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Floquet theory of bound-continuum transitions due to a periodic interaction
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The calculation of transition rates from bound to continuum states of a Hamiltonian under the
influence of a time-periodic perturbation is formulated in terms of the Floquet theory by constructing
quasiperiodic states on a restriction of the underlying composite Hilbert space. The required restriction
is related to the circumstance that a steady rate for the excitation of a continuum level can only be
defined in the limit of the imaginary part of the level shift tending to zero. Model numerical calculations
are presented which demonstrate that the amplitudes thus obtained agree with perturbation theory
where the latter is expected to be applicable. Near an intermediate resonance, where the standard per-
turbation theory diverges, the Floquet theory leads to a typical resonant structure, which is also shown

to result from regularizing the perturbation theory, thereby demonstrating that the Floquet theory au-

tomatically takes account of the relevant higher-order terms in the perturbation expansion.

PACS numbers', s): 03.65.Ca, 03.65.Nk, 32.80.—t, 42.50.Hz

I. INTRODUCTION

It has recently been shown [1] that, if, in the presence
of a classical electromagnetic field, a quantum system
possesses normalizable Floquet states, the amplitudes for
transitions between the unperturbed states, which corre-
spond to the absorption of an integral number of pho-
tons, can be defined unambiguously and calculated non-
perturbatively. When a bound state is coupled to a con-
tinuum, however, the eigenenergy becomes complex,
necessitating a modification of the conventional Hilbert
space in which Hermitian operators have real eigenvalues
[2—4]. Since the Floquet theory relies on the existence of
normalizable quasiperiodic states of the interacting sys-
tem in the composite Hilbert space of square-integrable
and time-periodic functions [5], whose eigenenergies are
real, application of this theory to calculate transition
rates to a continuum can only be expected to be possible
in the limit (Et/Ez)~0, where Ett and Et denote, re-
spectively, the real and imaginary parts of the energy.
But this is just the condition under which a transition
rate can be defined in any case [3,6], and, therefore, the
feasibility of treating bound-continuum transitions within
the framework of the Floquet theory merits serious con-
sideration, especially since the 5-matrix elements, which
are on the energy shell, can then be calculated nonpertur-
batively. The Friedrichs model [7] in which a single
discrete state is coupled to a continuum through interac-
tion with a quantized (time-independent) field, ignoring
continuum-continuum couplings, has served as a para-
digm in the investigations of Prigogine and co-workers
[2,8]. The Floquet theory being semiclassical in nature,
we shaH use a model in which the efFect of the field is
represented by a time-dependent, periodic, interaction.
We shall also generalize the model to include more than
one bound state and allow for continuum-continuum cou-
plings. At the same time, to minimize the complexity of
the problem without distorting its essential features, we

shall assume the continuum to be labeled by the energy
alone.

As in the case of a system having only bound states [1],
we first formulate the problem as the solution of an eigen-
value equation for an infinite Hermitian matrix. For this
matrix to represent a self-adjoint operator in a Hilbert
space, its Hermitian form must be real [9,10], in which
case one can expect an eigenvalue calculation in practice
using a truncated matrix, which would always yield a real
value, to converge to the correct result as the dimension
is increased. On the basis of known results from the
theory of the ac Stark efFect [11],we then argue that by
restricting the expansion in terms of the time-periodic
functions appropriately, the imaginary part of the energy
can be made to vanish, so that, in accordance with the
discussion above, a transition rate can be properly
defined. This restriction is also shown to be readily un-
derstandable from the point of view of perturbation
theory. Numerical evidence via a model calculation is
presented to illustrate the necessity and sufficiency of this
criterion. Nonperturbative calculation of transition am-
plitudes using the Floquet theory in the above limit is il-
lustrated for various models. For low coupling strengths,
the results thus obtained agree with lowest-order pertur-
bation theory (LOPT), except in the vicinity of a reso-
nance between two bound states, where the perturbation
theory has to be suitably modified [12] to avoid en-
countering a spurious divergence.

II. FORMALISM

Let the Hamiltonian of the unperturbed system H0
have N~ bound states (discrete eigenvalues) and a contin-
uum specified by energy c.,

O~c. ~ ~,
N~

Ho= & E„lp&&pl+ I «Els&&sl, (1)
p=k 0

&p~v&=5 ., &s~s'&=5lE —s') .
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For simplicity, let the periodic interaction causing transi-
tions be given by 2 V cosset, with V real. As in Ref. [1],a
switching factor exp( —

gltl ) is understood to be associat-
ed with V. Let the bound-bound, bound-continuum, and
continuum-continuum matrix elements be denoted, re-
spectively, by V„, V„„and V„. For reference (initial)
state P, ), we seek a solution of the Schroedinger equa-
tion

of the form [1]

lQ, ) =exp( —s, +A, e ~")t[la )

+ [lF,(t)) —a ) ]e

Similarly, V„, and V„may also be expanded as

and

V„,= g v(„L((E)e
I =0

then takes the form

V„.= g g gI,„LI(E)e '~ L (E')e
1=0m =0

Note that for a general Hermitian V, vI„=v „*I and

g& =g*i. The normalization condition [5],

ala„„'+y c„;l' =1.
n p=1 I

with ly'„) independent of time. Let us expand ly'„) in
the Hilbert space of HO as

N~

ly'„&= y a'„„p&+f A„'(E)lE&dE . (5)
p=1

We now expand A„'(E) in terms of Laguerre polynomials
as

The amplitude for a transition from li ) to
l
E ) may

now be calculated as in Ref. [1], provided the system of
equations obtained on using Eqs. (5)—(8) in Eq. (2), (and
letting ri —+0), can be solved with an initial condition cor-
responding to li ) as V—+0. The equations to be solved
are

N~

(e, +b,, +neo e„)a—'„„=g (a'„, +a'„+, ) V„,
v=1

A„'(c,)= g C„'ILI(E)e
I=O

C„;=f A„'(E)L,(E)e '~ dE .
and

+X vip(c l, 1+c +—1,1)
I

(10)

N~

(c,, +b,, +neo E)g C—IL((s)e ' = g (a'„, ,+a'„+, )g v(QI(E)e ' +g g) L (E)e ' (C„', (+C„'+, (), (ll)
I Im

@=1,N~, n= —~, . . . , —1,0, 1, . . . , ~ .

The initial condition is

a'„„. :6„05,„.
V~O

(1 la)

N~
= g (a'„, +a'„+, )v,

v=1

When the reference state la ) is a bound state, Eq. (11)
may be recast as follows. Multiplying Eq. (11) by
L&(E)e '~ and integrating over E, we get

readily follows that

y =-o, 1 —ml»,
yi, i+i =

yI I =2l +1 . (14)

Equations (10) and (12) may be cast as an eigenvalue
equation for 6, by defining a column vector X' con-
structed from a'„„, n = —~, . . . , ~, p=1,N&, followed
by C„'&, n = —~, . . . , ~, I =0, . . . , ~, with [cf. Eq. (9)]

(X')t(X')= I .

where

+Kg I(c:—i, +c:+i, (12)
Similarly, a coefficient matrix A can be formed from v&„,

yi, and g& such that Eqs. (10) and (12) are equivalent to
the matrix equation

y(~ =ymi= f «((s)L (E)e 'ds .
0

(13)

From the properties of the Laguerre polynomials, it

AX'=A, X' . (15)

Owing to the symmetry properties of the elements consti-
tuting A, [see below Eq. (8)], it is a Hermitian matrix.
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Therefore, 5, is a Hermitian form [10],given by

b,, =(X')t A(X') . (16)

From the properties of Hilbert matrices [10], we know
that 5„ if it exists, must be real. However, for the ac
Stark problem, where V=eE0x, E0 being the amplitude
of the electric field, Yajima [11]has shown that b,, is ac-

2N
tually complex, with Im (b,, )=O(EO '), where N, is
the smallest integer such that (E, +N, co)&0. In the
quantized picture, X, denotes the minimum number of
photons required to be absorbed in order to make a real
transition to the continuum. Now, in the Floquet theory
[1], this process is made possible because of the presence
of the periodic function exp( iN, co—t) Ther.efore, by re-
stricting n in Eq. (4) through n &N„ in the continuum
sector of the expansion of y'„) [Eq. (5)], we may expect
the resultant 5, to be real and hence the Hermitian form,
Eq. (16), to exist. This is, of course, an approximation,
since the underlying function space is no longer com-
plete. However, as explained in the Introduction, for
bound-continuum transitions, a probability per unit time
is indeed an approximate concept [6]. Thus we rewrite
Eqs. (4) and (5) as

7f max

+ g e '" 'f w„'(E)IE&ds,
0

n', „=[ —s, /co], (17)

where [x] denotes the largest integer less than x. The
vector X' and matrix A can be modified to conform to
this new expansion in an obvious manner and Eq. (15)
solved numerically with I less than some value, say, l
which may then be increased until the final results are
converged.

It must be stated here that apart from the argument
given above and that based on perturbation theory below,
no rigorous proof of the existence of a convergent solu-
tion of Eq. (15) under the condition n & N, has been ob-
tained, though some numerical evidence is presented later
on. The necessity of the condition n &N, for the reality
of b,, can be understood on the basis of perturbation
theory by noting that once a real (energy-conserving)
transition to the continuum is made, no further transi-
tions are permitted, according to this condition. In per-
turbation theory, this is equivalent to dropping all terms
with vanishing denominators in the continuum sector,
which are precisely the terms that contribute to the imag-
inary part of the level shift through the well-known
operator relation

X+LE

Note that in principle there need be no restriction on n
due to real transitions between discrete energy states
since the 5 function does not contribute. In practice,
though, perturbation theory has to be modified to handle
intermediate resonances [12],whereas the Floquet theory,

being nonperturbative in nature, needs no special atten-
tion. It is also worth stressing that the condition n (N,
does not imply LOPT. First of all, n is not restricted
from below. Second, n indicates the net number of quan-
ta absorbed; any number of virtual transitions without
violating this condition at any stage are permitted. Final-
ly, as mentioned before, there is no restriction on n in the
bound-state sector. Therefore, the transition amplitudes
calculated as described below represent the summation of
those terms of the conventional perturbation series that
do not involve any vanishing denominators in the contin-
uum sector.

Calculation of the S-matrix element connecting a
bound state ~i ) and a continuum ~Ef ) may now proceed
as in Ref. [1]. Before that however, the question of
wave-function renormalization and level shift of the final
state must be addressed. Since the level shift now is a
function of the continuous variable E, b,, in Eqs. (10) and
(11) would also have to be discretized just as A„'(E),
which would obviously lead to a much more complicated
set of equations. In practice, however, it is often a good

F.fapproximation to set h(Ef ) =0 and A„(E)=5„05(E—Ef ).
This can be seen by considering the case when H0 is just
the kinetic energy operator. For a continuum reference
state specified by momentum kf, ~ gi, ) is then given byf
[13]

~ gi, ) =
~ kf )e ' ' g J„(kf ao)e'""',

where E is the unperturbed energy (=kf/2) and ao is
proportional to the field amplitude. Thus b, (kf )=0 and

kfA„f(k)=J„(kf ao)6(k —kf). Therefore the wave-
function renormalization factor [14], appropriate for this
continuum state, is just Jo(kf ao), which is close to unity
for small field amplitudes. For illustrative model calcula-
tions, it is, therefore, sufficient to calculate the S-matrix
element from

Sf; = —2m.i T&,
". '6( Ef —E; neo ), —

with the T-matrix elements given by

N~

Tf,"'= g (a'„,„+a'„+,~)V,
@=1

—cf /2
+hagi (C„', i+6„'+, i)e L (Ef) .

lm

(18)

The transition probability per unit time to a final state
satisfying the energy conservation condition implied by
the 5 function in Eq. (18) is then given by (e.g., Ref. [13],
Chap. 6)

Wfj 27rl TfI 'l'&(ef Ej n~)

Actually, beyond the first accessible continuum level, i.e.,
n &n',„+1, the second sum on the right-hand side of

Sf;=—ilim f e f (Ef ~
V g;)dt .

g~0 —oo

Using Eqs. (3)—(8) and evaluating the integral as in Ref.
[1]finally leads to
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Eq. (19) does not contribute anything, while for n =n ',„,
C„'+, i

——0. Tf,
"' is the amplitude for a transition to the

continuum corresponding to the net absorption of n
quanta of the field represented semiclassically by the
periodic interaction 2V costs. For the sake of conveni-
ence, we shall often refer to it as the n-photon transition
amplitude. Also, since Eqs. (9), (10), and (12) determine
a'„„and C„' I only to within an overall constant phase, Eq.
(19) only fixes

~ T&,"'~, which, however, completely deter-
mines the transition probability. The numerical results
discussed below, therefore, refer to

~ T&,"'~.

next higher value of n', „ is really three, for which no
convergent results are to be expected. Finally, for small
Eo, one would expect the nonperturbative (NPT) Floquet
results to agree with LOPT calculations. 6& and T' ' in
the latter approximation can be calculated from standard
expressions [1]as follows:

„21V,.I'(e —ei )'

(e—s, ) —co

Substituting for V&, and carrying out the integral, we get

III. MODEL CALCULATIONS

In this section, specific numerical calculations are de-
scribed, which illustrate the significance of the condition
n & N, and the relationship of the nonperturbative transi-
tion amplitude as given by Eq. (19) to its perturbative ap-
proximation.

5i =I(a))+I( —co),

where

I(co)= Eoe —' E, ( —ei —co),
—(c&+co)

E& being the exponential integral. Similarly,

(20)

(21)

A. One bound state and no continuum-continuum coupling

This is the Friedrichs model and, in the notation of the
preceding section, corresponds to the choice Nz =1 and
V„.—:0. Also, the interaction is assumed to have no di-
agonal elements, i.e., V» =0. For numerical work, the
remaining quantities are specified as s

&

= —0.5 and

V&, =Epe ', with a variable coupling strength Ep.
From Eqs. (7) and (8) we then have V&i=E05IO and

gI
——0. For any given co, n', „ is predetermined as [Eq.

(17)] n', „=[0.5 jco]. In general, for the bound-state sec-
tor, an upper limit n~ for n is fixed to start with, which is
then increased to check for convergence.

The calculations presented here were carried out for
co=0.3, the corresponding n', „being 1. In this particu-
lar model, since the only bound state is fed by the contin-
uum [cf. Eq. (10)] alone, fixing n', „=I also fixes the
maximum value of nz required as two. Thus, in this case,
only one has to check for convergence in I,„. Also n

can only take odd values in the continuum sector, owing
to the absence of continuum-continuum coupling. The
fi st continuum level that can be excited, therefore, corre-
sponds to the absorption of three quanta. Further, the

VE ) ViEVEj
Ef =6)+ 3CO

0 —2a)(e —e, —co)

which reduces to

~3
P —(El+~) —E /2

267
e ' e f E(—e —co).1 1 (22)

The convergence of b, , and
~

T' '~ with respect to j,„
is illustrated in Table I for n', „=1and n', „=3. In the
former case, results for Ep =0.001 and 0.1 are presented,
both of which converge smoothly with increasing I,„.
In contrast, for n', „=3and Ep =0.1, the results are seen
to oscillate, thereby verifying the need for the limitation
on n in the continuum sector. (These values are con-
verged with respect to n in the bound sector, with n~ =4.)
Also, LOPT agrees very well with NPT for Ep=0.001,
but not at Ep =0.1.

Nonconvergence of the eigenvalues when n ',„exceed-
ed [ —e, /co] was also verified for the more general models
considered below. For further discussion, only the results
that have converged in nz and l,„(for the appropriate
n ',„)are presented in the following sections.

TABLE I. Convergence of level shift and transition amplitude with I,„. One bound state of energy —0.5 and no continuum-
continuum coupling, u =0.3.

Imax

Eo =0.001 Eo =0.1

n „=l, ng =2

Eo =0.001 ED=0. 1 i Z (3)i

n', „=3,n~ =4
Eo =0.1

5
10
20
30
40
50
80

100
LOPT

1.942 X 10
2.016x 10-'
2.035 X 10
2.037 X 10
2.038 x 10
2.038 x 10
2.038 X 10
2.038 X 10
2.038 x 10

1.860 x 10-'
1.917x 10
1.930x 10-'
1.931x 10-'
1.931x 10
1.931x 10-'
1.931 x 10-'
1.931x 10-'
2.038 X 10

—2.113x 10-'
—2.168 X 10
—2.183x 10
—2.184x 10-'
—2.185 x 10
—2.185x 10
—2.185x 10-'
—2.185x 10-'
—2.185x 10-'

—2.024x 10-'
—2.067 x 10-'
—2.077 x10-'
—2.078 X 10
—2.078 x 10
—2.078 X 10
—2.078 x 10-'
—2.078 x 10-'
—2.185 x 10-'

1.979x10 '
1.895 x 10-'
2.698 X 10
1.951 X 10
1.820 X 10
2.724x10 '
1.809 X 10
2.093 x 10-'
2.038 X 10

—2.022 x 10
—2.067 X 10
—2.068 x 10-'
—2.078 x 10-'
—2.079 x 10-'
—2.069 x 10-'
—2.079 X 10
—2.076 x 10
—2.185x 10-'
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B. One bound state withi continuum-continuum c l'coup ing

XdE dE, Ef =E)+ 3CO

Choosin for V''
g „the simple Hermitian form

V =0.1Epe ' e

the additional contribution i d 1is rea i y evaluated as

T (extra) =0.01EO(3)

XE~-) ( E) CO)E) ( E) 2CO)

Similarl T' 'y, may also be shown to bo e given by

(0 1E4/3
—(2E)+3'�) —E /2(4)— co e e

(23)

(24)

XE~-, (
—E, CO)E, ( —E, —2C—O),

Allowin for c

both in the Floquet theor and

possible final-state ene . I pe energies. In the
on to sequential ab sorpt o s along th

-I. & ~ d() il&
i 1 ~(E&~~1&~~E +

1. I (), h 1 d p ' g g'pin e orthefirst a
i e t e new alternative ro

'

amplitude given b
provides an extra

Z'3)(extra) = 00 00
V ~ V ~ V

0 O (E' —E, —2CO)(E —E, —CO)

~ ~

sition. In both cases, these model calculations

onset of nonperturbative behavior

52

C. Two bound states and a continuum

Bf =B)+2CO (26)

Choosing the additional matrix elematrix elements in this model as
&z

= . 0 same as the di ole ma'p e matrix element connect-
@ f hydrogen) and V2, =2V)„Eq.e s an 2p levels of h

Th'his is the simplest model that ermit
11 11 11 d

i.ng the condition n (X As we have

, no more t an two levels s
can be excited. Th'

(separated by co)

the sole bound
is is, of course be, because of the fact that

o e oun state is coupled onl to t
and, therefore th ff

y o e continuum
e e ective maximum

determined b n'
value of nz is

y n „. However, when ther
more bound stat

ere are two or
s a es, t ere is no such limit on n

these states can feed o h
tion of the continuum. M

ee one another without the a
ore importantl, this

around co=B —B

rrence o an interm
'

termediate resonance,
co=Be—Bi, where ordinar ertu

1 1 b kdo
yP ~ ~ o oy

rea s own. As has been shown 12
bation theory can be re 1

'
d

n, pertur-

~ ~

e regu arized to deal with this
consi er t e case X =2

sponds to two- h t
, which corre-

-p oton transition from the round
the continuum. In LOFT,

e ground state to
, we have

Tf) (LOPT) = +(&)
V, qVq) V V

(E2—E) —CO) 0 (E—E — )B B( CO

(25)By =B).+4co .

~~ and ~T
~

according to the FloT(3) I a (4)

(dotted lines) are sho g.
0 p ~ gain, for low Ep both theories

cellent agreement d
eories are in ex-

p o pn an, as ex ected
o s ow up earlier for the higher-order tran-

(&)
15Ee

Tf) (LOPT) = +00. 1Eoe
CO

Cf /2
e E, ( —E) —CO) . (27)

10

10

I
~ ~ ~

~
~ ~ ~ ~ ~I

~7.( )

10

1 0

I
g ~ p

E =0.1

5 ~

I
)

i

I

I

I

10
10

10

10
0.0

~ ~ ~ I ~ ~ s I
I I

~ ~ ~ ~ ~

I

0.2 0 4 0.6 0.8 1.0

10
0.30

~ ~ ~ ~ ~ ~ 8 ~ I ~ ~

0.35

~ ~ ~

0.40

E

FIG. 1. Three- and f
for the model describ d S

our-photon transition amamphtudes (a.u. )
S . , s a function of the fieldseri e I Sec. IIIB as

FICx. 2. Int ermediate resonance in transiti
h h h ne a sorption of two uanta.

ters are as in Sec. IIIC S - oolid line-NPT' o
dott d l -LOPT All quantities are in atomic units.
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~y, &= g a„(t)e "'
~r & (28)

The second term on the right-hand side, representing
transitions in which the intermediate state is in the con-
tinuum, is well behaved for (s, +co) &0, whereas the first
term has a singularity at co= f2 —c,. This can be removed
by first treating the coupling between the two bound
states nonperturbatively and then using perturbation
theory to describe transitions to the continuum. Since a
detailed account of this procedure is presented in Ref.
[12], only an outline is given here. Standard perturbation
theory [15] starts from the expansion

101
~ ~r

R /
H 1
R I
R I

IR
I

I

I
I

I

0 w w I

g I

I

R
I

R

8

~ I

I

I

I

10
I

R
I

I
W

I

sC

I

I

r

I 8 ~ ~ J ~

(where the summation also includes an integration over
the continuum), and determines a„perturbatively, assum-
ing the zeroth-order approximation to be a„=5„0. To al-
low for a resonance between states

~

1 & and ~2 &, we first
solve the two-level atom model involving only these
states, in the rotating-wave approximation (RWA), to get

—l dEl t —l(E, ]+A$+cO —E2)ta, =ae ', a2=Pe

10

0.00 0.05 0.10 0.15 0.20

FIG. 4. Same as Fig. 3, but close to resonance, co=0.3479
(a.u.).

where
1/2

@+0
2Q

1/2

the continuum level ~ef & may now be calculated by per-
turbation theory. This procedure modifies Eq. (27) as

Tj'i'(MPT) =2Eoe f P+0. laEoe e

e(0, XEi( —si —co —5i) . (29)

0+a
2Q

1/2
Q —e

2Q

1/2

and

&=ai —(&p
—&i), &=+&'+411'i21' .

1.00 -. ~ ~
I

~ ~ I
I I
I ~ ~ ~ ~ I ~

0.10 -=

0.01 -=

Using the above expressions for a
&

and a2 as the zeroth-
order approximation, the amplitude af corresponding to

It may be verified that ~Tf'i'(MPT)~~~T&, '(LOFT)~ as
vi2y~E~ ~0.

For numerical calculations, c.2 was chosen to be equal
to —0. 125, so that the two bound-state energies were the
same as those of the first two levels of hydrogen. The
variation of ~T' '~ with co in the range 0.3—0.4 (where
ii',„=I) is shown in Fig. 2, for ED=0.01 and 0.1, ac-
cording to the Floquet theory (NPT) as well as the two
versions of perturbation theory. The modified perturba-
tion theory (MPT) is seen to be in excellent agreement
with NPT, while the applicability of LOFT is limited to
low E0 and to values of co sufficiently removed from the
resonance frequency. The variation of

~

T' '~ with the
field amplitude is depicted in Fig. 3 (off resonance) and
Fig. 4 (near resonance). In the former case, LOPT fares
not too badly, as expected, while MPT begins to deviate
from NPT for E0~0. 17, presumably because of the
RWA which ignores the counterrotating terms (which
are fully accounted for in NPT). At co=0.3479, LOPT,
of course, breaks down completely, whereas the validity
of MPT extends to higher field strengths, again because
RWA gets better as exact resonance is approached.

IV. SUMMARY AND CONCLUSIONS

0.00 ~ ~ ~ ~ I ~ ~ ~ ~ I E ~ ~ ~ I ~ ~ ~ ~

I I I

0.00 0.05 0.10 0.15 0.20

E

FIG. 3. Variation of the two-photon transition amplitude for
the model described in Sec. III C in the nonresonance region,
m=0. 3, with Eo. Solid line-NPT; open triangles-MPT; dotted
line-LOPT. All quantities are in atomic units.

In the foregoing, we have examined the conditions un-
der which transitions from a bound to a continuum state
of a quantum system, due to a time-periodic interaction,
can be described using the Floquet theory, which rests on
the possibility of representing the fully interacting wave
function as a normalizable quasiperiodic state. This
turns out to be the case, provided an appropriately trun-
cated function space composed of the eigenfunctions of
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the unperturbed Hamiltonian and the set of time-periodic
functions of the form exp(incot), is employed in con-
structing the wave function. The approximation involved
in this procedure corresponds to the condition under
which a transition rate to a given final state can be
defined according to the general theory of damping phe-
nomena [6], namely, the neglect of the imaginary part of
the energy shift, in comparison with its real part. The
numerical calculations described in Sec. III illustrate the
application of the present formalism to specific models
and bring out inter alia the special efficacy of this ap-
proach in dealing with intermediate resonances. In con-
clusion, to the extent that a transition rate can be defined

at all, the Floquet theory provides a viable means of per-
forming nonperturbative calculations for both bound-
bound and bound-continuum transitions under the
inhuence of a time-periodic perturbation.
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