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A method is presented for theoretically investigating the properties of a one-atom micromaser with
stationary non-Poissonian pumping. The method is based on treating the statistics of the arrival times of
the individual pump atoms with the help of the theory of stochastic point processes. Considerable
simplification is achieved by assuming the pump statistics to be described by a stationary renewal pro-
cess. Thus the influence of super- as well as sub-Poissonian pumping with different strengths of correla-
tion between the pump atoms and different correlation decay times may be studied quantitatively. The
level-selective statistics of the atoms leaving the cavity is investigated as well as the photon statistics of
the cavity field. Moreover, the relation to the other models used in the literature for describing the mi-
cromaser pump statistics is discussed. It is found that for sub- (super-)Poissonian pumping, the station-
ary expectation value of the cavity photon number (which corresponds to its time-averaged value) is
larger (smaller) than the conditioned mean photon number that would result from averaging over the
number of photons present in the cavity at the time instants immediately before the injection of the indi-
vidual pump atoms. For Poissonian pumping, both quantities are shown to be equal. The relative stan-
dard deviation of the stationary cavity photon number is decreased (increased) for sub- (super-)
Poissonian pumping, in comparison to the corresponding values that would result from Poissonian
pumping. Moreover, it turns out that for sub- (super-)Poissonian pumping, the normalized coincidence
probability density for the detection of the outgoing deexcited atoms is smaller (larger) than the normal-
ized cavity field intensity correlation function at zero time delay. The difference decreases with increas-
ing lifetime of the pump-atom correlations. Finally, the level-selective delayed coincidence probability
densities of the outgoing atoms and their waiting-time distributions are found to be affected greatly by
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the correlation strength as well as the correlation decay time of the incoming pump atoms.

PACS number(s): 42.52.+x, 42.50.Dv, 03.65.Bz

I. INTRODUCTION

In a one-atom micromaser [1,2] a beam of Rydberg
atoms interacts with a single-mode radiation field in a mi-
crowave cavity in such a way that with extremely high
probability, at most one atom at a time is present in the
cavity. The atoms injected into the cavity are excited to
the upper level of the microwave transition. Owing to
the atom-field interaction, nonclassical properties of the
radiation field such as sub-Poissonian photon statistics
may occur [1,2]. In order to get information about the
microwave field, the energy states of the atoms leaving
the cavity are measured in microwave experiments and
the level-selective statistics of those outgoing atoms being
in the upper or lower energy states, respectively, is deter-
mined [3]. In the usual case the injected atoms that
pump the micromaser obey Poissonian injection statis-
tics. For a micromaser with Poissonian pumping the re-
lation between the statistical properties of the cavity field
and the level-selective statistics of the atoms leaving the
cavity has been extensively studied in the past two years
[4—10]. However, one may think of other kinds of pump
statistics and investigate the problem as to what extent
the statistical properties of the pump beam influence the
cavity field as well as the level-selective statistics of the
outgoing atoms. For this purpose we study the theory of
a micromaser with stationary non-Poissonian pumping.
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In the literature up to now only the influence of the
pump statistics on the cavity field has been considered.
The commonly used model is sometimes called pearl-
string model because it is based on assuming an incoming
beam of ground-state atoms that are equidistant like the
pearls on a string. The atoms are supposed to be excited
to the upper level of the microwave transition with cer-
tain efficiency p ranging from p <<1 (nearly Poissonian
pumping) to p=1 (regular pumping) [11]. In order to
find the quasi-steady-state photon-number population, a
numerical step-by-step microscopic treatment has been
adopted that uses a mapping condition for the density
matrix of the field [12]. As has been pointed out in Ref.
[13] the result depends on the relative location of the
time, at which the density matrix is defined, within the
interval of periodicity inherent in the pearl-string model
[13] since this model is not homogeneous in time, i.e., it
does not describe a pumping process that is stationary in
the strict sense. Quite recently the pearl-string model has
been extended to describe super-Poissonian pumping as
well by allowing for the case that more than one atom
may arrive simultaneously at the equidistant possible
atomic arrival times [14]. Furthermore, transient field
properties have also been investigated for the pearl-string
model in the sense of cyclic mapping [15].

Another method that has been adopted in order to de-
scribe the effect of the pump-atom statistics on lasers and
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micromasers uses the Langevin-equation approach [16].
In contrast to the pearl-string model, this approach refers
to strictly stationary pumping. Finally, a stationary
quantum-field model of the injected atomic beam in the
micromaser has been developed and applied to treat regu-
lar pumping as well as a special kind of super-Poissonian
pumping [17]. For the latter the steady-state photon
statistics of the cavity field has been calculated [17].

In this paper we present a different model for theoreti-
cally investigating the properties of a micromaser with
stationary non-Poissonian pumping. Our method is
based on treating the statistics of the arrival times of the
individual pump atoms with the help of the theory of sto-
chastic point processes [18-20], i.e., stochastic processes
whose realization is a series of point events occurring in a
continuous time. The procedure is somewhat related to
the description of sub-Poissonian optical pumping in
lasers given in Ref. [21]. To characterize the injection
statistics we use the exclusive probability densities
QiMty,ty, ... 1) (k=1,2,...) for the injection of k
pump atoms at the time instants #,,¢,,...,¢, with no
other pump atoms injected in the intervals in between.
The whole set of these exclusive probability densities
yields a complete description of the pump statistics. In
particular it implicitly includes all information about the
decay times of pump-atom correlations. In fact, as is
well known from the theory of stochastic point processes,
an alternative complete characterization of the injection
statistics could be provided by the whole set of all coin-
cidence or joint probability densities Pi(¢,t;,...,1%;)
(k=1,2,...) for the injection of k pump atoms at k
given instants of time, notwithstanding the possible injec-
tion of other pump atoms at other times in between. One
set of probability densities being known, the other can be
calculated in principle [19].

It is our aim to investigate the photon statistics
of the field in the micromaser cavity as well as the level-
selective statistics of the outgoing atoms. Starting
from the exclusive pump-atom probability densities
OiMt1sty, .. 5 t;) (k=1,2,...) we therefore derive an
evolution equation for the usual unconditioned density
operator p of the cavity field as well as for an injection-
time conditioned field density operator p° referring to the
time instants immediately before the injection of the
pump atoms. The latter will prove to be the basis for cal-
culating the statistics of the atoms leaving the cavity. It
will turn out that for Poissonian pumping, the evolution
equations for p and for p¢ are identical and so are the sta-
tionary values of these operators. As a consequence, we
shall arrive at the interesting result that in the stationary
regime of a micromaser with Poissonian pumping, the
quantum-mechanical photon-number expectation value is
equal to the mean photon number that would be obtained
by averaging over the number of photons present in the
cavity at the time instants immediately before the transits
of the individual pump atoms. For other kinds of pump
statistics or for the time instants immediately after the
transit of the pump atoms, e.g., this equality does not
hold.

For arbitrary pump statistics it proves to be very
difficult or even impossible to evaluate the resulting

density-matrix equations. Therefore we restrict a quanti-
tative treatment to the case that the statistics of the in-
coming pump atoms belongs to the class of stationary
renewal processes [20]. This yields a considerable
simplification of the equations, but, nevertheless, allows
us to investigate super- as well as sub-Poissonian pump
statistics with different strengths of correlation or an-
ticorrelation, respectively, between the pump atoms and
different correlation decay times.

The paper is organized as follows. In Sec. II we intro-
duce the method for describing the pump statistics. The
influence of the latter on the properties of the cavity field
is investigated in Sec. III by considering the evolution of
the field density operator and calculating the steady-state
photon statistics. Section IV deals with the level-selective
statistics of the atoms leaving the cavity. In particular,
we study the dependence of the delayed coincidence
probability density for the outgoing deexcited atoms of
the strength and of the decay time of the pump-atom
correlations and calculate their waiting-time distribution.
Finally, in Sec. V we clarify the relation between our ap-
proach and the other models used in the literature to de-
scribe the pump statistics of a micromaser.

II. DESCRIPTION OF THE PUMP STATISTICS

Since we want to use the theory of stochastic point
processes in order to describe the injection statistics of
the pump atoms, we start with a brief recapitulation of
the properties of these processes (see, e.g., [19,20]), which
are fundamental for our treatment of the micromaser. A
stochastic point process that is stationary can be com-
pletely described by the whole set of exclusive conditional
probability densities (k =1,2,...)

Q21,855 .. ,tklto):ng(tl —1Ipy .-

where t,<t; < -+ <t;,. When applied to the incoming
beam of pump atoms, the quantities Qf(¢y,...,
telto)dt dt, - - - dt, yield the probabilities that the next k
pump atoms arrive in the infinitesimal time intervals
(¢;,t;+dt;) (i=1,...,k) provided the first pump atom
had arrived in the interval (¢,,t,+dt,). Here the possi-
bilities that other pump atoms might have arrived in the
periods between the time instants #,,¢;,...,%; are ex-
cluded. The exclusive conditional probability density

Q§(r|0)=f(1)

"tk_t()‘o) ) (2-1)

(2.2)

determines the waiting-time distribution between con-
secutive incoming pump atoms and is normalized accord-
ing to

[ drrm=1.

Another way of completely describing the stationary
statistics of the incoming pump atoms consists in using
the set of conditional coincidence probability densities

(2.4)

(2.3)

PE(t ity oo st lto)=PE(t;—tg, . - - st —1010)

which refer to the case that, provided an incoming atom
had arrived at ¢, other atoms will arrive at the time in-
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stants ?,, ..., , notwithstanding that still more pump
atoms may be present in the intervals in between these
time instants. The stationary injection rate r is given by

r= lim P$(7|0)

T—> 0

(2.5)

and the multitime coincidence and exclusive probability
densities of the injected pump atoms may be written as

¢ _ ¢ had T tk t2 ¢
P$(r10)=05(rl0)+ 3 fodtkfo diy _ - fo dt Q5 1 (1,5, . o 4, 7[0) .
k=1

The decay time of the pump-atom correlations is charac-
terized by the time dependence of the normalized delayed
coincidence probability density

_ PRO,7)

r2

wit(r 2.9
For a sufficiently large time delay 7 these correlations

vanish, which is expressed by

lim w;“w):% lim P$(7]0)=1.

T—> 00 T—> 0

(2.10)

A special class of stationary stochastic point processes
that is most easily accessible to an analytic treatment is
formed by the stationary renewal processes [20] having
independent and identically distributed interevent times.
For these processes the probability densities factorize ac-
cording to

k
st ) =r[l f(t,—t -

i=1

Qin [(tosty,. .. 2.11)

and
i k+1 k i
Pl (tgsty, .. st )=r [T wy (s, —t—y)

i=1

where k=1,2,.... With f(z) and lT)iZ“(z) denoting the
Laplace transforms of the functions f(7) and w3 (7), re-
spectively, the relation

(2.12)

~in(z)=_i(_z_)_

w =

g 1—F(z)
holds in the case of a renewal process as follows from
Egs. (2.8) and (2.11) with the help of the convolution
theorem. Moreover, in this case the rate r is connected
with the mean interevent time ( 7) by the relation

r_1=(7‘)5fowdrf(7')1' )

which can be obtained from Egs. (2.3), (2.5), (2.8), and
(2.11).

For later use we make a specific ansatz for the
waiting-time distribution f(7) by writing

(2.13)

(2.14)

)\'17‘2
}\,2+alx

—MT —A,T

f(n)= (e +ae ), (2.15)

Piti,tyy .o G )=PPE_((tyy o oo b ]Ey) (2.6)

and
Q]:,'n(tl,tz, e ,tk):rQ]g_l(tz, .

respectively (kK =2,3,...). Provided one set of probabili-
ty densities P;" or Q;" is known, the other can be calculat-
ed. In the following we need the relation [19]

cotelt) 2.7)

(2.8)

where a, A, and A, are real parameters with a > —1 and
A,A,Z0. Assuming the stochastic process to be a sta-
tionary renewal process and using Eq. (2.13), we find
from this ansatz that the pump-atom correlations are de-
scribed by a coincidence probability density that takes
the form

PO, 7)=r’wi(r)=r¥1+Ce 17, (2.16)
where the injection rate 7, the correlation strength C, and
the correlation decay rate I' are given by

Ay (A, Fah,)
=, 2.17)
}\,2+a}\'1
(}\-2—}\—1)2
=q——1—>—1, 2.18)
(}\12+a)\.1)
and
_ AMtarf )19
o }\42+a)\,1 ’ ( ’ )

When a=C =0 Eq. (2.15) or (2.16) describes Poissonian
pump statistics, whereas bunching or antibunching of the
pump atoms is characterized by C >0 or C <0, respec-
tively.

Starting from Eq. (2.16) for the coincidence probability
density of the incoming pump atoms, their waiting-time
distribution may be expressed by the parameters r, C, and
I’ provided that the injection statistics belongs to the
class of stationary renewal processes. Using Eq. (2.13) we
find that for antibunched injection with —1=<C <0, the
expression (2.16) is only compatible with the properties of
a renewal process when the inequality

r>r(1+vVJ]C])? (—1=<C<0) (2.20)

is fulfilled, since otherwise a real-valued positive waiting-
time distribution would not result. In contrast to this, for
C =0 this compatibility is always ensured. The parame-
ters A, A,, and a can be found from the equations

A1, =L[T+r(1+C)]

+IVT2+2rT(C— 1)+ rX1+C) (2.21)

and
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T—A,(1+C)
F—k1(1+C) '

a= (2.22)
With the help of these results we shall be able to study
the micromaser properties for bunched as well as anti-
bunched injection of pump atoms with given correlation
strength C and given correlation decay rate I', supposing
that the injection process is a renewal process and that
the inequality (2.20) is valid in the case of antibunching.
The strength of the sub- or super-Poissonian character of
the pumping process depends on the length of the corre-
sponding counting interval to which it is referred (see
Sec. V).

It is interesting to note that pumping according to a
stationary renewal process exhibiting complete anti-
bunching (C = —1) can be physically realized, at least in
principle. Actually, as we have shown in a recent paper
[8], the statistics of the deexcited atoms leaving a micro-
maser with Poissonian pumping that is in the one-photon
trapped state is described by such a renewal process
where r =«R sin*(g7/V2) with ¢=1,2,. ... Here « and
R denote the cavity damping rate and the Poissonian
pump rate, respectively. The outgoing deexcited atoms
could be used to pump a second micromaser that works
on an adjacent lower microwave transition.

ITII. PROPERTIES OF THE CAVITY FIELD
A. An injection-time conditioned density operator

1. The general evolution equation

Throughout this paper we stick to the conventional as-
sumptions that the damping of the micromaser field can
be neglected over the transit time ¢;;, of the atoms and
that the atoms interact with the field one after the other.
Owing to the transit of a single pump atom, the field den-
sity operator p changes according to

plt+t,. )=Mp(t)=(D+E)p(t) . (3.1)
Here the superoperator M has been formally divided into
two parts D and E accounting for the possibilities that
the pump atom gets deexcited into the lower level or
remains in the upper level, respectively, during the tran-
sit. For our purposes we are interested in the diagonal
elements p,, =p, of the density matrix in the photon-

. o t t .
Uc(r):i2 Q1 (0,7)el ™+ 3 fofdtkfo"dtk_,---fozdtlg,;uz(o,t,,...,tk,r)e
r k=1

On the right-hand side of the above equation we took
into account, with proper probability, all possibilities that
exactly k atoms (k=0,1,2,...) may have entered the
cavity in the interval [0, 7], where (for k = 1) this has oc-
curred at the time instants ¢,,¢,, .. .,#;, which are ran-

number representation. Assuming the initial field to be
diagonal in this representation, the action of D and E on
the field density operator is expressed by the equations
(22]

(DP)py =BnPn -1 (3.2)
and

(Ep)yy=(1—B, 41)Dy - (3.3)
Here the abbreviation

B, =sin*(gt;,,V'n ) (3.4)

has been introduced with g denoting the atom-field cou-
pling constant. The cavity field is damped over the time
between the passage of two consecutive atoms resulting
in a change of the field density operator according to [22]

p(t+At)=elbp(z) . 3.5)

In the photon-number representation the action of the su-
peroperator L yields the diagonal elements [22]

(Lp)pm =7y +Dl(n+1)p, 11— np,]

—ynp[(n+1)p,—np, ], (3.6)

with ¥ and n, being the cavity damping rate and the
thermal photon number, respectively.

The change of the cavity field, from an initial time t =0
to a final time ¢ =7, is determined by the combined con-
tributions from the individual atoms that may enter the
cavity at certain time instants ¢; in the interval [0,7] and
from cavity damping in between these time instants.
(Note that the interaction time ¢, is assumed to be negli-
gibly short.) For the moment we suppose that an atom
has transvered the cavity immediately prior to the initial
time t =0, whereas the final time ¢ =7 is located immedi-
ately before the injection of another atom (see Fig. 1).
With p0 denoting the field density operator at this initial
time, we find that the field at the specific final time 7 is
described by a density operator p(7), which we may call
injection-time conditioned and which obeys the evolution
equation

2

1
A(7)= ————U.(1)p°= ————U,(1)p°, (3.7)
p Pn(0,r) ¢ P iy e P
where
J
Lir=t)y e L=t ) e Lty
(3.8)

r

domly distributed according to the corresponding ex-
clusive probability densities Q" ,(0,¢;, ..., #,7) of the
injected pump atoms. Here the ordering of the noncom-
mutative operators e’’ and M results in a natural way
from considering the alternating action of cavity damp-
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FIG. 1. Relative positions of the pump-atom injection times
t;, with respect to the considered time interval [0, 7].

ing and atomic transit. The coincidence probability den-
sity PY(0,7) of having indeed two atoms injected at the
initial time ¢ =0 and the final time ¢t =7 appears in the
denominator of Eq. (3.7) in order to ensure the correct
normalization. In fact, since the operators L and M are
trace conserving, we find with the help of Eq. (2.8) that
Tr[p®r)]=1. When, after interaction with the field, the
pump atoms are not selected with respect to their energy
levels, the initial density operator p° can be written as

p’=Mp0) , (3.9)

with p°(0) referring to the time instant immediately be-
fore t =0.

For arbitrary pump statistics the evaluation of p(7)
with the help of Egs. (3.7) and (3.8) is practically impossi-
ble since one would have to know all exclusive injection
probability densities up to an infinite high order and per-
form an infinite series of integrations. However, the task
is greatly facilitated when the pump statistics is described
by a renewal process. In this case, because of the factori-
zation condition (2.11), the convolution theorem can be
applied to the Laplace transform of Eq. (3.8), yielding the
transformed equation

~c(z)=%kéof‘(z)[MF‘(z)]k———-:;F‘(z)[I—MF'(z)]_l ,
(3.10)
where the operator
Fz)= [ “dre f(r)e*"=](z—L) (3.11)

has been introduced. Equation (3.10) is equivalent to
s [F’(z)M]kF(z)=%[1—-F(z)M]_IF‘(z) .

U.(z)=
T k=0

(3.12)

After multiplying both sides of the above expression from
the left by 1—F(z)M and performing the inverse trans-
formation, we obtain the implicit solution

Ur)=—f(net+ [Tdt flr—1)e X MU0 . (3.13)

Equation (3.13), together with Egs. (3.7) and (2.13), deter-
mines the evolution of the injection-time conditioned field
density operator p¢ of a micromaser whose pump statis-
tics is described by a renewal process characterized by
the waiting-time distribution f(z). Explicitly, the solu-
tion can be written with the help of Eqgs. (3.10) and (3.12)
as

UC(T)=% 3 Res(F(z)[1-MF(z)]7Y),_,  (.14)

=% S Res{[1—F(z)M]'Fz)},—, . (.19

2. The steady-state solution

When 7 is sufficiently large, the operator p(7) takes on
the stationary value

pe= lim p%(7) . (3.16)

Making use of the facts that ResF(z)|,_, since
lim,_, f(7)e’™=0 and taking into account Egs. (3.7),
(2.10), (3.15), and (3.12), we may write

ﬁc=%Res{[1—F(Z)M]_I—I}F'(z)p°|z=o
=—Res |F(z)M S (F)MF(z)p° |  =FO)Mp.
k=0 z=0
(3.17)

Because of Eq. (3.11) this expression is equivalent to the
mapping condition

= fO”dtf(t)eL'Mpc , (3.18)
which determines the steady-state operator p° from the
requirement that it is kept unchanged by the action of an
atomic transit and a subsequent mean loss event. Obvi-
ously the above mapping condition is justified only for
pumping according to a renewal process. It yields a
specific stationary injection-time conditioned density
operator p° that, apart from the special case of Poissonian
pumping, is different from the stationary unconditioned
density operator p, as will be shown in the next subsec-
tion. By using p° one may calculate the mean values of
the field variables that would be found in the stationary
micromaser regime by averaging over the results of mea-
surements that are performed always immediately before
the transit of an atom. (If one were interested in the
average field values referring to the time instants immedi-
ately after the transit of an atom one would have to use
the operator Mp°.) As it must be, we infer from Eq. (3.18)
that the operator 5° does not depend on p°. Therefore the
explicit solution may be written with the help of Egs.
(3.7) and (3.14) as

ﬁc=l_lc=%F‘(O)Res[l—MF‘(z)]_1|z=o , (3.19)

where p° has been replaced by the unity operator.

3. Specialization to the specific pumping model

For later application we now model the pump-atom
waiting-time distribution f(7) as the sum of two ex-
ponentially decaying functions according to Eq. (2.15).
The problem of solving the integral operator equation
(3.13) is then reduced to the solution of a system of two
coupled linear differential operator equations. In fact, by
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differentiating Eq. (3.13) and taking into account Eq.
(2.15), we find that

U (n)=U(1)+Uy(r), (3.20)
where
=LU, +)£2+ AIM(U1+U2) MU, (3.21)
U, LU2+am (U, +U,)—AU, , (3.22)
with
U,(O)=—}—%ia—kiil (3.23)
(A +ald;)
and
U,(0)=alU,(0), (3.24)

where 1 is the unitary operator. Introducing the abbrevi-
ations

4, =(U) e @,= (3.25)

for the diagonal elements of the operators U; and U, in
the photon-number representation and making use of
Egs. (3.1)-(3.3) and (3.6), we obtain from Egs. (3.21) and
(3.22)

gn=v(ny+1)(n+1)g, 4,

U2 nn

—[A+v(n+n,+2nn,)]g, +ynn,g,

7»17»2

[( Bn+l)(qn +an)

+Bn(qn—1+an-1)] ) (326)

G, =y(ny +(n+1)q,4,
—[Aytv(n+n,+2nn,)1q, +ynn,g, -,
AMA,

+a—1—[(1

}L2+al1 —Bn+1)(qn +@n)

+Bn(qn—l+an—l)] (327)

(n=0,1,2,...). According to Egs. (3.7), (3.20), and
(3.25), the injection-time conditioned photon-number
probability is given by

pa(T)=ph,(1)= ) (4. (1)+3,(D)]p%, ,  (3.28)

2 \T

where we take into account that the initial density opera-
tor p® is supposed to be diagonal in the photon-number
representation. When we assume that the photon-
number probability distribution can be truncated at a cer-
tain maximum photon number 7n,,,, the time-dependent
solutions g, (7) and §,,(7) are found by solving the system
of 2(n,,,+1) coupled differential equations established
by Egs. (3.26) and (3.27) where the initial conditions fol-
low from Eqgs. (3.23)—-(3.25).

In order to determine the steady-state injection-time

conditioned density operator 5°=U, one may either find
the stationary solution of Egs. (3.21) and (3.22) or solve
the equation

A, At
_c + Aty Lt .
= Tai. S dre M rae et Mp®,  (3.29)
which results from the mapping condition (3.18). Upon
integration the above equation yields
(L —A)p(MpB) L —1,)
= M Ltaa-D]. 330
B 7\.2+akl[ 2 “h I ’

For the special case that the pump atoms are completely
antibunched, i.e., for a= —1, the right-hand side is equal
to a ¢ number and we obtain the condition

(L —A)(L—A ) =AAMB° (3.31)

which, in the photon-number representation, with the
help of Egs. (3.1)-(3.3) and (3.6) yields a three-term re-
cursion relation for the injection-time conditioned
photon-number probabilities p,; =p;,. When the thermal
photon number n, can be neglected this relation takes
the simple form

AMAB, D1 =ny(ny +A+A)ps—n(n+ 1y 4y ,

(3.32)
valid for = —1 and n, =0. For arbitrary values of a we
resort to the decomposition

Pri=[U:)w=8,+4, , (3.33)

with g, and 5,, denoting the stationary solution of the
system of differential equations given by Egs. (3.26) and
(3.27), which can be easily obtained numerically. With
some effort it is even possible to derive a coupled set of
recursion relations by setting the derivatives in Egs.
(3.26) and (3.27) equal to zero. When, for simplicity, the
thermal photon number is assumed to be negligible, we
obtain the relations

Ay t+ak,
M,

(ny +A)(ny+A,)
ny(l+a)+A,+ak,

Bnﬁ:—l =

+ak,;

A,
—(1=B,4+1) Pn+('l+1)7’T
2

(A =2A2)G, 41— (ny +2A1)P, 41
n7(1+a)+k2+a}»1

(3.34)

and

(ny+A,)p,; +(n+1)y[(1+a)g,

— ﬁ:+1]
4= ny(1+a)+ A, +ak,

. (3.35)

On alternately applying Eqgs. (3.35) and (3.34) the steady-
state distribution p; can be determined by starting
from the assumption that ﬁ,fmax+1=¢7nmx+l=0 for a

sufficiently large value of n,,, and by setting l_’rfmax =Cy,
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where the constant C;, has to be determined at the end of
the calculation from the normalization condition
3.0, =1. We note that for a=0, i.e., for a micromaser
with Poissonian pumping, Eq. (3.35) is equivalent to the
equality g, =p., which, after substitution into Eq. (3.34),
yields the recursion relation A,3,5, _; =nyp,.

B. The unconditioned density operator

Let us now consider the evolution of the cavity-field
density operator p from an initial time =0 to a final

|

Ulr)= [ “dt, [° d1gQi(te,1,)e""

ke © T 7 ) 0 : L(
+3 fT dtk+1fodtkfo dty _ fo dzlf_wdtOQ,;“+2(to,t1,...,tkH)e
k=1

The quantities

© T 17 173 0 in
Wk(’r)sz dtk+1f0 dtkfo dty - fo dtlf_wdtoQkJrz(tO,tl,...,tkH)

yield the probabilities that kK pump atoms are injected
into the micromaser over an arbitrary time interval of
length 7.

As in Sec. III A, we again specialize to pumping ac-
cording to a renewal process in order to treat the above
equations. Replacing in Eq. (3.38) the exclusive probabil-
ity densities Q;" by the expressions following from Eq.
(2.11), performing the Laplace transformation, and mak-
ing use of the convolution theorem we obtain the atom-
number probabilities (k = 1) of the pumping process

Wk('r)=rfwdt’fordt"f(t’——t”)
X3 Res{[f(2)]"'@(2)}, =, ,

(3.39)

where f(z) and @(z) denote the Laplace transforms of
the waiting-time distribution f(¢) and of the function

gr=[° darfu—e=[arsw) . (3.40)

The probability of finding no pump atom at all in the in-
terval of length 7 reads

WO(T)=rmedt1fjwdtof(t‘—to)=rf:°dt Plt) .
(3.41)
With the help of the identity
zp(z)=1—f(z), (3.42)

following from Eqgs. (3.40) and (2.3) it can be verified that
the normalization condition I F_oW,(7)=1 is indeed
fulfilled (see the Appendix). Now we substitute the fac-
torization condition (2.11) into Eq. (3.37). Using again
the convolution theorem of the Laplace transformation
and summing up all contributions we arrive at the equa-

time ¢t =7, which are both located arbitrarily with respect
to the injection times of the pump atoms. In reference to
Fig. 1, this means that the injection time ¢, , is now lo-
cated anywhere between ¢t =7 and oo, whereas the time
instant ¢, lies anywhere between t = — 0 and 0. Follow-
ing the same arguments that led to Egs. (3.7) and (3.8), we
find that

p(r)=U(7)p(0), (3.36)
where
‘r—tk)MeL(tk—tkvl) B _MeLz1
(3.37)
(3.38)

M
tion

U(r)=Wy(r)el™r 3 Res{@p(z—L)[1—Mf(z—L)]™!

XM@(z—L)e™},_, ,

(3.43)

which, together with Eq. (3.36), describes the evolution of
the unconditioned field density operator p of a micro-
maser whose pump statistics is described by a renewal
process. As has been shown in Ref. [17] by a completely
different approach, the evolution of this density operator
can be expressed by an integro-differential equation, the
expanded version of which [see Eq. (5.40) of Ref. [17]] is
equal to the equation that results from substituting Eq.
(2.11) into Eq. (3.37).

It is interesting to note that for the special case of Pois-
sonian pumping, the evolution operator U(7) is equal to
the injection-time conditioned operator U.(7) given by
the inverse Laplace transform of Eq. (3.10). This can be
easily verified by substituting the Poissonian waiting-time
distribution f(¢)=r exp(—rt) into the preceding equa-
tions, which, in particular, results in W;(7)
=@(7)=r " 1f(7). As a consequence, for a micromaser
with Poissonian pumping, the steady-state density opera-
tors p¢ and p are identical. A simple relation between
these operators can be established also for non-Poissonian
pumping. For this purpose some further transforma-
tions are necessary. Since lim__, , W,(7)=0, the steady-
state result can be written with the help of Egs. (3.36) and
(3.43) as

lim p(7)=p=@(—L)Res{[1—MFf(z—L)]" !}, -

T—> ®

X Mrp(—L)p(0) . (3.44)
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When the operator defined by Res{[1—Mf(z
—L)]™!},_, acts on any operator 4 whose trace is uni-
ty, the operator 4 can be replaced by the unity operator
as we conclude from Egs. (3.19), (3.11), and (3.7). Since
the operators M and L are trace conserving and since
Tr[p(0)]=1 we find that

Tr[Mr@(—L)p(0)]
— *® Lt % 4. ' -
rTe|M [ Zdret [ Tarsap)| =1, (3.45)

where use has been made of Eq. (A4) of the Appendix.
Therefore the product Mr@(—L )p(0) may be dropped in
Eq. (3.44). Moreover, making use of Eq. (3.42), we re-
place (—L) by the expression

p(—L)=—L ' [1—F(—L)], (3.46)
thus arriving at
Res ¥ [Mf(z—L)1¥,-,
k=0
—F(—L)Res[1—Mf(z—L)]"!|,_o+Lp=0. (3.47)

Because of Egs. (3.19), (3.11),and (3.12) this is equivalent
to the relation

r(M—1)p°+Lp=0, (3.48)
which for Poissonian pumping, where p =p, reduces to
the well-known condition for the steady state of the mi-
cromaser. For pumping according to a more general
renewal process, the above equation still has a simple
physical interpretation that becomes apparent when we
switch over to the photon-number representation. Tak-
ing into account Egs. (3.1)-(3.3) and (3.6), we find that
Eq. (3.48) requires the condition

rB,P & 1=(1+n,)ynp, (3.49)

to be valid. Performing the sum over the photon-number
probabilities we obtain

rWi=y(i—n,), (3.50)
where
=7 np, (3.51)

is the mean cavity photon number in the stationary mi-
cromaser regime and

Wi{=3 B,pn—1 (3.52)

n

has the meaning of the average transition probability into
the deexcited state for each pump atom crossing the cavi-
ty (see Sec. IV). According to Eq. (3.50), for n, =0 the
production rate of deexcited atoms is equal to the loss
rate of cavity photons in the stationary regime of any mi-
cromaser whose pumping is described by a renewal pro-
cess. When the pumping process is different from a
renewal process, Eq. (2.14) is no longer valid, the mean
time interval {(7) between two consecutive pump atoms
thus being different from the inverse of the injection rate

r. Since the average number of pump atoms arriving over
the cavity damping time T,=y "' is given by T,/{7),
one would expect that in the general case for n, =0 the
relation 7 =(y{7)) " 'W¢ holds.

C. Photon statistics in the cavity

Applying the previous equations, we now investigate
the photon statistics of the cavity field in the stationary
micromaser regime dependent on the correlation strength
C and on the correlation decay rate I" of the incoming
pump atoms, which are assumed to be distributed accord-
ing to a renewal process. For this purpose we first have
to determine the parameters A,,A,, and a with the help of
Egs. (2.21) and (2.22) and then find the steady-state solu-
tion pf =p;, for the injection-time conditioned photon-
number probabilities (n=0,1,...). By using Eq. (3.49)
the unconditioned probability densities p, can be easily
obtained in a further step with the help of a recursive
procedure. Besides the steady-state mean value 7 and
standard deviation An?=S n?p, —7i* of the cavity pho-
ton number, we also calculate, for the purpose of compar-
ison, the injection-time conditioned mean photon number

7= npt, (3.53)

n

which is the average value that would be obtained by
measuring the photon number always immediately before
the injection of a pump atom. (Instead of this quantity,
one might also discuss the average value ¥ ,n(Mp°),,
=>3,n[B,P,—1+(1—PB, )P, ], which refers to the time
instants immediately after the transits of the pump
atoms, or the corresponding level-selective average values
>,.n(Dp),, and 3 ,n(Ep°),,; cf. Egs. (3.2) and (3.3).)

For the special case that the micromaser is in the one-
photon trapped state arising from the conditions
gtinn=qm (g=1,2,...) and n, =0, all results can be ob-
tained analytically since the photon-number probabilities
p, and p; vanish for n =2. In particular we find

Y
1+cl— NGB,
Ae= (3.54)
Y
1+ 1+Cl"—|—y )Ne,ﬁ1
and
N
= P , (3.55)
1+ [1+c=L— |N_B,

C+y

where N, =r/y and B;=sin®(m/V'2). These equations
reflect the fact that for Poissonian pump statistics (i.e.,
for C=0) the averaged photon number 7° referring to
the time instants immediately before the injections of the
individual pump atoms is exactly equal to the stationary
mean photon number 7, which, due to ergodicity, corre-
sponds to the time-averaged cavity photon number. For
antibunched or bunched injection, i.e., for C <0 or C >0,
the inequalities 7°<7A and #n°>n, respectively, are
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fulfilled.

The relation 7°=m, valid for Poissonian pumping, is
not restricted to the one-photon trapped state, but holds
for arbitrary values of the micromaser parameters since
in this case the density operators p° and p are identical, as
derived in the preceding paragraph. Likewise, for sub-
and super-Poissonian pump statistics arising from anti-
bunched or bunched injection of pump atoms, the rela-
tions <7 and 7°= 7, respectively, are confirmed for ar-
bitrary _values of the micromaser pump parameter
©=1/N,gt;, by numerical calculations, as illustrated in
Fig. 2. It is found that in all cases the difference between
7 and 7° depends linearly on the correlation strength C,
which takes on negative or positive values for sub- and
super-Poissonian pumping, respectively. A rough ex-
planation of the described behavior is based on the fol-
lowing argument, which refers to the time dependence of
the microscopic field in the cavity. Obviously all minima
of the instantaneous cavity photon number must be locat-
ed immediately before the transit of an atom since only
the latter may increase the number of photons. On the

0 0.5 1 1.5 2 2.5 3

O/r

FIG. 2. Mean photon number # (full line) and conditioned
photon-number expectation value 7° referring to the time in-
stants immediately before the injection of the pump atoms
(dashed line) (a) for super-Poissonian pumping with N, =10,
C=1, and I'=0.2y and (b) for sub-Poissonian pumping with
N =2, C=—1, and I'=8y. The thermal photon number is
n, =0.01 and for comparison the mean photon number 7 for
Poissonian pumping at the corresponding values of N, is also
plotted (dash-dotted line).

assumption that the pump atoms are equidistant in time,
which corresponds to a special kind of sub-Poissonian
statistics, it is therefore clear that the time-averaged pho-
ton number 7 is larger than the average value 7. In the
general case, however, the relation between 7 and 7€ cru-
cially depends on the distribution of the distances be-
tween neighboring atoms. These distances affect the time
average 7, but do not enter into the determination of 7°¢
since the latter quantity is simply given by the arithmetic
mean of the photon numbers being present immediately
before the injections of the individual pump atoms. Thus
it can be qualitatively understood that for pump atoms
arriving in bunches, the time-averaged photon number 7
is smaller than 7° owing to the comparatively long
periods without atoms between the bunches.

Another interesting conclusion that can be drawn from
inspection of Egs. (3.54) and (3.55) refers to the influence
of the pump-atom correlation-decay constant I'. . When
the latter is much larger than the cavity damping rate ¥,
the quantities 7 and 7° become equal and do not differ
from the quantities 7 =7°, which would result from Pois-
sonian pumping (i.e., for C=0) at the same value of N,.
On the other hand, for I <<y we find that 7=~ (1+C)n.
At reasonable values of N, however, this limiting case is
restricted to super-Poissonian pumping (C > 0) because
of the condition (2.20). Again the described dependence
on I'" does not only hold for the one-photon trapped state
but is also valid for arbitrary values of the pump parame-
ter O, as can be confirmed by numerical calculations (cf.
Fig. 3). Moreover, when n;, =0 the above limiting cases
may be also discussed analytically for arbitrary values of
©. To do so we consider the coupled set of recursion re-
lations (3.35) and (3.36) and take into account Egs. (2.21)
and (2.22), which determine the parameters A,A,, and a
from r,C, and I'. When I'" >>r we find that A, =7, A,=T,
and a=~C. On the additional assumption I' >y, Egs.
(3.34) and (3.35) yield, after some simplification, the re-
cursion relation

(C>>r,y) (3.56)

nYﬁ:Zanp:—l

7/Nex , i°/Nex
04

~—
~
S~

035 >

03 N,

0.25 o

0.2 —

0.15

0.1

0.05

-2 -1 0 1 2 3
log10(T'/7)

FIG. 3. Same as Fig. 2 for super-Poissonian pumping with
N, =10 and C=1 dependent on the pump-atom correlation-
decay constant I' at the pump parameter ©=3.67 for the
thermal photon number n, =0.
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for the conditioned photon-number probabilities referring
to the time instants immediately before the injection of
the individual pump atoms. Equation (3.56) corresponds
to the well-known recursion relation for Poissonian
pumping. In the opposite case I' <<r [which is restricted
to C>0 because of the condition (2.20)] we obtain
from Egs. (2.21) and (2.22) the values A, =T /(1+C),
A,=r(14+C), and a~4r?/I'*>>1. By substituting these
values into Egs. (3.34) and (3.35) and assuming in addi-
tion that I' <<y, we arrive, after a little algebra, at the re-
cursion relation

nyPr=(1+CWpB,p;_, (C<<r,y, C=0). (3.57)

Since, for n, =0, according to Eq. (3.49) the uncondi-
tioned photon-number probability is connected to p, by
the relation

Yup, =rB,pr—1 > (3.58)

we obtain with the help of Egs. (3.51), (3.53), and (3.56) at
once the desired results A°~#A for I'>>r,y and
A=(1+C)afor T <<r,y and C =0.

For super-Poissonian pumping with the correlation

Pn»Pr

025t

0.2

0.15

0.1

0 2 4 6 8 10 12

photon number n

FIG. 4. Photon-number probability p, (full line) and
injection-time conditioned photon-number probability p,
(dashed line) for N, =10, C=1, '=y, and n,=0.01 at the
pump parameters (a) ©=0.97 and (b) ©=1.97 in comparison
to the photon-number distribution for Poissonian pumping with
N, =10 (dash-dotted line).

strength C=1 and the correlation decay rate =y, the
distribution of the stationary photon-number probabili-
ties is shown in Fig. 4 for two different values of the
pump parameter © that correspond to the single- and the
double-peaked (bistable) case. The distinct increase of p,
for small photon numbers n in comparison to the values
that would arise from Poissonian pumping has already
been found numerically in Ref. [17]. From Fig. 5 it be-
comes obvious that for super- or sub-Poissonian pumping
the relative standard deviation of the stationary photon-
number distribution is increased or decreased, respective-
ly, in comparison to the Poissonian case. Again, with
growing pump-atom correlation decay rate I', the
difference from the Poissonian result is diminished. The
influence of I" will be discussed in more detail in Sec. IV
in connection with the normalized intensity correlation
function at zero time delay
Ln_z“ll =1+
7 n

g,(0)= (3.59)

n

Anz__l]'

A (a)

15 s i~
T\ W N, \ !
p Al bR \ ¥
. l’ \ MY <. AN ,-'
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\_\ " \NSj vV v N/ (Y N
0.5 =l
0.
0 1 2 3 4 5 6
O/n

0.8 ¢

J/
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FIG. 5. Relative standard deviation V' An?/7 of the cavity
photon number (full line) (a) for super-Poissonian pumping and
(b) for sub-Poissonian pumping. The parameters are the same
as in Fig. 2 and the dash-dotted line again refers to Poissonian
pumping.
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IV. STATISTICS OF THE OUTGOING ATOMS

A. General expressions

Now we want to investigate the level-selective statistics
of the atoms leaving the cavity, which is directly accessi-
ble to experimental observations through measuring the
waiting-time distributions, coincidence probabilities, or
counting statistics over a definite time interval [4-10].
Since the second factorial moment of any counting statis-
tics can be easily determined from the two-time coin-
cidence probability density [cf. Eq. (5.2) in Sec. V], we
focus only on the latter quantity and on the waiting-time
distribution.

When, in a stationary micromaser regime, an atom
leaving the cavity is found to be in the deexcited state,
the (non-normalized) reduced density operator describing
the state of the field immediately after the transit of this
atom is given by Dp° according to Eq. (3.1) and to the
definition of the operator p¢ in Sec. III. Provided the
deexcited atoms are detected with efficiency 7, the proba-
bility density for the detection of deexcited atoms, i.e.,
the detection rate, is given by [4—10]

Pé¢=nqrw{=nr Te(Dp)=nr 3 B,Ps 4.1)
n
with W¢ being the average transition probability into the
deexcited state for a single atom. In order to calculate
the joint probability Wg’d(T) that two atoms, which are
known to be injected with time difference 7, both leave
the cavity in the deexcited state, we have to apply the
evolution equation (3.7) of the density operator p°(7). In
contrast to Eq. (3.9), the initial density operator of the
evolution in this case has to be identified with Dp°. Thus
we arrive at
2

— LT[ DU, (r)Dp] .

wed(r)=—
2 Pi(0,7)

4.2)

The coincidence probability density for the detection of
two deexcited atoms with the time difference 7 using a
detector with efficiency 7 is therefore given by

P3(r)=n*PP (0, 1) WS (7)=n*2Tr[ DU, (7)Dp°] .
4.3)

Now we turn to the waiting-time distribution P, (7),
defined as the conditional probability density of detecting
the next atom at time ¢+ 7 provided the first atom had
been detected at time ¢. With Qg’d( 7) denoting the ex-
clusive probability density for detecting two deexcited
atoms with a time difference 7 on condition that no other
deexcited atom has been detected in between we have

P, (1)=—-0%%(r) . 4.4
In analogy to Eq. (4.3) we may write
Q%4 (r)=n**Tr[ DV, (7)Dp] , (4.5)

where the evolution of the operator V_(r) is determined
by the contributions of all atoms traversing the cavity
and not being detected in the deexcited state. Following

the arguments used to treat a micromaser with Poissoni-
an pumping [6-9], we find the evolution equation of V,
by replacing the operator M =D +E on the right-hand
side of Eq. (3.8) by the operator M'=(1—n)D+E
=M —nD. The latter refers to the transit of a single
atom and takes into account only the possibilities that
this atom either leaves the cavity in the excited state or it
is deexcited but not detected. Thus for pumping accord-
ing to a renewal process with the waiting-time distribu-
tion (2.15) we obtain, along the same lines used to derive
Egs. (3.20)-(3.22), the representation

V A(r)=V () +V,(7), (4.6)
where
. A,
V=LV, +W(M—1]D WVi+VvVy)—MV,,
4.7)
. AA,
V,=LV, +aW(M—nD WV +Vy)—A,V,,

with V| ,(0)=U, ,(0) [cf. Egs. (3.23) and (3.24)].
Up to now we only considered the statistics of the

92(0), wD(0),w$4(0)
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FIG. 6. Normalized coincidence probability densities w %?(0)
for the outgoing deexcited atoms (dashed line) and w$¢(0) for
the outgoing excited atoms (dotted line) in comparison to the
normalized intensity correlation function g,(0) of the cavity
field (full line) at n,=10"°¢ for pumping with N, =10 and
I’ =8y at the correlation strengths (a) C=0.2 and (b) C= —0.2.
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atoms leaving the cavity in the deexcited state. When
one is interested in the statistics of the outgoing excited
atoms or in cross correlations between both kinds of
atoms, one simply has to replace the operator D at the
appropriate positions in Eqgs. (4.6) and (4.7) by the opera-
tor E introduced in Egs. (3.1) and (3.3).

B. Numerical results

According to Egs. (4.1) and (4.3), the normalized de-
layed coincidence probability density

_P3%n)

(P¢)?

wd

(4.8)
for the detection of two deexcited atoms with time
difference 7 at the exit of the micromaser does not depend
on the detector efficiency 7; nor does the corresponding
coincidence probability density for the detection of excit-
ed atoms
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FIG. 7. Normalized coincidence probability density w%9(0)
(dashed line) and intensity correlation function g,(0) (full line)
for pumping with N, =2 at ©=1.27 and n, =0. (a) The depen-
dence on the correlation strength C is depicted for T'=8y; (b)
the dependence on the correlation decay constant I'" is shown
for C=1. The dash-dotted line in (b) refers to Poissonian
pumping where w$4(0)=g,(0) for n, =0.

P$(1) _ Tr[EU,(1)Ep°]

se(r)= =
T pey [Tr(EF°) ]2

(4.9)

In Fig. 6 the zero-time-delay values of the above quanti-
ties are depicted as being dependent on the micromaser
pump parameter for two special cases of super- and sub-
Poissonian pumping. For comparison, the normalized
zero-time-delay intensity correlation function g,(0) of the
cavity field given by Eq. (3.59) is also plotted. Obviously
the behavior of g,(0) and w%?(0) is very similar: for
super-Poissonian pumping the latter quantity is only
slightly larger than the former, whereas for sub-
Poissonian pumping the opposite case is true. This close
resemblance is not surprising since for Poissonian pump-
ing and negligible thermal photon number it has been
proved that both quantities are exactly equal for any
value of the pump parameter © [5,7,10] and that such an
equality holds even for the normalized values of the de-
layed coincidence probability density of deexcited atoms
and of the corresponding delayed intensity correlation
function [7,8,10]. For a fixed value of © the dependence
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FIG. 8. (a) Normalized delayed coincidence probability den-
sity w$?(r) for deexcited atoms (full lines) at n,=0.01 for
super-Poissonian pumping with N,=10, C=1, and '=8y.
The dotted line shows the normalized delayed coincidence prob-
ability density wi'(7) of the incoming pump atoms. (b) For
comparison, the corresponding curves are also plotted for Pois-
sonian pumping with the same value of N.,.
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of g,(0) and w$%(0) on the correlation strength C of the
incoming pump atoms and on their correlation decay rate
I" is shown in Fig. 7. Making use of the approximations
(3.56) and (3.57), which hold in the limit of large and
small values of I', respectively, we find, with the help of
Eq. (4.1), (4.3), and (3.58), that for negligible thermal pho-
ton number the approximate relations

2

wg,d(O):(l—#C)EBan_Lp,f‘z/ S BB
~(1+C)gy(0) for I'>>ry (4.10)
and
w$9(0)~g,(0) for I'<<r,y; C=0 4.11)

are valid. To obtain Egs. (4.10) and (4.11) the expression
U.(0)=(1+C)1 following from Egs. (3.7) and (2.16) has
been used. In general, it can be stated that because of Eq.
(3.56) and because of the equivalence of ¢ and p for a mi-
cromaser with Poissonian pumping [see the remarks fol-
lowing Eq. (3.43)] for rapidly decaying pump-atom corre-
lations (i.e., for I" >>y,r), the photon statistics of the cav-
ity field is equal to that which would arise from Poissoni-
an pumping with the same pumping rate [cf. Figs. 3 and
7(b)]. However, the presence of the pump-atom correla-
tions is nevertheless reflected in the statistics of the atoms
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FIG. 9. Same as Fig. 8, but for sub-Poissonian pumping with
N,=2,C=—1,and I'=8y.

leaving the cavity [see Eq. (4.10) and Fig. 7(b)].

On the other hand, when the lifetime of the pump-
atom correlations is rather large in comparison to the
cavity lifetime and to the average time interval between
the injection of consecutive pump atoms, it should be
possible, because of Eq. (4.11), to determine the field
quantity g,(0) directly by measuring the coincidence rate
of deexcited atoms [cf. Fig. 7(b)]. [Note that because of
the restriction (2.20), this limiting case can be treated
with the model of pumping according to a renewal pro-
cess only for super-Poissonian pump statistics where
C>0.]

The dependence of the normalized two-time coin-
cidence probability density w%?(r) of deexcited atoms on
the delay time 7 is greatly affected by the properties of
the pump-atom correlations as becomes obvious from
Figs. 8 and 9. The same holds true for the T dependence
of the waiting-time distribution P, (7), which is plotted in
Fig. 10 as a result of numerically evaluating Egs.
(4.4)-4.7).

\
|
0.8 "“ ( b)

FIG. 10. Normalized waiting-time distribution Pw(7)/r of
the outgoing deexcited atoms measured with detector efficiency
(a) »=1 and (b) n=0.5 for pumping with N, =2 at the pump
parameter ©=1.27 and the thermal photon number n, =0.01.
The full lines correspond to Poissonian pumping (C=0), the
dashed lines to super-Poissonian pumping with C=1 and
I'=8y, and the dash-dotted lines to sub-Poissonian pumping
with C=—1and I'=28y.



V. CONNECTION BETWEEN THE DIFFERENT
TREATMENTS OF THE PUMP STATISTICS

A. Pump-atom counting statistics in our model

In order to compare our results with those arising from
other treatments of the micromaser pump statistics it is
necessary to discuss in some detail the mutual relation-
ship and the ranges of validity of the different pumping
models used in the literature. For this purpose let us first
consider the counting statistics of the incoming pump
atoms, which is obtained from our description of the
pump statistics. As is well known from the theory of sto-
chastic point processes, the kth-order factorial moments
of the counting statistics referring to a counting interval
of length T can be calculated by performing a k-fold time
integration over the k-time coincidence probability densi-
ty [19]. Denoting the mean number of pump atoms arriv-
ing over a period of length T by { N ) 7, we may write, for

stationary pumping,
(N)p=TPP =T . (5.1

The corresponding equations for the higher-order factori-
al moments read [19]

(N(N=1)---(N—k+1))y
= [Tar, [Tar, -+ [Tan Pty .00
0 1 0 2 0 kL k \o15%2s ' bk

(k=1,2,...), (5.2)
where now the former restriction ¢, <t, < - -+ <¢; has
been dropped. When the special ansatz

Pizn(tl,tz)zrz[l“}_cexp(_F|t2'~'t11)] (5.3)

[cf. Eq. (2.16)] is used for the two-time coincidence prob-
ability density we find

<N(N—1))T:<N>2T+—2%[1—5(T>]<N>T, (5.4)
where
1= IT
()= (5.5)

t
(N(N_l)(N_2)>T=% [fontlfoldtz
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In general, in the case of stationary non-Poissonian
pumping the counting statistics depends on the length T
of the counting interval. For the limiting cases that T is
either very short or very large in comparison to the decay
time I' ™! of the pump atom correlations, we obtain from
Eqgs. (5.4) and (5.5)

(AN?) 1+CrT for TT <1 (5.6)
————T ==
Ny, 1+2% for TT>>1, (5.7)

where the atom-number variance (AN2),=(N?),
— (N )% has been introduced and Eq. (5.1) has been tak-
en into consideration. It is clear that { AN?), cannot be
smaller than zero. For this reason, in the case of a nega-
tive correlation strength C, Eq. (5.7) imposes a restriction
on the parameters C,r, and I" occurring in the ansatz
(5.3). In fact, we have to suppose that for —1 =< C <0 the
condition I">2r|C| is fulfilled, which is less restrictive
than the inequality (2.20) resulting from the additional as-
sumption of the pumping process being a renewal pro-
cess. Because of this condition Eq. (5.6) yields

(AN?), 1
— = >1—=<TT=1 for IT<1.
(N)r

> (5.8)

Obviously with respect to a counting interval, which is
small in comparison to the lifetime of the pump-atom
correlation, {AN?) cannot be noticeably smaller than
(N ), i.e., sub-Poissonian counting statistics practically
does not occur in this case.

For later use we now calculate the third-order factorial
moment of the counting statistics of the pump atoms. To
do so we assume that the pumping process is a stationary
renewal process fulfilling the factorization condition [20]

P'3“(t1,t2,t3)=%P‘Z"(t3—t2)P‘2“(t2—t,), (5.9)
which is valid for t; = ¢, 2 ¢;. From Eq. (5.2) we then ob-
tain

t . .
fozdt3P‘2“(t1—tz)P‘Z“(tz—tg,)

t . . T . .
+ [ dn PR —t)PY (13— 1)+ [ dty PP (23— )PPt —1;)
123 31

T T ! i in
+f0 dtlftldtz [f() dt3P2n(t2_t1)Pl2 (tl—t3)

! i i T in in
+ftlzdt3Plzn(t2—t3)P12n(t3—tl)+ ftzdt3P2 (t3—1t,)P3 (tz—tl)l ] . (5.10)
Making use of the ansatz (5.3) and performing the integrations, we find, after a little algebra,
2
(N(N=1)N=2))p=(N)7+ 2;C[B—e(T)]<N>2T+ % 2+e*FT—3a(T)~-g—[s+e—”—6e(T)] (N,

(5.11)



616 ULRIKE HERZOG 52

with €(T) being given by Eq. (5.5). It should be kept in
mind that the condition (2.20) has to be fulfilled in order
to make the ansatz (5.3) compatible with the requirement
that the statistical process is a renewal process (compare
Sec. II). When the counting interval T is much larger
than the lifetime of the pump-atom correlations, Eq.
(5.11) becomes independent of T and reads, for I'T >>1,

2rC

(N(N—1)(N—2))T=<N>€‘,+3-F—(N>2T
2
5 2rC
+ |2 EC T (N)r.
(5.12)

B. Connection to the pearl-string model

We now investigate the second and the third factorial
moment of the pump-atom counting statistics for the oth-
er models used in the literature to describe the statistical
nature of the pumping process. In the original pearl-
string model the pumping is provided by a regular flux of
ground-state atoms out of which some atoms are excited
to the upper level of the maser transition [11]. When the
excitation probability is denoted by p, the probability to
find N excited atoms out of M equidistant incoming
atoms is given by the binomial distribution

M
pyM)= | o [PMA—p)M TN, (5.13)

which yields the mean value

(N)p=3 Npy(M)=Mp (5.14)
N

[11,14]. The factorial moments are easily calculated to be
(N(N=1)"--(N—k+1))y
=M(M—1)---(M—k+1)p*

(k=1,2,...). (5.15)
In particular, one finds [11,14]
(AN?)
<y 1l-p. (5.16)
(N w F

In this model the relative variance does not depend on
the number M of incoming equidistant atoms or on the
length of the considered time interval, respectively, in
contrast to the result for a strictly stationary pumping
model [cf. Eq. (5.4)-(5.7)]. The third-order factorial mo-
ment can be written as

(N(N—1)(N—=2)),={N)3—3p{(N)%+2(N),,
(5.17)

and in a similar way the higher-order factorial moments
may be expressed as a power series in (N ), with
coefficients that only depend on p. Therefore, in the
pearl-string model, which is not stationary in the strict
sense inasmuch as there exists only a discrete set of possi-
ble atomic arrival times, the counting statistics of excited

pump atoms does not depend on the length of the count-
ing interval.

When the distance At between two consecutive atoms
in the incoming regular beam of ground-state atoms is as-
sumed to be small in comparison to all relevant time in-
tervals 7, the pearl-string model is nearly homogeneous
in time and approximately describes stationary pumping.
Inspection of Egs. (5.7) and (5.16) suggests that the equa-
tion

2rc <

T p (C=0)
connects our description of the pump statistics with this
homogeneous limit of the pearl-string model provided
I’'T >>1. However, for C#0 the connection established
by Eq. (5.18) is valid with respect to higher-order mo-
ments of the number of pump atoms only when for any
relevant time interval T the quantities (N )7 or (N ),,,
respectively, are large in comparison to unity, as can be
seen from Egs. (5.12) and (5.17). In fact, when in both
equations the last term on the right-hand side is neglect-
ed, they can be transformed with the help of Egs. (5.7)
and (5.16), respectively, to yield the identical expressions

((N=(NYp)*)p=((N—(N)p)?) =0 (5.19)

for (N);>>1, TT>>1, and (N ), =pM=pT /At >>1.
The binomial distribution (5.13) in this limit is approxi-
mately equal to a Gaussian one; the statistics therefore
are completely determined by the knowledge of the mean
value and of the variance. With respect to the micro-
maser, the physically relevant time interval T is the cavi-
ty lifetime ¥ ~!. In our treatment, which is based on the
ansatz (5.3), the relations {N);>>1 and I'T >>1 there-
fore are equivalent to N, =r/y >>1 and I' >>y, respec-
tively. From the preceding considerations we conclude
that, for —1<C <0 and in the limit of large values of
N, and T /vy, our description of the pump statistics cor-
responds to a pearl-string model with p=—2rC/T" and
At=p/r. The restriction (2.20) yields p=<2|C|/
(1+vV]C])r2< L.

(5.18)

C. Connection to the Langevin-equation approach

Now we turn to the Langevin-equation description of
the pump statistics [16]. In this description the pump
fluctuations are taken into account by adding a fluctuat-
ing force F(t) to the mean injection rate » and by assum-
ing that this fluctuating force is & correlated, obeying the
equations

(F(t))=0 (5.20)

and

(F()F(t"))=(1—p)8(t—1"), (5.21)

where 0=<p < 1. Hence the Langevin-equation approach
refers to pump-atom correlations that practically decay
infinitely fast. Therefore it can be approximately applied
when the pump-atom correlation time I' ! is small in
comparison to the cavity lifetime y ~'. However, it is
worth noting that, in general, the above approach does
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not completely describe the pump statistics as long as the
higher-order correlation functions of F(t) are not
specified. This becomes evident by considering the mo-
ments of the number of pump atoms arriving over a time
interval of length T, which can be calculated from

my — T “ e T A
(N™) fo dt, fo dtm<ir=11 [r+F(t,-)]> , (5.22)
where m =1,2. ... With the help of Egs. (5.20) and (5.21)
we obtain (N ) ;=rT and
((N—=(N)p)*)r=(AN?)p=(1—p)N); . (5.23)

Now we assume that the higher-order correlation func-
tions obey the Gaussian factorization conditions, i.e., that
fork=1,2...,

(F(t;)F(ty) """ F(ty_1))=0 (5.24)
and
(F(t,)F(t;) -+ F(ty))

=3 (F(t; )F(1,)) - - (F(y,,, F(y; ), (5.25)

where the summation has to be performed over all
1X3X +-+ X(2k—1) possibilities of decomposing the
left-hand side into a product of two-time correlation
functions with the original time ordering being preserved.
Using Eq. (5.22) and (5.23) and applying the binomial
theorem, we then find after some algebra that

((N=(N)p* =0 (5.26)

and
((N—=(NYp)*)p=1X3X - -+ X(2k—1){AN2) .
(5.27)

We mention that the above equations could be obtained
more easily by integration from the Gaussian probability
distribution

(N—(N))?
2(AN?),

_ 1
V2 (AN?) )

When the parameter p is set equal to zero, the variance
corresponds to that of a Poissonian distribution, as can be
seen from Eq. (5.23). The third-order moment, however,
is different from its Poissonian value and also from the
limiting value that would follow from a binomial distri-
bution. For (N ) >>1, however, this difference can be
neglected. Because of the equivalence of Egs. (5.23) and
(5.16) we may conclude that in the case of (N ), being
large for all relevant time intervals T, i.., for
N.,=r/y >>1 in the micromaser, the pearl-string model
and the Langevin-equation approach correspond to one
another and are connected to our description of the
pump statistics by Eq. (5.18) as long as we assume that
the pump-atom correlations are decaying rapidly enough,
i.e., for I'>>y.

D. Connection to the quantum-field pump model

Finally, we discuss the relation between our treatment
and the quantum-field model of the atomic injection in-
troduced in Ref. [17]. While our approach is more evi-
dent from heuristic physical considerations, the latter
starts from first principles, but refers only to the uncondi-
tioned density matrix p of the cavity field without dis-
cussing the level-selective statistics of the atoms leaving
the cavity. In order to yield equations that are practical-
ly tractable, both approaches need the assumption that
the injection statistics is described by a stationary
renewal process. As it must be, the resulting evolution
equations for the density matrix p are identical. This be-
comes obvious by comparing the expanded version of the
integro-differential equation derived in Ref. [17] with our
result [see Eq. (5.40) of Ref. [17] and Egs. (3.36), (3.37),
and (2.11) of this paper]. However, the ansatz used in
Ref. [17] is only suited to treat super-Poissonian pumping
with fixed correlation strength.

VI. CONCLUSIONS

We treated the photon statistics of the cavity field and
the level-selective statistics of the outgoing atoms for a
one-atom micromaser with stationary non-Poissonian
pumping with the help of the theory of stochastic point
processes. On the assumption that the pump statistics
can be described by a renewal process, we investigated
the effect of sub- as well as super-Poissonian pumping,
both analytically and numerically, dependent on the
correlation strength (being negative in case of pump-atom
antibunching) and on the correlation decay time of the
incoming pump atoms.

An interesting result refers to the case that the lifetime
of the pump-atom correlations is rather large in compar-
ison to the cavity damping time and to the average time
interval between the injection of consecutive pump
atoms. In this case the normalized coincidence probabili-
ty density of the outgoing deexcited atoms and the nor-
malized cavity-field intensity correlation function for zero
time delay are shown to be equal for negligible thermal
photon number. For rapidly decaying pump-atom corre-
lations, however, the statistics of the atoms leaving the
cavity is strongly affected by the presence of the pump-
atom correlations, whereas the photon statistics of the
cavity field is found to be the same as that which would
arise from Poissonian pumping, with the same pumping
rate.
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APPENDIX
We want to calculate the expression

S W =Wom)+r [ “ar [Ta fa'—e)
k=0 T

XZRes—ﬂf—)—
v l—f(Z) z=z,
(A1)
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which follows from Eq. (3.40). Inserting Egs. (3.42) and
(3.43) we arrive at

S won=r[Zda" [T arfier—r). (A2)
k=0 T —*®

On the other hand, because of Egs. (2.5), (2.8), (2.11), and
(3.43) we may write

r=Res———~—f(z)

1—f(z)

z=0 Z@(Z)

where we made use of the facts that the functions f(z)
and @(t) vanish for t— oo, therefore possessing no pole
at z=0, and that the function f(¢) is normalized to uni-
ty. Therefore we obtain, with the help of Eq. (3.41), the
relation
1 — p— el ’n @ ’ !
p0)=[“ar" [ “drf(r),

r

(A4)

which, after appropriate transformation, yield the desired
result

rfT"’dt"f_’wdz'f(t"—z')=k§0 Wi(r)=1. (AS5)
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