multi-
plying the Stokes intensity Is [Eq. (30)] with the beam
area A.

In case (ii) the radial dependence of the laser intensity
is taken into account explicitly [25]. The true plane-wave
gain G~w in Eq. (30) is replaced by

gpIL (0,0)zp8, exp[ r /r p(—8,„)]

smaller than that of the corresponding inside solid line
calculated from the nonorthogonal mode theory for
0, =0.1. It shows the typical gain narrowing.

The Stokes power Ps for case (ii) has been calculated as
a function of the Raman gain G by introducing Eq. (33)
in Eq. (30) and integrating Eq. (30) over the beam cross
section. This result is shown as a dash-dotted line in Fig.
2(a). In the region of stimulated Raman scattering
(G ) 5) there is satisfactory agreement between the
adapted plane-wave theory (dash-dotted line) and the
nonorthogonal mode theory for 8, =0. 1 (solid line),
which corresponds, for example, to a Raman cell far from
the focal region. For G &5, the nonorthogonal mode
theory yields the result 2 Re(i,p)8, = G~„8,[see Fig. 2(b),
8, =0.1], which is equal to the gain of the adapted
plane-wave theory [see Eq. (33)] in the center of the laser
beam. For small values of 0, the Rayleigh range gain
Gz„must be large to get a definite Stokes power [see, e.g. ,
Eqs. (26) and (27)]. In this case, the axial variation of the
Stokes light is large compared to the transverse variation,
i.e., the plane-wave theory is a good approximation.

In conclusion, it should be emphasized that the results
of the nonorthogonal mode theory are reproduced by a
suitable adapted plane-wave theory in a good approxima-
tion only for two limiting cases: (i) for very large values of
the propagation parameter 8, the one-mode theory [24]
with the gain G=pgpIr (0 0)zp8, provides good agree-
ment and (ii) for very small values of 8, the adapted
plane-wave theory [25] using Eqs. (30) and (33) is ap-
propriate.

Ps = Acos5v~k~g—pP~8, g f„(p).2 1

n, l

(34)

The dependence of the Raman gain factor go on the num-
ber density N of molecules and the spontaneous Raman
scattering cross section do /d 0 is given in Ref. [26]. It is
introduced in Eq. (34) to give the Stokes power

(35)
dQ

It is interesting to compare Eq. (35) with the result of
the standard calculations for spontaneous Raman scatter-
ing. From Ref. [21] we get

do
~s = ~&&~o~ai~L, (36)

where X„„&is the total number of molecules illuminated

V. SPONTANEOUS RAMAN SCATTERING

In the limit of very low gain, (A,'„+k")8,((I, spon-
taneous Raman scattering occurs. In this case, several
approximations can be made in the calculation of the
Stokes power Ps from Eq. (24). The factor B„' can be
approximated by 1 and 0 for n =m and n Am, respective-
ly. The real parts of the eigenvalues can be written as
Re(A, '„)=Gz„f„'(p),where f„'(p)is obtained from the nu-
merical solution of the eigenvalue equation (11) for
Gz„((1.Using these approximations we get for the
Stokes power
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by the laser beam with the intensity II . AQ is the solid
angle in which the Stokes power P& is detected. In our
case, the laser intensity II depends on r and z [see Eqs. (3)
and (4)]. We therefore replace the product N„„,II in Eq.
(36) by N fII(z, r)dV, where the integral is over the
volume V illuminated by the laser beam and N is the
number density of molecules. Introducing the intensity
II (z, r) from Eq. (3) into the volume integral and integrat-
ing over r and z, we get

Ps =N [b,A/ ]Pl (37)

VI. EXPERIMENTAL SETUP

The experimental setup is shown schematically in Fig.
6. The laser system (Spectron Laser Systems model SL
803) consists of an injection-seeded, single-frequency

Nd: YAG Laser System

POI HWP PO2 GP

// ~
//

where 8 is the length of the Raman medium.
Next we compare the results for the Stokes power Pz

obtained from both calculations. As expected, in both
cases Pz is proportional to the laser power PI, the num-
ber density X of molecules, and the spontaneous Raman
scattering cross section

der�/d

A. The results of Eqs. (35)
and (37) diff'er in the terms in the square brackets. In the
nonorthogonal mode theory [20] the Stokes power Ps
[Eq. (35)] is proportional to the propagation parameter
O„which depends on the cell length 8, the position of
the cell 8,„,and the Rayleigh range zo [Eq. (25)]. In Sec.
III we have introduced 8, in the one-mode theory and the
adapted plane-wave theory. In this case, the Stokes
power is also proportional to 0, for these theories. In
contrast, the standard calculations of spontaneous Ra-
man scattering [21] yield a Stokes power Ps that is pro-
portional to the solid angle b,Q and the cell length 8 [Eq.
(37)]. It does not depend on the position of the cell and
the focusing conditions. In Sec. VII B both results will be
compared with the measurements of spontaneous Raman
scattering in H2 gas.

Nd: YAG laser oscillator and two amplifiers. A telescope
after the laser oscillator provides optimum illumination
of the amplifier rods and compensates for the thermal
lens e6'ect of the amplifier rods. Depending on the adjust-
ment of the telescope lenses, we obtained di6'erent values
of the laser beam parameters (see Sec. VII A). The Q-
switched laser pulse was frequency doubled and had a
duration of 12 ns (FWHM) and a power Pl of up to 10
MW. The distance between the Nd:YAG laser system
and the polarizer PO1 was about 15 m. The laser power
was varied by rotating the optical axis of the half wave
plate with respect to the transmission direction of the po-
larizer P02. A small part of the laser light was coupled
out with a glass plate and detected with a fast photocell
(PC) and a transient digitizer (Tektronix SCD 1000). The
rise time of the detection system was about 0.5 ns. The
detection sensitivity of the photocell was calibrated with
an energy meter (company Ophir, model DGX).

The laser beam was focused with lens Ll (focal length
f=350 cm) into the Raman cell. At a H2 pressure of 100
bar (density 89 amagat) the damping constant I =2vrovs
of the molecular vibrations is 2.9X10' s ' [27,28], i.e.,
SRS occurs in the steady-state regime for a laser pulse
duration of 12 ns. Lens L2 was used to recollimate the
laser and the Stokes beam. The laser wavelength
(A,l =532 nm) was separated from the Stokes wavelength
(A,s =683 nm) by four prisms P 1 —P4 and suitable
narrow-band interference filters in front of the photomul-
tiplier (PM) (Hamamatsu R928), which detected the
Stokes energy. In the early experiments the distance be-
tween the exit window W2 and the PM was large (400
cm). Later it was reduced to 127 cm in order to get a
larger solid angle, which is important for the spontaneous
Raman measurements.

The output of the PM was connected to an analog-to-
digital converter followed by a computer and was simul-
taneously observed on the screen of an oscilloscope. In
order to measure in the linear range of the photomulti-
plier, the Raman Stokes pulse was attenuated by suitable
neutral density filters. The detection sensitivity of the
photomultiplier was calibrated using an energy meter and
neutral density filters with known transmission values.

VII. EXPERIMENTAL RESULTS
AND DISCUSSION

W2 Wl

Ll

We have investigated Raman scattering in H2 gas from
the spontaneous to the stimulated scattering regime. For
the comparison of the experimental results with the cal-
culations based on the nonorthogonal mode theory and
the adapted plane-wave theories the laser beam parame-
ters have been determined for the unfocused and the fo-
cused laser beam.

A. Laser beam parameters

FICx. 6. Schematic diagram of the experimental setup for
stimulated Raman scattering in H2 gas. P01, PG2, polarizers;
HWP, half wave plate; CxP, glass plate; PC, photocell; L1, L2,
lenses; Wl, W2, windows of H2 cell; P1 —P4, prisms; NCx, neu-
tral density filters; IF, interference filters; PM, photomultiplier.

We have measured the radial intensity distribution of
the laser beam over a wide range of distances from the
laser system using a beam analyzing system (Big Sky
Laser Technologies, Inc. , Beam View Analyzer PC
V3.0B). The measured intensity distributions were close
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FIG. 7. Measured beam radius ro(z) of the unfocused
(squares) and the focused (circles) laser beams versus the dis-
tance z from the beam waist of the unfocused beam. The solid
lines represent the fits to the experimental points using Eq. (4).
zo and ro(0) are the Rayleigh range and the 1/e radius of the
laser intensity distribution in the beam waist, respectively. The
superscript (f) is used for the values of the focused beam. z„,is
the position of lens L1.

TABLE I. Beam parameters for the unfocused and the fo-
cused laser beams with two adjustments of the telescope be-
tween the laser oscillator and the amplifiers. ro(0) is the 1/e ra-
dius of the laser intensity in the beam waist, zo is the Rayleigh
range, and f=350 cm is the focal length of the lens.

Focusing
conditions

Telescope configuration
I II

unfocused focused unfocused focused

ro(0) (mm)
z, (cm)

ZO
(cm '

) 121 067
r,'(0)

1.01
1235

0.19
44

0.65
509

0.30
112

121 884 120 473 124 444

to Gaussian distributions. From the fit of a Gaussian
curve to the measured distribution we obtained the I /e
radius ro(z) of the laser intensity distribution. Figure 7
shows an example of the beam radius ro(z) as a function
of the distance z from the beam waist (z =0) of the un-
focused laser beam. The squares and the circles represent
the experimental points for the unfocused and the fo-
cused beam (lens Ll at z„„focal length f=350 cm), re-
spectively. The solid lines have been fitted to the experi-
mental points using Eqs. (4) and (5).

From the fit we obtained the relevant parameters of the
laser beam, i.e., the radius rc(0) in the beam waist and
the Rayleigh range zo. In Fig. 7 the superscript (f) is
used for the focused beam. The measured numbers are
given in Table I for the unfocused and the focused beam.
Depending on the adjustment of the telescope between
the laser oscillator and the amplifiers, the thermal lens of
the amplifier rods is compensated in a different way. This
is the origin of the differences in the beam radii ro(0) and
the Rayleigh ranges zo for configurations I and II, which
are shown as typical examples in Table I. The ratio

zo/rc(0) is always close to the value of the laser wave
vector kL =118 105 cm ', as expected for a diffraction
limited beam [Eq. (5)]. The value of zo is needed for
determining the propagation parameter 8, [Eq. (25)],
which enters the calculation of the Stokes power Ps [Eq.
(24)].

B. Spontaneous Raman scattering

Before we discuss our measurements of spontaneous
Raman scattering in H2 gas with the Q-switched
Nd: YAG laser, we consider two experimental details that
inIIIuence the measured spontaneous Stokes power and
should be taken into account in an accurate comparison
between experiments and calculations.

(i) The photomultiplier detects the sum of the
Q (0)—Q (4) lines because the bandwidth of the interfer-
ence filters (see Fig. 6) is broad (FWHM about 215
cm ). The Q lines with higher rotational quantum num-
bers are very weak and can be neglected. We calculated
the ratio of the total spontaneous Raman energy to the
energy of the Q(1) line to be 1.5. This factor was taken
into account in the spontaneous Raman measurements.

(ii) The off-axis scattered spontaneous Raman light is
rejected from the walls of the Raman cell, which was
made from brass. Part of the reAected Raman light is
detected by the photomultiplier and contributes to the
measured Raman energy. Since it is difticult to calculate
the contribution of the rejected Raman light, we used for
a quantitative comparison between the calculations and
the measurements only experimental configurations
where the reAected light can be neglected. It can be
shown that this is the case if the distance dpM between
the exit window W2 of the cell and the photomultiplier
(see Fig. 6) is larger than the cell length P. In this esti-
mate it has been taken into account that the diameter of
the sensitive area of the photomultiplier and the inner di-
ameter of the Raman cell are approximately equal.

When the experimental setup of Fig. 6 was used in the
spontaneous Raman measurements the detection thresh-
old was limited to about 4X10 ' J of Stokes energy by
stray and Auorescence light. We reduced the disturbing
light by approximately a factor of 4 by introducing two
filters, which refiect more than 99%%uo of the green laser
light, after the exit window W2. The improvement has
been confirmed by measuring the photomultiplier signal
after the H2 gas was pumped off. With this improved set-

up we have measured the spontaneous Raman Stokes en-

ergy E& in Hz gas at 100 bar and 300 K for different ex-
perimental conditions. We used Raman cells with
j~ngths 8 =108 and 409 cm at distances dpM between the
exit window W2 and the photomultipler larger than the
respective cell lengths to avoid contributions of
reAections from the cell walls to the spontaneous Raman
energy. We have carried out measurements with different
distances d„M between W2 and the PM because dpM
determines the solid ang1e EQ that enters the standard
theory of spontaneous Raman scattering. In addition,
the focusing conditions, which inhuence the propagation
parameter 0, of the nonorthogonal mode theory, were
changed. Figure 8 shows the measured Stokes energy Ez
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versus peak power PL of the laser pulse in a double-
logarithmic plot. Each experimental point represents an
average over 100 shots at a particular pump laser power
(+2%%uo ).

The results in Fig. 8(a) were obtained for a cell length
of 8 =108 cm. The open and the solid circles correspond
to a distance dpM =297 cm for the unfocused and the fo-
cused (f=350 cm) laser beam, respectively. The squares
were measured with the focused laser beam, but for a
much shorter distance between exit window W2 and the
photomultiplier (dpM =127 cm). Figure 8(b) shows the
results for a 409-cm-long cell at a distance dpM =543 cm
for a focused laser beam.

We have compared the experimental results with cal-
culations based on the nonorthogonal mode theory and
the standard theory of spontaneous Raman scattering.
The solid lines in Fig. 8 were calculated by integrating
Eq. (24) for the Stokes power Pz numerically over the
pulse duration to obtain the Stokes energy Ez from the

nonorthogonal mode theory. In the spontaneous scatter-
ing region the calculated Stokes power Pz depends on the
number of modes taken into account in the numerical
calculations. Therefore, in the comparison between cal-
culations and experiments special emphasis was given to
the dependence of the Stokes power Pz on the propaga-
tion parameter O„not to the absolute values of P&. We
used in the calculations the values of the propagation pa-
rameter 0, given in Table II, where all numbers relevant
for the measurements of Fig. 8 are given.

As an example we consider the open and the solid cir-
cles in Fig. 8(a), which correspond to the unfocused and
the focused beam, respectively, and therefore to com-
pletely different values of 0, . The measured points lie on
the same straight line within the experimental accuracy,
while the nonorthogonal mode theory (solid lines) pre-
dicts a large difference between the unfocused and the fo-
cused beam. For an easy identification of the calculated
curves we have marked the solid lines at the left end with
the symbol of the corresponding experimental points.
Likewise the other results in Fig. 8 show that the
nonorthogonal mode theory does not describe the spon-
taneous Raman measurements correctly. We think that
the following reasons are responsible for the disagree-
ment between the measurements and the nonorthogonal
mode theory. In the nonorthogonal mode theory the par-
axial approximation has been used, which is a good ap-
proximation for collimated light beams [29] as they
occur, e.g., for SRS. It is not valid for spontaneous Ra-
man scattering, where the Stokes light is scattered in all
directions. In addition, the use of a Gaussian laser beam
leads to the introduction of the propagation parameter
O„which enters the exponent of the amplification term
[see Eq. (24)]. The expansion of the Stokes power for
small gain results in the proportionality to 8, [Eq. (34)],
in disagreement with the experiment.

We have calculated the spontaneous Stokes energy E~
from the standard theory of spontaneous Raman scatter-
ing [Eq. (37)]. The solid angle b,Q, in which the Stokes
energy is detected, has been replaced by an effective solid
angle hQ, ~ because Raman light from all parts of the Ra-
man cell is collected by the photomultiplier. In the spon-
taneous Raman measurements described above, the lens
L2 after the Raman cell (see Fig. 6) was removed. In this
case, the effective solid angle can be calculated in the fol-
lowing way:

FIG. 8. Double-logarithmic plot of the Stokes energy Ez
versus the laser power PI in the spontaneous scattering region.
The solid and the dashed lines were calculated according to the
nonorthogonal mode theory and the standard theory of spon-
taneous Raman scattering, respectively. For an easy
identification the calculated curves are marked at the left end
with the symbol corresponding to the experimental points. (a)
Cell length 8= 108 cm. The open and the closed circles
represent the experimental points of the unfocused and the fo-
cused laser beam, respectively, with a distance of dpM =297 cm
between the exit window W2 of the Raman cell and the pho-
tomultiplier PM. The closed squares correspond to dpM =127
cm (focused laser beam). (b) Cell length 8=409 cm. The closed
triangles represent the experimental points for dpM=543 cm
(focused beam).

PM

[8+dpM —z ]

+PM

dPM

1

~+dPM
(38)

Here FPM and dpM are the sensitive area and the distance
of the photomultiplier from the exit window W2 of the
Raman cell, respectively, and 8 is the cell length. The
values used in the calculations of the spontaneous Raman
Stokes energy from Eq. (37) are given in Table II. At a
H2 pressure of 100 bar (89 amagat) the number density of
molecules in the J=1 state is X& =1.54X10 ' cm
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TABLE II. Numerical data for the calculations of spontaneous Raman scattering. 8 is the cell
length, 8,

„

is the distance of the entrance window W1 from the position of the beam waist, zp is the
Rayleigh range, 0, is the propagation parameter, dpM is the distance of the photomultiplier to the exit
window W2, hQ, & is the eft'ective solid angle, and FPM =2 cm is the sensitive area of the photomulti-
plier.

Focusing
conditions

unfocused
focused

f=350 cm

(cm)

108
108
108
409

{cm)

2610
130
300

—416

Zp

(cm)

1970
48
48
48

0.02
0.15
0.04
1.31

dpM

(cm)

297
297
127
543

16
16
64
3.7

Symbol
in Fig. 8

0

S

The spontaneous Raman scattering cross section at the
pump wavelength of 532 nm is do. /d0=8. 0X10
cm /sr [30,31]. The results of the calculations are shown
in Fig. 8 as dashed lines. Considering the limited accura-
cy of the calibration of the measured Stokes energy and
of the calculation of the effective solid angle, the standard
theory of spontaneous Raman scattering is in good agree-
ment with the experimental results. It predicts correctly
the dependence of the measured Raman energy on solid
angle [Fig. 8(a)] and cell length [Fig. 8(b)]. In particular,
in Fig. 8(a) there is no deviation between the open and
the solid circles, which correspond to the same solid an-
gle but to different values of 0, .

From the results discussed above we conclude that the
nonorthogonal mode theory does not describe correctly
the spontaneous Raman scattering regime. Therefore,
the calculated results for the transition region between
spontaneous and stimulated Raman scattering should
also be considered with caution.

sured Stokes energy E& is plotted on a logarithmic scale
versus the laser power PI for the unfocused and the fo-
cused laser beam, represented by the open and the closed
circles, respectively. Since for the focused beam the laser
intensity is higher than for the unfocused beam, much
less laser power is needed to generate the same Stokes
power (see Fig. 9).

We have compared the experimental results with the
results of the nonorthogonal mode theory (Sec. II), the
one-mode theory, and the adapted plane-wave theory
(Sec. III). The solid lines in Fig. 9 were calculated by in-
tegrating Eq. (24) numerically over the pulse duration to
obtain the Stokes energy Ez of the nonorthogonal mode
theory. Spectral narrowing of the Stokes light was taken
into account in the same way as in Sec. II B2. The calcu-
lated solid lines of the nonorthogonal mode theory are in
good agreement with the experimental points in the re-
gion of stimulated Raman scattering (Pl )0.08 and 0.4
MW for the focused and the unfocused beam, respective-

C. Stimulated Raman scattering

We have estimated the Raman gain factors of the Q (J)
lines (J=0, 1, . . . , 4) from the number densities NJ, the
Raman scattering cross section der/dQ, and the spon-
taneous Raman linewidths (5vz )z [28]. We found that in
the stimulated scattering region it is sufhcient to take into
account the Q(1) Raman line because the Raman gain
factors of the other Q lines are smaller by at least a factor
of 8. We used a Raman gain factor go=2. 6X10
cm/MW (for A,l =532 nm) [32] and a Raman linewidth
5vz =4.6X10 s ' [27,28] for the Q(1) line at a Hz gas
pressure of 100 bar (density 89 amagat).

Recent investigations of SRS in Hz gas [14] have
shown that for a Raman cell shorter than the length of
the laser pulse, the experimental results are influenced by
feedback from diffuse reAections of the cell windows and
of optical elements outside the H~ cell. Therefore, we
tested our calculations of SRS (Sec. II and III) by a com-
parison with measurements using a cell (8=824 cm)
longer than the pulse length (360 cm).

The determining quantity in the nonorthogonal mode
theory is the propagation parameter 8, [Eq. (25)]. In the
experiments we have selected two completely different
values of 8, by measuring with the unfocused (8, =0.3)
and the focused (8, =2.7) laser beam. In Fig. 9 the mea-

10
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FIG. 9. Logarithm of the Stokes energy Ez versus laser
power PI . The closed and the open circles represent the experi-
mental points for the focused and the unfocused laser beam, re-
spectively. The solid, the dashed, and the dash-dotted lines
were calculated according to the nonorthogonal mode theory,
the one-mode theory, and the adapted plane-wave theory, re-
spectively.
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FICx. 10. Normalized Stokes energy density versus normal-
ized radial coordinate r/rp(8d), where Pd corresponds to the
position of the detection system. (a) Focused and (b) unfocused
laser beam. The stars and the points correspond to the mea-
sured Stokes and the laser beam, respectively. The solid, the
dashed, and the dash-dotted lines were calculated according to
the nonorthogonal mode theory, the one-mode theory, and the
adapted plane-wave theory, respectively.

ly). The sensitive dependence of the experimental results
on the propagation parameter 0, is described correctly by
the nonorthogonal mode theory. The deviations between
the measured points and the curves calculated from the
nonorthogonal mode theory in the spontaneous scatter-
ing regime have been discussed in Sec. VII B. It can be
seen from Fig. 9 (0, =0.3) that also the one-mode theory
(dashed line) and the adapted plane-wave theory (dash-
dotted line) fail to describe the measurements in this re-
gime.

The results of the one-mode theory and the adapted
plane-wave theory are shown in Fig. 9 as dashed and
dash-dotted lines, respectively. In the one-mode theory
the plane-wave gain Gpw in Eq. (30) was replaced by the
single-mode gain G. Equation (30) was multiplied by the
beam area 3 and integrated over time to obtain the
Stokes energy Es. In the adapted plane-wave theory
goII (0,0, t)zo8, exp[ r lro(8,„—)] [see Eq. (33)] was in-
troduced in Eq. (30). Es was calculated by integrating
Eq. (30) numerically over the beam cross section and
time, assuming a Gaussian time dependence of the laser
intensity. For the focused beam the experimental points
(closed circles in Fig. 9) are in between the calculated
dashed and dash-dotted curves. They do not agree with
either of these curves as expected from the results of Sec.
IV for a value of 0, =2.7. For the unfocused beam
(8, =0.3) the experimental points (open circles) are in
good agreement with the dash-dotted curve of the adapt-

ed plane-wave theory. For small values of 0, the Ray-
leigh range gain Gz, must be large to get a definite Stokes
power [see, e.g., Eqs. (26) and (27)]. In this case, the axial
variation of the Stokes light is large compared to the
transverse variation, i.e., the plane-wave theory is a good
approximation.

We have measured the radial energy density distribu-
tions of the Stokes and the laser beam close to the end of
the H2 cell (distance from the exit window W2 about 20
cm). The results are shown for the focused and the un-
focused laser beam in Figs. 10(a) and 10(b), respectively.
The stars and the points correspond to the measured
Stokes and the laser energy density distributions, respec-
tively. They represent an average over 100 shots with
about the same Stokes and laser power. The experimen-
tal points exhibit a slight periodic modulation because of
interference effects from optical elements. The lines have
been calculated. It can be seen in Fig. 10(a) that the
Stokes beam (stars) is slightly narrower than the laser
beam (points), in good agreement with the calculations of
the nonorthogonal mode theory (solid line) integrating
Eq. (23) over time. There are large deviations from the
results of the calculations (Sec. III) of the one-mode
theory and the adapted plane-wave theory (dashed and
dash-dotted lines, respectively). This is expected from
Sec. IV because the propagation parameter 0, =2.94 is
close to ~ for the focused beam.

For the unfocused beam a pronounced gain narrowing
of the Stokes beam is observed in Fig. 10(b). There is
again good agreement of the measurements (stars) with
the results of the nonorthogonal mode theory (solid line).
However, the radial distribution calculated from the
adapted plane-wave theory (dash-dotted line) is narrower
than the measured Stokes distribution. This shows that
even for the small value of 0, =0.19 of the unfocused
laser beam the agreement between the measurements and
the adapted plane-wave theory for the radial Stokes dis-
tribution is worse than in the case of the Stokes energy
versus laser power plot in Fig. 9 (dash-dotted line for
6, =0.3). The good agreement between the measured
and the calculated Stokes energy can be understood from
the fact that the calculated [dash-dotted line in Fig. 10(b)]
and the measured (stars) Stokes beam radii are substan-
tially smaller than the laser beam radius. As a conse-
quence, almost the complete Stokes beam is amplified in
the high intensity of the center of the laser beam in both
cases, leading to about the same Stokes energy.

To sum up, it has been shown in this section that the
nonorthogonal mode theory is in good agreement with all
experimental results for stimulated Raman scattering.
The adapted plane-wave theory described correctly only
the results of SRS for small propagation parameters 0,
because for the high Raman gain required for small
values of 0, the transverse variations of the Stokes beam
can be neglected compared to the axial variations.

VIII. CONCLUSIONS

We investigated experimentally and theoretically Ra-
man scattering in H2 gas from the spontaneous to the
stimulated scattering region for a Gaussian laser beam.
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The results of the nonorthogonal mode theory show
that the gain of the modes depends in general nonlinearly
on the laser power, except for very low and very high
laser power, where the usual linear power dependence of
the gain is obtained. We calculated the Raman Stokes
power as a function of the laser power and found that the
relevant quantity is the propagation parameter O„which
has been introduced to account for the axial intensity dis-
tribution of the laser beam. 8, depends on the position
and length of the Raman cell and the Rayleigh range of
the laser beam [Eq. (25)].

We have also addressed the question under which con-
ditions a properly modified plane-wave theory can be
used for the description of the experiments and when the
more complicated nonorthogonal mode theory has to be
applied. For that purpose we have compared the results
of the nonorthogonal mode theory with the results of an
adapted plane-wave theory and of a theory that takes into
account only the lowest-order Gaussian Stokes mode
(one-mode theory). For values of the propagation param-
eter 0, )&1, which can be obtained experimentally with
multipass cells, there is good agreement between the
nonorthogonal mode theory and the one-mode theory. In
the adapted plane-wave theory the radial distribution
IL(r) of the laser intensity is introduced in the exponent
of the amplification term of the usual plane™wavetheory.
The results of this theory agree with the nonorthogonal
mode theory for 0, «1. Small values of 0, can be real-
ized experimentally in two ways. Either the cell length is
short compared to the Rayleigh range or the Raman cell

is located at a distance from the beam waist, which is
large compared to the Rayleigh range. For intermediate
values of the propagation parameter 0, only the
nonorthogonal mode theory is appropriate.

For a comparison of the calculations with the experi-
ments, the laser beam parameters, e.g. , energy, pulse
duration, and beam diameter, have to be known as pre-
cisely as possible. We measured the laser beam diameter
as a function of distance from the laser system and deter-
mined from these data the diameter in the beam waist
and the Rayleigh range for the unfocused and the focused
beam. To avoid problems with feedback by difFuse
reAections, we used for SRS a H2 cell longer than the
length of the frequency-doubled Q-switched Nd:YAG
laser pulse.

We measured the Raman Stokes energy of the Q (1)
line in H2 gas as a function of the laser power and the ra-
dial distribution of the Stokes intensity. For the un-
focused and the focused laser beam a small and a large
value of the propagation parameter, respectively, were
obtained. All experimental results were in good agree-
ment with the nonorthogonal mode theory in the stimu-
lated scattering region. The experimental results for the
unfocused laser beam (small value of 8, ) agreed also with
the adapted plane-wave theory. In the spontaneous Ra-
man scattering region the nonorthogonal mode theory
did not describe correctly the dependence on cell length,
solid angle, and focusing conditions, but the experimental
results were in agreement with the standard theory of
spontaneous Raman scattering.
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