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Raman scattering of the Q(1) line in H, gas was investigated from the spontaneous to the stimulated
scattering region using a frequency-doubled Q-switched Nd:YAG laser (where YAG denotes yttrium
aluminum garnet). We measured the Raman Stokes energy as a function of the laser power and the radi-
al distribution of the Stokes intensity for the unfocused and the focused Gaussian laser beam. There is
good agreement between the experiments and the results of a nonorthogonal mode theory in the region
of stimulated Raman scattering. For cell lengths short compared to the Rayleigh range of the laser
beam or for Raman cells far from the beam waist, stimulated Raman scattering is described in a good
approximation by an adapted plane-wave theory. In the region of spontaneous Raman scattering, the
measured dependence on cell length, solid angle, and focusing conditions is not in accordance with the
nonorthogonal mode theory, but agrees with the standard theory of spontaneous Raman scattering.

PACS number(s): 42.65.Dr, 42.55.Ye, 42.50.Lc, 33.20.Fb

I. INTRODUCTION

Since the first observation of stimulated Raman
scattering (SRS) numerous investigations on experimental
and theoretical aspects of this effect have been published
(for a review see [1-5]). For quasistationary SRS the
comparison between measurements and calculations has
been hampered by various problems. In many Raman ac-
tive substances there are competing nonlinear processes,
e.g., self-focusing of laser light [6] and stimulated Bril-
louin scattering [7]. In media such as H, gas and liquid
N,, where SRS is the dominant process, an unexpected
steep rise of the Raman Stokes energy as a function of
laser intensity has been measured [8—11]. An explana-
tion of this effect was given in terms of feedback by
diffuse reflections from the cell windows and optical ele-
ments [12-14]. It was shown that for Raman cells longer
than the laser pulse length, SRS showed no anomalous
behavior [14]. Therefore, from the experimental point of
view H, gas in a long cell is a suitable medium for the
comparison of theory and experiments of SRS.

Most of the theories developed for SRS are based on
plane waves [1-5]. However, in the experiments, the
pump laser beam has a radial and axial intensity distribu-
tion; for example, often the lowest-order mode with a
Gaussian radial distribution is used. The problem is to
adapt the plane-wave theories to the real experimental
situation. Various approaches to the problem of focused
laser beams have been treated in the literature [15-19).
Recently, a nonorthogonal mode theory of Raman
scattering with a focused laser beam was presented [20],
which described quantitatively SRS in H, gas under vari-
ous experimental conditions [14,20].

In this paper we present the results of theoretical and
experimental investigations of stationary Raman scatter-
ing in H, gas from the spontaneous to the stimulated
scattering region (excluding saturation). The experiments
on SRS were carried out with a frequency-doubled Q-

1050-2947/95/52(1)/657(14)/$06.00 52

switched Nd:YAG laser (where YAG denotes yttrium
aluminum garnet) with a long H, cell (824 c¢m) to avoid
feedback problems. We measured the Raman Stokes en-
ergy as a function of the laser power and the radial inten-
sity distribution of the Stokes beam for different experi-
mental conditions. The experimental results are com-
pared with the results of the nonorthogonal mode theory
[20]. In addition, we discuss the conditions under which
the measurements are described correctly by an appropri-
ate adapted plane-wave theory. Particular emphasis is
given to spontaneous Raman scattering where the easure-
ments are compared with both the nonorthogonal mode
theory [20] and the standard theory of spontaneous Ra-
man scattering [21].

In Sec. II the main results of the nonorthogonal mode
theory of SRS for the Raman gain, the Stokes power, and
the radial intensity distribution of the Stokes beam are
described. Sections III and IV treat adapted plane-wave
theories and the comparison with the nonorthogonal
mode theory, respectively. In Sec. V the results of the
calculations of spontaneous Raman scattering using the
nonorthogonal mode theory and the standard theory are
compared. The experimental setup is described in Sec.
VI. The experimental results on spontaneous and stimu-
lated Raman scattering are compared with the theoretical
calculations in Sec. VII. The conclusions are given in
Sec. VIII.

II. NONORTHOGONAL MODE THEORY

The nonorthogonal mode theory of Raman scattering
with focused laser beams has been treated in detail in
Refs. [15,20]. In the following a brief description of the
underlying principles and the main results, which are
needed for the discussion of the experiments, is given.

A. Solution of the wave equation

The electric-field operator for a Stokes wave traveling
in the z direction can be written as
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Es(t,2,7)=E{(2,7)expli (kgz —wgt)]
+E{ Nz, Flexpl —ilkgz —wgt)] (1

where kg and wg are the wave vector and the frequency
of the Raman Stokes light. The amplification of the
Stokes field, whose amplitude is assumed to vary slowly
with distance z, is described by the wave equation in the
steady-state paraxial limit.

VZT—zszgz- +iksg (z,r) | Bz, 7) = —4nk2BT (2,7)
@)

where V%=23%/3x2+3%/3y? and g(z,7) is the Raman
gain. To account for spontaneous scattering, a quantum
Langevin operator ﬁ;rp(z,?) has been included, which
represents the quantum fluctuations in the polarization of
the medium. We treat a laser beam with power P; and a
radial and axial intensity distribution L, (z,r), which is
described by the lowest-order Gauss-Laguerre mode of
the free space (see below). In this case, the spatial nonun-
iform gain is given by

Pr 2,2
8(z,r)=gol (z,r)=g, > exp[ —r“/r5(2)] . (3)
r

()(2)77'

8o is the Raman gain factor and r,(z) is the 1/e radius of
the radial intensity distribution of the laser beam, which
is connected to the spot size wy(z) of the laser field by
ro(z)=wy(z)/V'2. The z dependence of the laser beam
radius is given by

r3(z)=rd(0)[1+(z/20)?] . 4)

ro(0) is the radius in the beam waist and z, is the Ray-
leigh range, equal to one-half of the confocal parameter.
For the lowest-order Gauss-Laguerre mode U they are
related by

zo=k;r3(0), : (5)

where k; is the wave vector of the laser light.

The presence of the gain term in Eq. (2) makes the
wave equation non-Hermitian. To solve the wave equa-
tion, the amplified Stokes field is expanded into a set of
nonorthogonal modes

EST =3 all(2)¢l(z,7) , 6)
n,l
where 6,{* is a generalized creation operator for photons
in the nonorthogonal mode ¢/ (z,7). The modes are re-
quired to satisfy the eigenvalue equation

v —2ik5% +iksg(z,r) |BL(2,F)

Al is the eigenvalue associated with the mode ¢ (z,7).
The indices n and [ correspond to the radial and the an-
gular degrees of freedom, respectively.

It has been shown [15,20] to be useful to expand the
modes ¢/, (z,7) in terms of the free-space Gauss-Laguerre
modes U (z,7) which satisfy the free-space paraxial wave
equation and are complete and orthogonal modes. Sub-
stituting the expansion

¢4 (2,F)=3b}  UMz,7F) ®
P
into Eq. (7) and using the orthogonality relation for the
U! leads to a differential equation for the free-space
coefficients b,f, P which are, in general, complex. To sim-
plify this equation the variable z is changed to the propa-
gation variable

6=tan"!(z/z,) . 9)
In addition, the free-space coefficients are written as
b}, =exp(—i2p'0)x} , - (10)

Using Egs. (7)-(10) we arrive at a system of coupled ei-
genvalue equations for y},

(2ip" =M )x! +1uGr, 3 Xk ,QF ,(1)=0, (11)
p

where the mode filling factor p, the Raman gain Gy,
within the Rayleigh range, and the polynomial Q;,’ p will
be defined below. With the solution of this system the
Raman Stokes modes can be written as

¢L(z,?)=z expl —i2p tan_l(z/zo)])(f,,p Ulf(z,?) . (12)
P

In Eq. (11) the Raman gain Gg, within the Rayleigh

range z, is given by

Gr,=801.(0,0)z¢ , (13)

where I; (0,0) is the laser intensity in the center of the
beam waist (at z=0 and r=0). Introducing the laser
power P;, the laser intensity can be written as
I,(0,0)=P; /[mr}(0)]. Using this expression and Eq. (5)
we get for the Raman gain Gg, within the Rayleigh range

GerkLg()PL/ﬂ' . (14)

Gy, is independent of the Rayleigh range z, i.e., it is in-
dependent of the focusing conditions, but it depends on
the laser power P;. The mode filling factor p is defined
as

p=kg/(kg+k.) . (15)

Qlfr, »(1t) is a polynomial in u, which has been calculated
in Ref. [15] for the case that g(z,r)=g,P,|U(zr)|%.
This corresponds to the Gaussian intensity distribution of
the laser beam given in Eq. (3).

As a consequence of the non-Hermitian nature of the
wave equation the usual power orthogonality conditions
do not hold for the modes ¢/,(z,7). They are supplanted
by
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Ja*r ¢l =6,; 3 Xk X, =S Xk, xh , =B, . (16
§4 P

Equation (16) represents a measure of the overlap be-
tween the nonorthogonal modes. The quantity (B,{,,, )2 is
referred to as the excess noise factor [22] or Petermann
factor [23] and is equal to or greater than unity.

There is a biorthogonality relationship with another set
of modes ¥/, (z,7), referred to as adjoint modes. They are
obtained from the solution of the Hermitian adjoint of
the differential operator in Eq. (7). The biorthogonality
condition is given by

[arylrel=5,,, . (17)

Using the properties of the biorthogonal modes, Eq. (17)
can be written as

S XompXnp =B - (18)
p

This equation is used to normalize the eigenfunctions
)(i,, »» Which are solutions of the eigenvalue equation (11).
After the modes ¢, of the Raman generator have been
determined, the z dependence of the operators a,f* has to
be found. Substituting the field expansion Eq. (6) into the
wave equation (2) leads to an equation of motion for 6,5 s

" aalt AL
2,:’ " 9z kpri(2)

al' | =—2miks Pl (2,7) . (19)

The solution of this equation has been treated in detail in
Ref. [20].

We are interested in the radial intensity distribution
I¢(z,r) of the Stokes light

Ig(z,r)==—AE Tz, E (2, 7))
2w

¢

£ 3 Gllaee 20

n,j,m,l

and the Stokes power

Ps=2r [ “Is(z,r)rdr . 21
s =21 f . s(z,r)rdr 21
The spontaneous polarization correlation function
X =\ D [ ﬁavR ’ =
(Psp(z,r)Psp(z ,JF)) = 2ks g(z,7)8(z—2z")8(F—F")

(22)

is used for the calculation of the correlation function
(al'al ) in Eq. (20). vy is the Raman linewidth [full
width at half maximum (FWHM)]. It is presupposed that
the population of the vibrational ground state of the mol-
ecule is not changed by stimulated Raman scattering.

From the solutions of the Egs. (11), (12), and (19) we
calculate the Raman Stokes intensity

Is(n=twsdvg 3 B), (expl(A, +A11)0,1—1)

n,m,l
X @i (Bes Vb1, (O 7) 23)

and the Stokes power

Ps(6,)=fiwgdvy 3 (B, P{exp[Al+Alr6,1—1) .

n,m,l
(24)

The value of the propagation parameter 6,=6,, —60,, is
obtained from Eq. (9) at the entrance (z=¢_,) and exit
(z={¢¢y="{¢ eyt ) of the Raman medium:

0, =tan"![(£ o+ ) /zq]—tan" £, /2,) (25)

It is interesting to consider the special case that the
output is dominated by the lowest-order nonorthogonal
Stokes mode ¢9. Then the Stokes power is given by

Pg~fiwgdvg(B{,)*{exp[2Re(A)6,]1—1} . (26)
In the low-gain regime the eigenvalue of this mode is
2Re(A))=uGy, . 27)

The results of Egs. (23)-(27) will be compared with the
results of the adapted plane-wave theories in Sec. IV. In
order to account approximately for spectral narrowing of
the Stokes light, the Raman linewidth 8vz will be re-
placed by 8vg /(1Gg,0,+ 1)1/ in Egs. (23) and (24) [20].

B. Numerical results

1. Raman gain

We calculated first the eigenvalues A, which deter-
mine the Raman gain, by solving the coupled equations
(11). It can be seen from Eq. (11) that the eigenvalues de-
pend only on the mode filling factor ¢ and the Rayleigh
range gain Gg,. Equation (14) shows that Gy, is propor-
tional to the laser power P, but it is independent of the
Rayleigh range z,. This means that for an unfocused
beam and for beams focused with different focal lengths
the same eigenvalues A/ are obtained for a definite laser
power (with wave vector k; ) in a specific Raman medi-
um.

The calculations were carried out for SRS in H, gas
(Raman shift 4155 cm™!) with the second harmonic of
the Nd:YAG laser, k; =118 105 cm™! and ©u=0.4379
[from Eq. (15)]. We used a Raman gain factor of
80=2.6X1073 cm/MW (at 532 nm) and a spontaneous
Raman linewidth of 8vz =4.6X 10’ s~! (at 100 bar). The
equations were usually solved for n,p’=0,1,...,40 and
[=0,1,...,6. Figure 1 shows as an example the normal-
ized real parts of the eigenvalues A2 as a function of the
Rayleigh range gain Gpg, (lower scale). On the upper
scale the laser power P; is plotted. It should be em-
phasized that all eigenvalues depend nonlinearly on Gg,,
i.e., on the laser power P;. This is in contrast to the
linear dependence obtained in the plane-wave theory (see
Sec. III).

The following details are of interest.

(i) Lowest-order nonorthogonal mode (n=1=0). For
low laser power P; <0.1 MW, the real part of the eigen-
value is given by 2 Re(AJ)=uGy, (see Fig. 1). In this re-
gion the main contribution to ¢$ comes from the lowest-
order free-space Stokes mode UJ, which has about the
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FIG. 1. Normalized real part 2 Re(Al)/Gg, of the eigenval-
ues of Eq. (11) versus the Rayleigh range gain Gy, (lower scale)
and the laser power P; (upper scale).

same diameter as the laser beam. The overlap of the laser
and the Stokes beams is responsible for the mode filling
factor u in the real part of the eigenvalue AJ. For very
high laser power P; >>1 MW, we get 2 Re(AS) = Gg,, be-
cause the Stokes beam radius is much smaller than the
laser beam radius (see Fig. 4, 6,=0.1) and the Stokes
light is amplified by the peak intensity in the center of the
laser beam.

(ii) Higher-order nonorthogonal modes. The eigenval-
ues of these modes are close together for low laser power,
i.e., all these modes are important for the calculation of
the Stokes power.

2. Raman Stokes power

It can be seen from Eq. (24) that the important param-
eters entering the Stokes power Pg are the factors
(B,i,,,, )2, which are a measure of the overlap between the
nonorthogonal modes, and the product of the eigenvalues
Al with the propagation parameter 6,. 6, is equal to the
difference of the propagation parameters at the exit and
entrance of the Raman medium. It depends on the posi-
tion of the Raman cell (entrance z=¢,), its length ¢
(exit z=¢,=¢.,+¢) and the Rayleigh range z, [Eq.
(25)], which is determined by the focal length f of the
focusing lens. For a singlepass cell, the maximum value
of 0, is m. For a multipass cell, Battle and co-workers
[20] have shown that 6, can be much larger than , de-
pending on the number of passages of the laser beam
through the Raman cell.

We have calculated the Raman Stokes power Pg for
three cases.

(i) The Raman cell is short compared to the Rayleigh
range (£ <<z,) or far away from the focal region
(£ >>20). In this case 6, is small. We used a value of

6,=0.1 in the calculations, which can be realized experi-
mentally in different ways. For example, for an un-
focused laser beam with z;=500 cm and a long cell
length ¢ =824 cm far from the beam waist (£,.,=1594
cm), or a tightly focused laser beam (zy=5 cm) and a
short cell (¢=3.2 cm) at ¢,,=10 cm, a value of §,=0.1
is obtained from Eq. (25).

(ii) A Raman cell, which is longer than z, is in the fo-
cal region of a tightly focused laser beam. In this case,
we get 0, =

(iii) A multipass Raman cell is in the focal region, hav-
ing enough passages to get a value of 8, =30.

In all calculations of the Stokes power Pg the Raman
linewidth &8vi; in Eq. (24) has been replaced by
8vg /(G+1)1/? to account approximately for spectral
narrowing of the Stokes light [20]. The results of our cal-
culations of the Stokes power are shown in Fig. 2. The
Stokes power Py is plotted on a logarithmic scale versus
the Raman gain G =pugI;(0,0)z00, =uGg,0,. We have
chosen this expression for the gain because the calcula-
tions have shown that in the stimulated scattering re-
gime, often the lowest-order Stokes mode dominates. In
the low gain case the exponent in the expression of the
Stokes power Pg [Eq. (26)] is then 2 Re(A3)8, =G, using
Egs. (13) and (27). Figure 2(a) shows three solid lines for
6,=0.1, m, and 30 calculated according to the
nonorthogonal mode theory [Eq. (24)] and a dashed and a
dash-dotted line calculated with the one-mode theory and

Stokes Power Pg (W)

L ®) 6,=0.1 ]

0.
0) / Gre
o o
[o)} o]
T
1

30

2 Re(A

o ©

o AT
T
Il

1 1 1 L 1 I 1

5 10 15 20 25 30
Raman Gain G

FIG. 2. (a) Logarithm of the Stokes power Pg versus Raman
gain G. The solid, the dashed, and the dash-dotted lines were
calculated according to the nonorthogonal mode theory, the
one-mode theory, and the adapted plane-wave theory, respec-
tively. (b) Normalized real part of the eigenvalue AJ versus Ra-
man gain G.
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the adapted plane-wave theory, respectively, which will
be discussed in Sec. IV. It should be noted that the deter-
mining quantity for the gain dependence of the Stokes
power is the propagation parameter 8,. The details of the
focusing conditions and the position and length of the
Raman cell enter only through the value of 6,.

Figure 2(b) shows the normalized -eigenvalue
2Re(A3) /Gy, versus Raman gain G. The normalized ei-
genvalues do not depend on the propagation parameter
0,, but we get different curves for the three values of 6,
because the Raman gain G, which is plotted on the
abscissa, is proportional to 6,.

Next we discuss the slopes of the three curves for the
Stokes power in Fig. 2(a) in the region of nearly exponen-
tial growth (G >7). In this region the lowest-order

nonorthogonal mode dominates and the slope
S¢ =d(log,yPs)/dG is calculated from Eq. (26). We get
So=Liog (e | 2R 28)
G u 0810'€ GRr ’

where log,(e) is the common logarithm of the number
e=2.71828. We have expressed S in terms of the nor-
malized eigenvalue 2 Re(A)/Gy,, which is plotted in Fig.
2(b) versus G. For 6, =0.1 the normalized eigenvalue has
a high value almost over the complete range of G. There-
fore, the Stokes power Pg exhibits the steepest rise [Eq.
(28)]. In contrast, 2 Re(Ad) /Gy, stays at its lowest value
u over the whole gain regime for 6, =30 [Fig. 2(b)]. This
means that the slope of the corresponding Stokes power
is low [Fig. 2(a)]. The curve for 6, = lies in between.

The different gain dependence of the real part of the ei-
genvalue AJ in Fig. 2(b) can be understood from the radial
intensity distributions of the laser and Stokes beams,
which are shown in Fig. 4 for large gain (G >13). For
6,=0.1 (inside solid line) the Stokes beam diameter is
much smaller than the laser beam diameter (dotted line).
Therefore, the Stokes beam is amplified almost complete-
ly with the peak intensity in the center of the laser beam,
corresponding to a large value of the real part of the ei-
genvalue 2 Re(AJ)~ Gg, [see Fig. 2(b)]. For 6,=30 (out-
side solid line in Fig. 4) the Stokes beam diameter is of
the order of the laser beam diameter (dotted line in Fig.
4). This leads to a smaller overall amplification, which is
determined by the mode filling factor p. In this case, a
smaller value of the real part of the eigenvalue is obtained
2Re(A))=uGy, [see Fig. 2(b)]. These examples show
that the overlap of the laser and the Stokes beams is
relevant for the real parts of the eigenvalues that enter
the Raman amplification.

For a comparison with the experiments it is interesting
to plot the Stokes power log,,(Pg) versus the laser power
P, [see Fig. 3(a)]. In this case the slope Sp is given by

2Re(AJ)
6,
GRr

__logygle)
P p L80

29)

The important difference to Eq. (28) is that the slope Sp
in Fig. 3(a) is proportional to the normalized eigenvalue
2Re(A3) /Gy, times 6,. As a consequence, the slope for
6,=0.1 is the smallest, although 2 Re(A3)/Gg, has al-

(a) 1

6, =30
ks 0.1

Stokes Power Pg (W)

0.
0)/GRr
o o =
N oo o
L
L
4
r

2 Re(\
(=)
T
»/

1 n 1

0.5 1.0 1.5 2.0 2.5
Laser Power P, (MW)

o
)
L

o
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FIG. 3. (a) Logarithm of the Stokes power Pg versus laser
power P;, calculated according to the nonorthogonal mode
theory. (b) Normalized real part of the eigenvalue AJ versus
laser power P; .

most its full value [Fig. 3(b)]. The slope for 6,=30 is
large [Fig. 3(a)] because 0, is large [Eq. (29)]. These re-
sults can also be understood from the following qualita-
tive considerations. For 8, =30 the multipass Raman cell
is in the focal region with high laser intensity, therefore a
low laser power is needed for high amplification. In con-
trast, the singlepass Raman cell is far from the focus for
6,=0.1. Far from the focus the laser beam diameter is
large, therefore a high laser power is required to get
sufficient laser intensity to generate intense Raman light.

3. Radial intensity distribution of the Stokes beam

We have calculated the Raman Stokes intensity Ig(r)
according to Eq. (23) for different values of the propaga-
tion parameter 0,, which determines the exponential
amplification of the modes together with their eigenval-
ues A.. The radial intensity distribution depends on the
radial distribution of the modes ¢/ (8,,,7) at the exit of
the Raman medium. The Stokes intensity Ig(7) was cal-
culated for 6,=1.5 and 6,=0.1, 7, and 30 using gain
values of G =14, 20, and 26, respectively, which corre-
spond to a Stokes power of about 100 W [dashed horizon-
tal line in Fig. 2(a)].

Figure 4 shows the normalized Stokes intensity
I4(r)/I5(0) versus the normalized radial coordinate
r/ro(£ ). The solid lines correspond to the results of the
nonorthogonal mode theory for 6, =0.1, m, and 30. The
dashed, the dash-dotted, and the dotted lines represent
the Stokes intensity distributions of the one-mode theory,
the adapted plane-wave theory (see Sec. IV) and the laser
intensity distribution, respectively. The half-width of the
Stokes beam is smaller for smaller values of 8,. Gain nar-
rowing of the Stokes beam is observed for 8, =0.1 and 7.
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FIG. 4. Normalized Stokes intensity distribution Ig(r)/Is(0)
versus normalized radial coordinate r/ry(¢.,). The solid, the
dashed, and the dash-dotted lines were calculated according to
the nonorthogonal mode theory, the one-mode theory, and the
adapted plane-wave theory, respectively. The dotted line corre-
sponds to the normalized radial intensity distribution of the
laser beam.

The numerical calculations show that for the gain
values used in the calculations above the lowest-order
nonorthogonal mode ¢3 dominates. The nonorthogonal
modes have been expanded in terms of the free-space
modes U; [see Eq. (8)]. The absolute values |b8’p| of the
expansion coefficients of the ¢ mode are presented in
Fig. 5 for the indices p =0-19. For 6,=0.1 many free-
space modes contribute to the ¢ mode [Fig. 5(a)]. The
superposition of these modes leads to the narrow width of
the Stokes intensity shown in Fig. 4 (inside solid line).
For 6,=30 the lowest-order free-space mode UJ dom-

1 | 1 1 1 1 1 1
2 4 6 8 10 12 14 16 18
Index p

FIG. 5. Expansion coefficients |bJ,| of the lowest-order
nonorthogonal mode $3 versus the index p. (a) Propagation pa-
rameter 6,=0.1; (b) 6,=30.

inates [Fig. 5(b)], causing the large half-width of the
Stokes intensity in Fig. 4 (outside solid line).

We have also calculated the radial intensity distribu-
tion of the Stokes beam for lower values of the Stokes
power. Since in these cases the Raman gain is lower, the
widths of the Stokes beams are larger than for higher
Stokes power. At sufficiently low Stokes power the
higher-order nonorthogonal modes become more impor-
tant and contribute to the increasing width of the Stokes
beam.

III. PLANE-WAVE THEORY

Stimulated Raman scattering is usually treated using a
plane-wave theory [1-4]. In the plane-wave approxima-
tion the transverse variation of the Stokes field [ V% in Eq.
(2)] is neglected compared to the axial variation. The

Stokes intensity is then given by [5]
Is=1tiogm A 'F*8vr Gpy
X[Io(Gpw 72)—1,(Gpyw /2)]exp(Gpy /2) . (30)

Here F is the Fresnel number defined as 4 /Ag¢. A and
¢ are the beam area and cell length, respectively. I, and
I, are the modified Bessel functions. For true plane
waves the Raman gain is given by

(PW)[
’

Gpw =8ol1 (31)
(PW)

where I;" "’ is the intensity of the plane wave. For high
Raman gain Gpy >>1, the Stokes intensity assumes the
well-known form

— v
Ig=1ogVr A FP——=
PW

exp( GPW ) N (32)

i.e., it grows nearly exponentially with the gain Gpy,.

The problem is to adapt the result of the plane-wave
theory to the situation of an unfocused or a focused laser
beam with a radial and axial intensity distribution
I, (z,r). For a Gaussian laser beam two possibilities have
been treated in the literature [24,25]. In both cases the
axial intensity distribution of the Gaussian laser beam
can be taken into account by replacing the product
I{*W)¢ [Eq. (31)] by I,(0,0)z46,, which corresponds to
the integration of the laser intensity over the cell length.

Both cases differ in the way in which the radial intensi-
ty distributions are taken into account.

Case (i) is based on a mode theory, where only the
lowest-order free-space Stokes mode U is considered
[24]. Using this one-mode theory, a scaled plane-wave
theory has been given in the literature [20]. The true
plane-wave gain Gpy in Egs. (30) and (32) is replaced by
the gain G =pugyI;(0,0)z,0,=nGg,0, of a single Gauss-
ian Stokes mode. The mode filling factor u takes into ac-
count the overlap of the radial intensity distributions of
the laser and the Stokes beams. It should be mentioned
that the gain G corresponds to the Raman gain of the
lowest-order Stokes mode of the nonorthogonal mode
theory in the low gain regime (Sec. II A). The radial
Stokes intensity distribution is Gaussian with a 1/e ra-
dius rg, which is given by r¢=ryV k; /kg, where rq is
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the 1/e radius of the laser beam. The spot size wg of the
Stokes field is related by rg to r¢=wg/V'2. Since k; > kg
the Stokes beam radius is slightly larger than the laser
beam radius. The Stokes power Py is obtained by multi-
plying the Stokes intensity Iy [Eq. (30)] with the beam
area A.

In case (ii) the radial dependence of the laser intensity
is taken into account explicitly [25]. The true plane-wave
gain Gpy in Eq. (30) is replaced by

gOIL(O’O)ZOOIexp[ _rz/r(z)(/ex)]
=Gg,0,expl —r2/r3(£)] . (33)

The radial intensity distribution of the laser beam deter-
mines via Egs. (30) and (33) the radial intensity distribu-
tion of the Stokes beam. When the Gaussian distribution
in Eq. (33) is approximated by a parabolic distribution, it
can be shown that the ratio of the Stokes beam radius to
the laser beam radius is (Gg,8,)” /2. For Gg,0,=25 the
Stokes beam radius is { of the laser beam radius. The
Stokes power Pg is calculated by integrating numerically
the Stokes intensity I5(#) [Eq. (30)] over the Stokes beam

cross section.

IV. COMPARISON
OF THE NONORTHOGONAL MODE THEORY
AND THE ADAPTED PLANE-WAVE THEORIES

Two cases of the plane-wave theory adapted to a
Gaussian laser beam have been discussed in the preceding
section. When only the lowest-order free-space Stokes
mode U is considered [24], case (i), the radial Stokes in-
tensity distribution Ig(7) is given by this mode. Ig¢(r) is
shown as a dashed line in Fig. 4, which can hardly be
distinguished from the solid line for 8, =30. The reason
for this good agreement comes from the fact that for
6,=30 the lowest-order nonorthogonal mode ¢9, which
dominates, consists mainly of the lowest-order free-space
mode U} [Fig. 5(b)].

The Stokes power for case (i) was calculated introduc-
ing the gain G =pugy1;(0,0)z,0, in Eq. (30) and multiply-
ing with the beam area 4. The result is shown in Fig.
2(a) as a dashed line. In the region of stimulated Raman
scattering (G > 7) there is satisfactory agreement between
the slopes of the one-mode theory and the nonorthogonal
mode theory for 8, =30, which correspond to the mul-
tipass cell. This can be understood from Fig. 2(b) where
the normalized eigenvalue of the lowest-order Stokes
mode is plotted versus G. It can be seen that
2Re(Ad)0, =uGg,0,=G. This agrees with the gain of the
one-mode theory. The results of the nonorthogonal mode
theory for the singlepass cell (6=0.1 and =) deviate
strongly from the one-mode theory [dashed line in Fig.
2(a)].

In case (ii) [25] the radial intensity distribution of the
laser beam [Eq. (33)] has been introduced in Eq. (30).
The radial intensity distribution of the Stokes beam de-
pends on the gain Gg,0, [Eq. (33)]. Using the relation
GR,0,=G /u, we have calculated Ig(r) from Eq. (30) for
G =14 and 0,=0.1. The result is shown as a dash-dotted
line in Fig. 4. The half-width of this curve is only slightly

smaller than that of the corresponding inside solid line
calculated from the nonorthogonal mode theory for
6,=0.1. It shows the typical gain narrowing.

The Stokes power Pg for case (ii) has been calculated as
a function of the Raman gain G by introducing Eq. (33)
in Eq. (30) and integrating Eq. (30) over the beam cross
section. This result is shown as a dash-dotted line in Fig.
2(a). In the region of stimulated Raman scattering
(G >5) there is satisfactory agreement between the
adapted plane-wave theory (dash-dotted line) and the
nonorthogonal mode theory for 6,=0.1 (solid line),
which corresponds, for example, to a Raman cell far from
the focal region. For G >5, the nonorthogonal mode
theory yields the result 2 Re(A3)0, =~ Gg, 0, [see Fig. 2(b),
6,=0.1], which is equal to the gain of the adapted
plane-wave theory [see Eq. (33)] in the center of the laser
beam. For small values of 6, the Rayleigh range gain
Gpg, must be large to get a definite Stokes power [see, e.g.,
Egs. (26) and (27)]. In this case, the axial variation of the
Stokes light is large compared to the transverse variation,
i.e., the plane-wave theory is a good approximation.

In conclusion, it should be emphasized that the results
of the nonorthogonal mode theory are reproduced by a
suitable adapted plane-wave theory in a good approxima-
tion only for two limiting cases: (i) for very large values of
the propagation parameter 6, the one-mode theory [24]
with the gain G=pug,I;(0,0)z,0, provides good agree-
ment and (ii) for very small values of 0, the adapted
plane-wave theory [25] using Eqs. (30) and (33) is ap-
propriate.

V. SPONTANEOUS RAMAN SCATTERING

In the limit of very low gain, (A, +1/*)8, << 1, spon-
taneous Raman scattering occurs. In this case, several
approximations can be made in the calculation of the
Stokes power Pg from Eq. (24). The factor B,{,m can be
approximated by 1 and O for »n =m and n5m, respective-
ly. The real parts of the eiFenvalues can be written as
Re(AL)=Gg,fl (), where f,(u) is obtained from the nu-

merical solution of the eigenvalue equation (11) for

G, <<1. Using these approximations we get for the
Stokes power
2
Py~ "fiosbvrk 8oPL0, 3, fl) . (34)
n,l

The dependence of the Raman gain factor g, on the num-
ber density N of molecules and the spontaneous Raman
scattering cross section d o /d () is given in Ref. [26]. Itis
introduced in Eq. (34) to give the Stokes power

do

Ps=Nq

v
2o s flw P, . (35)
T vy n,l

It is interesting to compare Eq. (35) with the result of
the standard calculations for spontaneous Raman scatter-
ing. From Ref. [21] we get

Py= —;%AQNMIL , (36)

where N, is the total number of molecules illuminated
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by the laser beam with the intensity I;. AQ is the solid
angle in which the Stokes power Pg is detected. In our
case, the laser intensity I; depends on r and z [see Egs. (3)
and (4)]. We therefore replace the product N, /; in Eq.
(36) by N f I;(z,r)dV, where the integral is over the
volume V illuminated by the laser beam and N is the
number density of molecules. Introducing the intensity
I; (z,r) from Eq. (3) into the volume integral and integrat-
ing over r and z, we get

Pg =N§%[AQ/]PL , 37
where ¢ is the length of the Raman medium.

Next we compare the results for the Stokes power Pg
obtained from both calculations. As expected, in both
cases Pg is proportional to the laser power P;, the num-
ber density N of molecules, and the spontaneous Raman
scattering cross section do /d ). The results of Egs. (35)
and (37) differ in the terms in the square brackets. In the
nonorthogonal mode theory [20] the Stokes power Pg
[Eq. (35)] is proportional to the propagation parameter
6,, which depends on the cell length ¢, the position of
the cell ¢, and the Rayleigh range z, [Eq. (25)]. In Sec.
III we have introduced 0, in the one-mode theory and the
adapted plane-wave theory. In this case, the Stokes
power is also proportional to 8, for these theories. In
contrast, the standard calculations of spontaneous Ra-
man scattering [21] yield a Stokes power Pg that is pro-
portional to the solid angle AQ and the cell length ¢ [Eq.
(37)]. It does not depend on the position of the cell and
the focusing conditions. In Sec. VII B both results will be
compared with the measurements of spontaneous Raman
scattering in H, gas.

VI. EXPERIMENTAL SETUP

The experimental setup is shown schematically in Fig.
6. The laser system (Spectron Laser Systems model SL
803) consists of an injection-seeded, single-frequency

Nd:YAG Laser System

FIG. 6. Schematic diagram of the experimental setup for
stimulated Raman scattering in H, gas. PO1, PO2, polarizers;
HWP, half wave plate; GP, glass plate; PC, photocell; L1, L2,
lenses; W1, W2, windows of H, cell; P1-P4, prisms; NG, neu-
tral density filters; IF, interference filters; PM, photomultiplier.

Nd:YAG laser oscillator and two amplifiers. A telescope
after the laser oscillator provides optimum illumination
of the amplifier rods and compensates for the thermal
lens effect of the amplifier rods. Depending on the adjust-
ment of the telescope lenses, we obtained different values
of the laser beam parameters (see Sec. VII A). The Q-
switched laser pulse was frequency doubled and had a
duration of 12 ns (FWHM) and a power P; of up to 10
MW. The distance between the Nd:YAG laser system
and the polarizer PO1 was about 15 m. The laser power
was varied by rotating the optical axis of the half wave
plate with respect to the transmission direction of the po-
larizer PO2. A small part of the laser light was coupled
out with a glass plate and detected with a fast photocell
(PC) and a transient digitizer (Tektronix SCD 1000). The
rise time of the detection system was about 0.5 ns. The
detection sensitivity of the photocell was calibrated with
an energy meter (company Ophir, model DGX).

The laser beam was focused with lens L1 (focal length
f =350 cm) into the Raman cell. At a H, pressure of 100
bar (density 89 amagat) the damping constant I' =276vy
of the molecular vibrations is 2.9 X 1010 7! [27,28], i.e.,
SRS occurs in the steady-state regime for a laser pulse
duration of 12 ns. Lens L2 was used to recollimate the
laser and the Stokes beam. The laser wavelength
(A =532 nm) was separated from the Stokes wavelength
(Ag=683 nm) by four prisms P1-P4 and suitable
narrow-band interference filters in front of the photomul-
tiplier (PM) (Hamamatsu R928), which detected the
Stokes energy. In the early experiments the distance be-
tween the exit window W2 and the PM was large (400
cm). Later it was reduced to 127 cm in order to get a
larger solid angle, which is important for the spontaneous
Raman measurements.

The output of the PM was connected to an analog-to-
digital converter followed by a computer and was simul-
taneously observed on the screen of an oscilloscope. In
order to measure in the linear range of the photomulti-
plier, the Raman Stokes pulse was attenuated by suitable
neutral density filters. The detection sensitivity of the
photomultiplier was calibrated using an energy meter and
neutral density filters with known transmission values.

VII. EXPERIMENTAL RESULTS
AND DISCUSSION

We have investigated Raman scattering in H, gas from
the spontaneous to the stimulated scattering regime. For
the comparison of the experimental results with the cal-
culations based on the nonorthogonal mode theory and
the adapted plane-wave theories the laser beam parame-
ters have been determined for the unfocused and the fo-
cused laser beam.

A. Laser beam parameters

We have measured the radial intensity distribution of
the laser beam over a wide range of distances from the
laser system using a beam analyzing system (Big Sky
Laser Technologies, Inc., Beam View Analyzer PC
V3.0B). The measured intensity distributions were close
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FIG. 7. Measured beam radius ry(z) of the unfocused
(squares) and the focused (circles) laser beams versus the dis-
tance z from the beam waist of the unfocused beam. The solid
lines represent the fits to the experimental points using Eq. (4).
zy and ry(0) are the Rayleigh range and the 1/e radius of the
laser intensity distribution in the beam waist, respectively. The
superscript (f) is used for the values of the focused beam. z;, is
the position of lens L1.

to Gaussian distributions. From the fit of a Gaussian’

curve to the measured distribution we obtained the 1/e
radius 7y(z) of the laser intensity distribution. Figure 7
shows an example of the beam radius 7,(z) as a function
of the distance z from the beam waist (z=0) of the un-
focused laser beam. The squares and the circles represent
the experimental points for the unfocused and the fo-
cused beam (lens L1 at z;,, focal length f=350 cm), re-
spectively. The solid lines have been fitted to the experi-
mental points using Egs. (4) and (5).

From the fit we obtained the relevant parameters of the
laser beam, i.e., the radius ry(0) in the beam waist and
the Rayleigh range z,. In Fig. 7 the superscript (f) is
used for the focused beam. The measured numbers are
given in Table I for the unfocused and the focused beam.
Depending on the adjustment of the telescope between
the laser oscillator and the amplifiers, the thermal lens of
the amplifier rods is compensated in a different way. This
is the origin of the differences in the beam radii 7,(0) and
the Rayleigh ranges z, for configurations I and II, which
are shown as typical examples in Table I. The ratio

TABLE 1. Beam parameters for the unfocused and the fo-
cused laser beams with two adjustments of the telescope be-
tween the laser oscillator and the amplifiers. 7,(0) is the 1/e ra-
dius of the laser intensity in the beam waist, z, is the Rayleigh
range, and f =350 cm is the focal length of the lens.

Telescope configuration

Focusing I II
conditions unfocused focused unfocused focused
70(0) (mm) 1.01 0.19 0.65 0.30
zy (cm) 1235 44 509 112
22("0) cm™!) 121067 121884 120473 124444

ro

2o/r§(0) is always close to the value of the laser wave
vector k; =118 105 cm™ L, as expected for a diffraction
limited beam [Eq. (5)]. The value of z, is needed for
determining the propagation parameter 6, [Eq. (25)],
which enters the calculation of the Stokes power Pg [Eq.
(24)].

B. Spontaneous Raman scattering

Before we discuss our measurements of spontaneous
Raman scattering in H, gas with the Q-switched
Nd:YAG laser, we consider two experimental details that
influence the measured spontaneous Stokes power and
should be taken into account in an accurate comparison
between experiments and calculations.

(i) The photomultiplier detects the sum of the
Q(0)-Q(4) lines because the bandwidth of the interfer-
ence filters (see Fig. 6) is broad (FWHM about 215
cm™!). The Q lines with higher rotational quantum num-
bers are very weak and can be neglected. We calculated
the ratio of the total spontaneous Raman energy to the
energy of the Q(1) line to be 1.5. This factor was taken
into account in the spontaneous Raman measurements.

(ii) The off-axis scattered spontaneous Raman light is
reflected from the walls of the Raman cell, which was
made from brass. Part of the reflected Raman light is
detected by the photomultiplier and contributes to the
measured Raman energy. Since it is difficult to calculate
the contribution of the reflected Raman light, we used for
a quantitative comparison between the calculations and
the measurements only experimental configurations
where the reflected light can be neglected. It can be
shown that this is the case if the distance dpy between
the exit window W2 of the cell and the photomultiplier
(see Fig. 6) is larger than the cell length ¢. In this esti-
mate it has been taken into account that the diameter of
the sensitive area of the photomultiplier and the inner di-
ameter of the Raman cell are approximately equal.

When the experimental setup of Fig. 6 was used in the
spontaneous Raman measurements the detection thresh-
old was limited to about 4X 10716 J of Stokes energy by
stray and fluorescence light. We reduced the disturbing
light by approximately a factor of 4 by introducing two
filters, which reflect more than 99% of the green laser
light, after the exit window W2. The improvement has
been confirmed by measuring the photomultiplier signal
after the H, gas was pumped off. With this improved set-
up we have measured the spontaneous Raman Stokes en-
ergy Eg in H, gas at 100 bar and 300 K for different ex-
perimental conditions. We used Raman cells with
lengths ¢ =108 and 409 cm at distances dpy; between the
exit window W2 and the photomultipler larger than the
respective cell lengths to avoid contributions of
reflections from the cell walls to the spontaneous Raman
energy. We have carried out measurements with different
distances dpy between W2 and the PM because dpy
determines the solid angle AQ that enters the standard
theory of spontaneous Raman scattering. In addition,
the focusing conditions, which influence the propagation
parameter 0, of the nonorthogonal mode theory, were
changed. Figure 8 shows the measured Stokes energy Eg
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versus peak power P; of the laser pulse in a double-
logarithmic plot. Each experimental point represents an
average over 100 shots at a particular pump laser power
(£2%).

The results in Fig. 8(a) were obtained for a cell length
of £ =108 cm. The open and the solid circles correspond
to a distance dpy; =297 cm for the unfocused and the fo-
cused (f =350 cm) laser beam, respectively. The squares
were measured with the focused laser beam, but for a
much shorter distance between exit window W2 and the
photomultiplier (dpy; =127 cm). Figure 8(b) shows the
results for a 409-cm-long cell at a distance dpy =543 cm
for a focused laser beam.

We have compared the experimental results with cal-
culations based on the nonorthogonal mode theory and
the standard theory of spontaneous Raman scattering.
The solid lines in Fig. 8 were calculated by integrating
Eq. (24) for the Stokes power Pg numerically over the
pulse duration to obtain the Stokes energy Eg from the
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FIG. 8. Double-logarithmic plot of the Stokes energy Eg
versus the laser power P, in the spontaneous scattering region.
The solid and the dashed lines were calculated according to the
nonorthogonal mode theory and the standard theory of spon-
taneous Raman scattering, respectively. For an easy
identification the calculated curves are marked at the left end
with the symbol corresponding to the experimental points. (a)
Cell length £=108 cm. The open and the closed circles
represent the experimental points of the unfocused and the fo-
cused laser beam, respectively, with a distance of dpyy =297 cm
between the exit window W2 of the Raman cell and the pho-
tomultiplier PM. The closed squares correspond to dpy =127
cm (focused laser beam). (b) Cell length £ =409 cm. The closed
triangles represent the experimental points for dpy =543 cm
(focused beam).

nonorthogonal mode theory. In the spontaneous scatter-
ing region the calculated Stokes power Py depends on the
number of modes taken into account in the numerical
calculations. Therefore, in the comparison between cal-
culations and experiments special emphasis was given to
the dependence of the Stokes power Pg on the propaga-
tion parameter 6,, not to the absolute values of Pg. We
used in the calculations the values of the propagation pa-
rameter 6, given in Table II, where all numbers relevant
for the measurements of Fig. 8 are given.

As an example we consider the open and the solid cir-
cles in Fig. 8(a), which correspond to the unfocused and
the focused beam, respectively, and therefore to com-
pletely different values of 0,. The measured points lie on
the same straight line within the experimental accuracy,
while the nonorthogonal mode theory (solid lines) pre-
dicts a large difference between the unfocused and the fo-
cused beam. For an easy identification of the calculated
curves we have marked the solid lines at the left end with
the symbol of the corresponding experimental points.
Likewise the other results in Fig. 8 show that the
nonorthogonal mode theory does not describe the spon-
taneous Raman measurements correctly. We think that
the following reasons are responsible for the disagree-
ment between the measurements and the nonorthogonal
mode theory. In the nonorthogonal mode theory the par-
axial approximation has been used, which is a good ap-
proximation for collimated light beams [29] as they
occur, e.g., for SRS. It is not valid for spontaneous Ra-
man scattering, where the Stokes light is scattered in all
directions. In addition, the use of a Gaussian laser beam
leads to the introduction of the propagation parameter
6,, which enters the exponent of the amplification term
[see Eq. (24)]. The expansion of the Stokes power for
small gain results in the proportionality to 6, [Eq. (34)],
in disagreement with the experiment.

We have calculated the spontaneous Stokes energy E
from the standard theory of spontaneous Raman scatter-
ing [Eq. (37)]. The solid angle AQ, in which the Stokes
energy is detected, has been replaced by an effective solid
angle AQ).4 because Raman light from all parts of the Ra-
man cell is collected by the photomultiplier. In the spon-
taneous Raman measurements described above, the lens
L2 after the Raman cell (see Fig. 6) was removed. In this
case, the effective solid angle can be calculated in the fol-
lowing way:

AQ :FPM ¢ dz
T Yo [L+dpy—z]
:FPM 1 1 (38)
¢ |ldpy Ctdey |

Here Fpyy and dpy; are the sensitive area and the distance
of the photomultiplier from the exit window W2 of the
Raman cell, respectively, and ¢ is the cell length. The
values used in the calculations of the spontaneous Raman
Stokes energy from Eq. (37) are given in Table II. At a
H, pressure of 100 bar (89 amagat) the number density of
molecules in the J=1 state is N,=1.54X10?! cm™3.
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TABLE II. Numerical data for the calculations of spontaneous Raman scattering. ¢ is the cell
length, ¢, is the distance of the entrance window W1 from the position of the beam waist, z, is the
Rayleigh range, 6, is the propagation parameter, dpy is the distance of the photomultiplier to the exit
window W2, AQ.; is the effective solid angle, and Fpy =2 cm? is the sensitive area of the photomulti-

plier.
Focusing £ € en 2o dpm AQg Symbol
conditions (cm) (cm) (cm) 6, (cm) (107 sr) in Fig. 8
unfocused 108 2610 1970 0.02 297 16 )
focused 108 130 48 0.15 297 16 °
f=350 cm 108 300 48 0.04 127 64 ]
409 —416 48 1.31 543 3.7 A

The spontaneous Raman scattering cross section at the
pump wavelength of 532 nm is do/dQ=8.0X1073
cm?/sr [30,31]. The results of the calculations are shown
in Fig. 8 as dashed lines. Considering the limited accura-
cy of the calibration of the measured Stokes energy and
of the calculation of the effective solid angle, the standard
theory of spontaneous Raman scattering is in good agree-
ment with the experimental results. It predicts correctly
the dependence of the measured Raman energy on solid
angle [Fig. 8(a)] and cell length [Fig. 8(b)]. In particular,
in Fig. 8(a) there is no deviation between the open and
the solid circles, which correspond to the same solid an-
gle but to different values of 9,.

From the results discussed above we conclude that the
nonorthogonal mode theory does not describe correctly
the spontaneous Raman scattering regime. Therefore,
the calculated results for the transition region between
spontaneous and stimulated Raman scattering should
also be considered with caution.

C. Stimulated Raman scattering

We have estimated the Raman gain factors of the Q (J)
lines (J=0,1,...,4) from the number densities N;, the
Raman scattering cross section do /d{), and the spon-
taneous Raman linewidths (8vy ); [28]. We found that in
the stimulated scattering region it is sufficient to take into
account the Q (1) Raman line because the Raman gain
factors of the other Q lines are smaller by at least a factor
of 8. We used a Raman gain factor g,=2.6X10"3
cm/MW (for A; =532 nm) [32] and a Raman linewidth
Svg =4.6X10° s7! [27,28] for the Q (1) line at a H, gas
pressure of 100 bar (density 89 amagat).

Recent investigations of SRS in H, gas [14] have
shown that for a Raman cell shorter than the length of
the laser pulse, the experimental results are influenced by
feedback from diffuse reflections of the cell windows and
of optical elements outside the H, cell. Therefore, we
tested our calculations of SRS (Sec. II and III) by a com-
parison with measurements using a cell (£ =824 cm)
longer than the pulse length (360 cm).

The determining quantity in the nonorthogonal mode
theory is the propagation parameter 6, [Eq. (25)]. In the
experiments we have selected two completely different
values of 6, by measuring with the unfocused (6,=0.3)
and the focused (8, =2.7) laser beam. In Fig. 9 the mea-

sured Stokes energy Eg is plotted on a logarithmic scale
versus the laser power P; for the unfocused and the fo-
cused laser beam, represented by the open and the closed
circles, respectively. Since for the focused beam the laser
intensity is higher than for the unfocused beam, much
less laser power is needed to generate the same Stokes
power (see Fig. 9).

We have compared the experimental results with the
results of the nonorthogonal mode theory (Sec. II), the
one-mode theory, and the adapted plane-wave theory
(Sec. III). The solid lines in Fig. 9 were calculated by in-
tegrating Eq. (24) numerically over the pulse duration to
obtain the Stokes energy Eg of the nonorthogonal mode
theory. Spectral narrowing of the Stokes light was taken
into account in the same way as in Sec. II B2. The calcu-
lated solid lines of the nonorthogonal mode theory are in
good agreement with the experimental points in the re-
gion of stimulated Raman scattering (P, >0.08 and 0.4
MW for the focused and the unfocused beam, respective-

Stokes Energy Eg (J)
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FIG. 9. Logarithm of the Stokes energy Eg versus laser
power P;. The closed and the open circles represent the experi-
mental points for the focused and the unfocused laser beam, re-
spectively. The solid, the dashed, and the dash-dotted lines
were calculated according to the nonorthogonal mode theory,
the one-mode theory, and the adapted plane-wave theory, re-
spectively.
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ly). The sensitive dependence of the experimental results
on the propagation parameter 0, is described correctly by
the nonorthogonal mode theory. The deviations between
the measured points and the curves calculated from the
nonorthogonal mode theory in the spontaneous scatter-
ing regime have been discussed in Sec. VII B. It can be
seen from Fig. 9 (6,=0.3) that also the one-mode theory
(dashed line) and the adapted plane-wave theory (dash-
dotted line) fail to describe the measurements in this re-
gime.

The results of the one-mode theory and the adapted
plane-wave theory are shown in Fig. 9 as dashed and
dash-dotted lines, respectively. In the one-mode theory
the plane-wave gain Gpy in Eq. (30) was replaced by the
single-mode gain G. Equation (30) was multiplied by the
beam area A4 and integrated over time to obtain the
Stokes energy Eg. In the adapted plane-wave theory
80l (0,0,8)z,0,exp[ —r2/r}(£ )] [see Eq. (33)] was in-
troduced in Eq. (30). Eg was calculated by integrating
Eq. (30) numerically over the beam cross section and
time, assuming a Gaussian time dependence of the laser
intensity. For the focused beam the experimental points
(closed circles in Fig. 9) are in between the calculated
dashed and dash-dotted curves. They do not agree with
either of these curves as expected from the results of Sec.
IV for a value of 6,=2.7. For the unfocused beam
(6,=0.3) the experimental points (open circles) are in
good agreement with the dash-dotted curve of the adapt-
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FIG. 10. Normalized Stokes energy density versus normal-
ized radial coordinate r/ry(¢ ), where ¢, corresponds to the
position of the detection system. (a) Focused and (b) unfocused
laser beam. The stars and the points correspond to the mea-
sured Stokes and the laser beam, respectively. The solid, the
dashed, and the dash-dotted lines were calculated according to
the nonorthogonal mode theory, the one-mode theory, and the
adapted plane-wave theory, respectively.

ed plane-wave theory. For small values of 6, the Ray-
leigh range gain Gy, must be large to get a definite Stokes
power [see, e.g., Egs. (26) and (27)]. In this case, the axial
variation of the Stokes light is large compared to the
transverse variation, i.e., the plane-wave theory is a good
approximation.

We have measured the radial energy density distribu-
tions of the Stokes and the laser beam close to the end of
the H, cell (distance from the exit window W2 about 20
cm). The results are shown for the focused and the un-
focused laser beam in Figs. 10(a) and 10(b), respectively.
The stars and the points correspond to the measured
Stokes and the laser energy density distributions, respec-
tively. They represent an average over 100 shots with
about the same Stokes and laser power. The experimen-
tal points exhibit a slight periodic modulation because of
interference effects from optical elements. The lines have
been calculated. It can be seen in Fig. 10(a) that the
Stokes beam (stars) is slightly narrower than the laser
beam (points), in good agreement with the calculations of
the nonorthogonal mode theory (solid line) integrating
Eq. (23) over time. There are large deviations from the
results of the calculations (Sec. III) of the one-mode
theory and the adapted plane-wave theory (dashed and
dash-dotted lines, respectively). This is expected from
Sec. IV because the propagation parameter 6,=2.94 is
close to 7 for the focused beam.

For the unfocused beam a pronounced gain narrowing
of the Stokes beam is observed in Fig. 10(b). There is
again good agreement of the measurements (stars) with
the results of the nonorthogonal mode theory (solid line).
However, the radial distribution calculated from the
adapted plane-wave theory (dash-dotted line) is narrower
than the measured Stokes distribution. This shows that
even for the small value of 6,=0.19 of the unfocused
laser beam the agreement between the measurements and
the adapted plane-wave theory for the radial Stokes dis-
tribution is worse than in the case of the Stokes energy
versus laser power plot in Fig. 9 (dash-dotted line for
6,=0.3). The good agreement between the measured
and the calculated Stokes energy can be understood from
the fact that the calculated [dash-dotted line in Fig. 10(b)]
and the measured (stars) Stokes beam radii are substan-
tially smaller than the laser beam radius. As a conse-
quence, almost the complete Stokes beam is amplified in
the high intensity of the center of the laser beam in both
cases, leading to about the same Stokes energy.

To sum up, it has been shown in this section that the
nonorthogonal mode theory is in good agreement with all
experimental results for stimulated Raman scattering.
The adapted plane-wave theory described correctly only
the results of SRS for small propagation parameters 6,
because for the high Raman gain required for small
values of 0, the transverse variations of the Stokes beam
can be neglected compared to the axial variations.

VIII. CONCLUSIONS
We investigated experimentally and theoretically Ra-

man scattering in H, gas from the spontaneous to the
stimulated scattering region for a Gaussian laser beam.
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The results of the nonorthogonal mode theory show
that the gain of the modes depends in general nonlinearly
on the laser power, except for very low and very high
laser power, where the usual linear power dependence of
the gain is obtained. We calculated the Raman Stokes
power as a function of the laser power and found that the
relevant quantity is the propagation parameter 6,, which
has been introduced to account for the axial intensity dis-
tribution of the laser beam. 6, depends on the position
and length of the Raman cell and the Rayleigh range of
the laser beam [Eq. (25)].

We have also addressed the question under which con-
ditions a properly modified plane-wave theory can be
used for the description of the experiments and when the
more complicated nonorthogonal mode theory has to be
applied. For that purpose we have compared the results
of the nonorthogonal mode theory with the results of an
adapted plane-wave theory and of a theory that takes into
account only the lowest-order Gaussian Stokes mode
(one-mode theory). For values of the propagation param-
eter 6, >>1, which can be obtained experimentally with
multipass cells, there is good agreement between the
nonorthogonal mode theory and the one-mode theory. In
the adapted plane-wave theory the radial distribution
I; (r) of the laser intensity is introduced in the exponent
of the amplification term of the usual plane-wave theory.
The results of this theory agree with the nonorthogonal
mode theory for 6, <<1. Small values of 6, can be real-
ized experimentally in two ways. Either the cell length is
short compared to the Rayleigh range or the Raman cell

is located at a distance from the beam waist, which is
large compared to the Rayleigh range. For intermediate
values of the propagation parameter 6, only the
nonorthogonal mode theory is appropriate.

For a comparison of the calculations with the experi-
ments, the laser beam parameters, e.g., energy, pulse
duration, and beam diameter, have to be known as pre-
cisely as possible. We measured the laser beam diameter
as a function of distance from the laser system and deter-
mined from these data the diameter in the beam waist
and the Rayleigh range for the unfocused and the focused
beam. To avoid problems with feedback by diffuse
reflections, we used for SRS a H, cell longer than the
length of the frequency-doubled Q-switched Nd:YAG
laser pulse.

We measured the Raman Stokes energy of the Q(1)
line in H, gas as a function of the laser power and the ra-
dial distribution of the Stokes intensity. For the un-
focused and the focused laser beam a small and a large
value of the propagation parameter, respectively, were
obtained. All experimental results were in good agree-
ment with the nonorthogonal mode theory in the stimu-
lated scattering region. The experimental results for the
unfocused laser beam (small value of 6,) agreed also with
the adapted plane-wave theory. In the spontaneous Ra-
man scattering region the nonorthogonal mode theory
did not describe correctly the dependence on cell length,
solid angle, and focusing conditions, but the experimental
results were in agreement with the standard theory of
spontaneous Raman scattering.
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