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Coherent population transfer in multilevel systems with magnetic sublevels.
I. Numerical studies
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The technique of stimulated Raman adiabatic passage has become an established procedure for
producing complete population inversion in atoms or molecules via application of Stokes and pump
pulses in a counterintuitive sequence. We discuss here some of the new and important phenomena
that arise when some of the states involved have nonzero angular momentum, the field polarization
directions have no simplifying symmetries, and Zeeman splitting lifts the magnetic sublevel degen-
eracy. We consider the effects of the linkage structure of the Hamiltonian, the effects of various
polarization directions, and the effects of various choices for carrier frequencies, as expressed by
detunings from single-photon resonance. In particular, we consider an example with angular mo-
mentum J = 0 W J = 1 W J = 2 in which nine magnetic sublevels occur. We show that under
suitable conditions it is possible, simply through the appropriate tuning of pump and Stokes carrier
frequencies, to place the entire population into any speci6ed single magnetic sublevel.

PACS number(s): 42.50.Hz, 42.50.Rh, 42.65.Dr

I. INTRODUCTION

A. Basic stimulated Raman adiabatic passage

There is much contemporary interest in techniques
that can control translational and internal degrees of
freedom of atoms or molecules through interactions with
laser radiation [1—11]. Applications include detailed
studies of collision dynamics [12—14], spectroscopy [15],
atomic interferometers [8], and even cavity quantum elec-
trodynamics [16].

Among the techniques in use for population trans-
fer are optical pumping, Franck-Condon pumping for
molecules [17,18], and stimulated emission pumping
[19,20]. Techniques based upon adiabatic passage
[3,21,22], via controlled temporal variation of elements
of the Hamiltonian, oKer possibilities for producing com-
plete population transfer. The adiabatic variation can
occur either in the diagonal elements, as changes in dif-
ferences between Bohr frequencies and laser frequencies,
or in the oK-diagonal elements, through pulsed variation
of radiation intensity.

A potentially valuable example of adiabatic popula-
tion manipulation, termed stimulated Raman adiabatic
passage (STIRAP) [3], recently reviewed [23], has been
discussed theoretically [24—39] and demonstrated exper-
imentally [3,10,40]. In its most elementary form, the
STIRAP process takes place in a nondegenerate three-
state system (an initially populated ground state 1, a
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final state 3, and an intermediate state 2), coupled to
two pulsed radiation fields (termed pump and Stokes
fields) in a conventional Raman configuration (sometimes
termed a A system, as distinct &om a V or ladder ar-
rangement of the three energies). The process employs
a counterintuitive pulse sequence [3,35] starting with ap-
plication of the Stokes pulse (connecting states 2 and 3)
and ending with application of the pump pulse (connect-
ing states 1 and 2). By enforcing adiabatic evolution of a
dressed state as the state vector, together with continued
two-photon resonance, one can force complete population
transfer between state 1 and state 3. If two-photon reso-
nance is maintained, then the resulting complete transfer
is insensitive to the pump or the Stokes detunings from
respective single-photon resonance and at no time does
appreciable population reside in intermediate state 2.

A number of extensions of the basic three state
STIRAP procedure have been discussed, including the
effects of pulse bandwidth [33], the presence of multiple
intermediate states or multiple final states [28], and the
use of four- or five-state sequences [37,38,41]. Such theo-
retical work, together with recent experimental confirma-
tions, suggests that the mechanism of adiabatic passage
via counterintuitive pulse sequences has broad applica-
bility beyond the original three-state system.

The present paper examines a diKerent and important
multilevel aspect of the STIRAP procedure, involving
the magnetic sublevel structure that accompanies rota-
tional degeneracy. Our objective is to find procedures
that will allow selective excitation into different mag-
netic sublevels selected simply by tuning the laser fre-
quencies. We illustrate the possibilities by examining
in detail a particular case, excitation of the sequence
J = 0 ~ J = 1 ~ J = 2 by linearly polarized lasers. The
example, observable in metastable neon, is sufFiciently
general to illustrate a number of important considera-
tions and problems that have hitherto escaped notice.
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B. STIRAP with sublevels

The simple picture of population transfer between two
quantum states via an intermediate state, as is the case
in traditional STIRAP, requires modification when the
atom or molecule possesses nonzero angular momentum.
A quantum state having angular momentum J has 2J+1
magnetic sublevels that, in the absence of external fields,
are degenerate in energy. In such a system population
control includes control of alignment or orientation or,
for most detailed control, transfer of population into a
single magnetic sublevel.

Optical pumping techniques have been used both to re-
move population from a sublevel [11,42—45] and to trans-
fer all population into one sublevel [11]. However, al-
though this technique can place population entirely into
individual sublevels with M = 0 or 6J, it does not per-
mit transfer into other single sublevels. It is therefore of
interest to ask whether STIRAP can produce selective
transfer into an arbitrary sublevel.

The possibility of extending the STIRAP concept,
which has already been used to align atomic angular mo-
mentum [40], to excitation involving magnetic sublevels
has attracted some attention [46—48]. In the simplest
proposals, optical selection rules, together with appro-
priate choices of pump and Stokes polarizations, reduce
the full set of magnetic sublevels to smaller sets of uncou-
pled triads [40]. It is then possible to populate selectively
a single final sublevel by utilizing selection rules in con-
cert with various optical devices that produce particular
polarizations of the radiation (see the diagrams below).
For such cases the traditional STIRAP is possible when
the appropriate two-photon resonance tuning holds and
the usual adiabatic conditions are met [3]. As noted be-
low, it is possible to introduce this simplification with or
without Zeeman shifts induced by a static magnetic field.

In some of these applications [8,46,47], simple selec-
tion rules act to convert the sublevel system into a simple
multilevel ladder of the sort discussed previously. Under
the most general conditions of pump and Stokes polar-
izations (e.g. , polarizations not collinear) the excitation
linkages do not separate into smaller sets of independent
pathways. Such situations raise the interesting possibility
that, when the linkages connect more than three states
into a pattern that includes more than one final sublevel,
then it may be possible to populate a single selected mag-
netic sublevel simply by suitable tuning of the laser car-
rier frequencies to match a resonance condition with one
of the Zeeman-shifted sublevels. In such cases the radi-
ation polarization remains fixed (but the pump and the
Stoke polarizations are not collinear) and the Zeeman-
shifting static magnetic field remains constant, while ei-
ther the pump or the Stoke field is tuned in &equency
so as to establish the appropriate two-photon resonance
condition.

In this paper we will discuss a number of problems
that arise when there are magnetic sublevels, separated
in energy by a Zeeman shift. We shall present results
of modeling pulsed excitation sequences, using both the
Schrodinger equation and a density matrix equation. In
a companion paper [49] we present an algebraic analysis

of some of the features that are of particular importance
for successful population transfer.

C. Population dynamics: Numerical integration

Population transfer that occurs during a much shorter
time interval than the lifetime for spontaneous emission
from intermediate states can be satisfactorily described
by the time-dependent Schrodinger equation

Although this equation is adequate for treating ideal
STIRAP, because no population occurs in radiatively
decaying states, a more realistic model of general exper-
iments (allowing some population to be lost and other
population to be recycled by optical pumping) requires
the use of a density matrix p(t), through the solution to
the generalized Bloch equation (see [ll], p. 354)

(1.2)

where I' describes the effects of spontaneous emission.
The nonzero elements of I'p are expressible in terms of
spontaneous emission rates A,.~ between levels i and j,

We will present results of computer simulation for both
the Schrodinger equation and the more elaborate equa-
tions for the density matrix. For the latter computa-
tions we included spontaneous emission with rates ap-
propriate to the STIRAP transitions between the two
metastable levels Po and P2 of neon, via the interme-
diate level Pq. The numerical solutions to the coupled
first-order ordinary difFerential equations [9 equations for
the Schrodinger equation and, because of symmetries of
the rotating-wave approximation (RWA) Hamiltonian, 45
equations for the density matrix] were obtained with an
eighth-order Runge-Kutta algorithm with adaptive step-
size control.

In what follows we will describe the RWA Hamilto-
nian of interest, taking into account the different orien-
tations of the polarization directions of the field. We
will discuss the linkage patterns that result from various
polarization choices. We will discuss some of the proper-
ties of the adiabatic states and the adiabatic eigenvalues
and present numerical examples, interpreted in terms of
adiabatic states, that demonstrate complete population
transfer. We will point out some peculiar features of the
transfer process, readily overlooked, that are related to
the properties of the RWA Hamiltonian.

D. Concerns: Intermediate-state population

In a typical application of basic three-state STIRAP
the initial and the final states are long lived, but the in-
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termediate state is shorter lived and, if populated, will
lose population by spontaneous emission into states other
than the three of interest. The three-state STIRAP pro-
cess avoids such losses by moving population directly be-
tween the initial and the final states without placing any
population into the intermediate state. The procedure is
accomplished by maintaining population in an adiabatic
dressed state that has no component of the intermediate
atomic state.

In more general cases, involving magnetic sublevels, it
may not always be possible to create completely "dark"
dressed states (i.e. , dressed states that have no compo-
nent of any of the intermediate sublevels). In such cases
adiabatic passage will place some population into the in-
termediate sublevels. The presence of intermediate-state
populations need not hinder complete population trans-
fer between selected sublevels, if decay from intermediate
levels is negligible. However, the presence of numerous
adiabatic energies raises new concerns. We discuss the
need to show that, for adiabatic passage to cause popu-
lation transfer, there should be an adiabatic connection
between a single initial sublevel and a desired single final
sublevel (one for which two-photon resonance applies).
When such a connection occurs, a counterintuitive pulse
sequence conducted adiabatically will induce complete
population trans fer.

Transient transfer of population into intermediate
sublevels is affected by single-photon detunings. We
Bnd instances in which it is desirable to operate with
some single-photon detuning, unlike the pure three-state
STIRAP where single-photon resonance is desirable.

E. STIRAP veri6cation

To demonstrate STIRAP one must demonstrate (es-
sentially) complete population transfer to a single final
state. This must take place as coherent excitation. When
sublevels are present, it is neccessary to measure the dis-
tribution of population among the final sublevels.

In the absence of deliberate control, the terrestrial
magnetic Geld will scramble the sublevels during time
intervals longer than the relevant Larmor precession pe-
riod. For best results the populations should not move
among the sublevels during the time between the end
of the STIRAP process and the moment of population
probing. To ensure this state stability one can impose
a static magnetic Geld which will produce Zeeman split-
ting of the various sublevels and will maintain sublevel
distinctness. Thus verification of the population trans-
fer requires some control of the static magnetic Geld and
we need to know how this splitting, if present during
the course of the STIRAP process, will a8'ect population
transfer.

metastable neon, in which an initial level of angular mo-
mentum J = 0 proceeds to a Gnal level having J = 2,
through an intermediate level of J = 1. This system,
though less general than other choices, illustrates the ma-
jor properties of coherent excitation with sublevels.

The Brst step toward analyzing coherent excitation is
to establish the linkage pattern of the RWA Hamiltonian.
Such diagrams show, in simple cases, the excitation route
from initial to final state. In more general cases they
merely show the several sublevels that may participate
in the population dynamics. For electric (or magnetic)
dipole radiation, considered here, each magnetic sublevel
has a link with no more than three sublevels of the ad-
jacent levels in the chain. Thus the most general linkage
pattern is that of Fig. 1. This figure defines the num-
bering convention that we hereafter follow. For clarity
this Bgure shows the linkage pattern as it would be ap-
propriate for a ladder system, wherein successive levels
increase in energy, rather than for a A (or Raman) se-
quence, in which the first and the last levels have lower
energy than the middle level. The details of this matrix
depend on the angular momentum quantum numbers J
and M of the various sublevels and upon the polarization
directions of the two radiation fields; it may be evaluated
by applying standard procedures from the quantum the-
ory of angular momentum [50,51]. As we note below, for
several special choices of polarizations the general pat-
tern reduces to conventional STIRAP process involving
only three linked sublevels.

The introduction of a rotating-wave picture for proba-
bility amplitudes follows the same procedure in an angu-
lar momentum basis as it does for nondegenerate states
( see [11],Chap. 20). For simplicity we choose the quan-
tization axis of the angular momentum states to coin-
cide with the direction of the magnetic Beld. With this
choice the evaluation of the magnetic interaction is triv-
ial: the magnetic interaction Hamiltonian is a diagonal
matrix whose elements are the usual Zeeman shifts given
by the product of the magnetic quantum number M, the
Lande g factor, the Bohr magneton, and the magnetic
Geld strength. The diagonal elements of the RWA Hamil-

J=2

II. MULTISTATE RYE HAMILTONIAN
AND LINKAC ES

A. Nine-state R%A Hamiltonian

Throughout the remainder of this paper we consider
only a specific example, appropriate to the excitation of

FIC. 1. Numbering convention and potential linkage pat-
terns for the nine sublevels of the transitions J = 0 ~ 1 ~ 2,
exhibited as a ladder system. The Zeeman splittings of the in-
termediate and the final levels are A I and A, respectively.
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tonian become detunings between laser carrier &equencies and Zeeman-shifted Bohr frequencies.
For the J = 0 ~ 1 ~ 2 sequence that we are considering the upper triangular portion of the RWA Hamiltonian

(times 2/ 5) for a A configuration has the form
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The factors O~ and Og are sublevel-averaged Rabi fre-
quencies that, being proportional to electric Geld ampli-
tudes, contain all of the time dependence. The time-
independent dimensionless coupling coefBcients K,~, dis-
cussed in the following sections, contain the dependence
on the polarization directions (see the Appendix for a
discussion of the derivation of these factors). The fre-
quencies 4 and L are Zeeman shifts for levels 2—4
and 5—9 respectively. As diagrammed in Fig. 2, the fre-
quency L~ is the detuning of the pump frequency u~
from the unshifted pump transition and Lg is the dif-
ference between pump and Stokes frequency shifts (i.e. ,
the Raman frequency or detuning from two-photon reso-
nance .

B. Specialization to linear polarization

The procedure for calculating the Rabi frequency for
arbitrary (elliptically) polarized light is presented in the
Appendix. Formula (A2) presents the basic dependence
upon magnetic quantum numbers. To simplify the dis-
cussion, we consider linear polarizations for both Gelds.
When the polarization axis is used as the quantization
axis, then the electric field lies along one unit vector and
only the q = 0 component occurs in the sum. For more
generality we let the quantization axis be arbitrary.

To connect the electric-field vector in this reference
frame with the vector in another frame (e.g. , that of the
static magnetic field), we require a rotation matrix of
order 1:

I

We therefore obtain the formula

O(JiMi, J2M2)

~ = —
q (Jilldll J2). (2.3)

Note that only a single term occurs in the sum q = Mi-
M2. The dependence upon angles enters as

~2Z)(', )(n,iP, ) = (
sin P exp(in)

icos P
, —sin P exp( —in)

for
for
for

q=0
q = —1.

(2.4)

For the present discussion we consider copropagat-
ing or counterpropagating linearly polarized pump and
Stokes lasers with electric-Geld vectors lying in a com-
mon plane with the magnetic-field direction, so that only
a single angle P need to be specified for each laser field.
Figure 3 shows the assumed geometry. Under these sim-
pliGcations the coupling coefficients are

(2.2)

where the reduced matrix element and the pulse envelope
have been incorporated into the sublevel-averaged Rabi
frequency 0

(2.i)

h, p

COp

03p

FIC. 2. Definitions of pump frequency ~~, pump detuning
A&, Stokes frequency w&, and two-photon detuning A& for
the ladder configuration (left) and A configuration (right).

FIG. 3. Definition of pump polarization angle Pe and
Stokes polarization angle Ps with respect to the R field and
propagation directions, for collinear laser beams.
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and

sinP~, Kis ——— cos P~, Ki4 = —Ki2

(2.5a)

?
5
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Jt3 2
lI

(a)

—~ S

K25 ——
1 1

10 ' 10
sinPs, K2s —— —cosPg, KQ7 — K47,

(2.5b)
S
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Kss —— —sin ps, K37 — cos p$') Kss — K3Q,

20 ' 15

(2.5c) (c)

1 1
K47 — —sill Ps, K4s = —cos Pg, K4g ——Kzs,

60 ' 10

(2.5d)

S

where the subscripts P and S refer to pump and Stokes
polarization directions. When P~ and Pg are not 0' or
90, all the matrix elements are nonzero and then cou-
pling exists among all sublevels. Note that the choice of
pump polarization angle

FIG. 4. Examples of three-state linkage patterns that can
be obtained by suitable choice of polarizations: (a) both fields
linearly polarized along a common axis, (b) both fields circu-
larly polarized with the same sense along a common axis,
and (c) combination of linear and circular polarization, with
beams not collinear.

tanP~ = ~2 or pJ = 54.7 (2.6)

equalizes the three components of the pump dipole tran-
sition moments. This is the so-called magic angle, where
there occurs a zero of the second I egendre polynomial.
No single angle will give equality among the transition
moments for the Stokes transition.

C. Simple linkage patterns

Inspection of the RWA Hamiltonian matrix reveals sev-
eral special choices of polarizations for which the ground
state has links only to a three-state chain, as in conven-
tional STIRAP. Figure 4 shows some of these cases.

The simplest case occurs when pump and Stokes fields
are each linearly polarized, and these polarizations are in
the direction of the static magnetic field. Then we have
the conventional STIRAP process, involving only transi-
tions between states having M = 0. Figure 4(a) shows
the linkage pattern in this case, simplified by present-
ing it as would be appropriate for a ladder rather than
for a A sequence. Light lines indicate linkages that do
not participate in the coherent dynamics evolving from
state 1. These linkages d.o have an important effect when
spontaneous emission (optical pumping) alters popula-
tions significantly. As can be seen, only states 1, 3, and
7 participate in the coherent excitation dynamics. Be-
cause these sublevels have null Zeeman shift, one- and
two-photon resonance occurs when the carrier frequen-
cies are resonant with the unshifted transitions.

Other simple three-state cases occur when the pump
and Stokes fields are circularly polarized and. they prop-
agate collinearly along the direction of the static mag-

netic field. When the polarizations have the same sense
(for a ladder configuration), one can transfer population
entirely to ~M~ = 2 [see Fig. 4(b)], whereas when the
polarizations have the opposite sense, population trans-
fer to M = 0 takes place. Again, heavy lines indicate
the transitions that participate in the coherent excita-
tion and light lines show linkages between unpopulated
states.

By careful orientation of pulse propagation directions
to be at right angles, it is possible to combine a lin-
early polarized pulse with a circularly polarized pulse to
produce the linkage patterns shown in Fig. 4(c). Note
that this is not a case described by the explicit formulas
above, involving collinear beams. In all of these cases the
presence of angular momentum introduces no additional
effects beyond the basic three-state STIRAP considera-
tions.

D. Ceneral linkages

When the pump and the Stokes polarizations are not
collinear, then the Hamiltonian may become more com-
plicated and. linkages may connect more than three sub-
levels. In such cases interference may occur between al-.
ternative paths between connected states and it is not
always possible to guess the dynamic behavior of the sys-
tem from inspection of a linkage diagram. Nevertheless,
the linkages do show possible excitation routes and can
be useful guides.

Figure 5 shows linkages that occur when the fields
are linearly polarized but in orthogonal directions. For
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FIG. 5. Examples of multiple-state linkage patterns that
can be obtained by suitable choice of polarizations: (a) pump
6eld linearly polarized along the B' 6eld, Stokes field linearly
polarized at right angles to this; (b) pump and Stokes fields
polarized linearly at right angles to the B field; and (c) Stokes
Geld linearly polarized at 45 to pump.

89

4 3

5

2
1~ (c)

P~ = 0 this gives rise to the linkage of Fig. 5(a) involving
a single intermediate sublevel and two final sublevels. In
the absence of spontaneous emission, only two of the fi-
nal states are coupled to the ground state. These linkages
are shown as heavy lines; light lines indicate the transi-
tions among unpopulated states. When Zeeman splitting
is present (and is larger than the two-photon linewidth
established by the peak Rabi frequencies) then only one
of these final states will satisfy the two-photon resonance
condition. An example involving three final sublevels, re-
alized for PJ ——Pg = 90, is shown in Fig. 5(b). When
the pump polarization lies along the magnetic field but
the Stokes polarization does not, we obtain the linkages
of Fig. 5(c). All sublevels are interconnected in this case.

The more general pattern of Fig. 1 occurs for arbitrary
elliptic polarization or for linear polarization with neither
Pz or P~ taking the values 0 or 90'. A very simple ar-
rangement in which this linkage obtains occurs when the
pump and the Stokes beams are collinear, propagating
perpendicular to the B field, and with linear polariza-
tion at 45 with respect to each other.

E. Resonance conditions

The linkage pattern of Fig. 5(c) suggests that popula-
tion could reach all of the final magnetic sublevels. (That
is, the dressed state introduced by the Stokes Geld con-
tains components of all of the magnetic sublevels. ) How-
ever, the presence of population in any state will depend
upon the presence of resonant tuning in the various link-

FIG. 6. Two-photon resonance conditions for (a) state 7,
(b) state 6, and (c) state 5, in a ladder configuration.

ages; common experience suggests that resonant transi-
tions will produce larger population transfers. When the
sublevels exhibit Zeeman splitting, then the various tran-
sitions cannot all be resonant simultaneously. As a rule,
we require that the pump and the Stokes frequencies com-
bine to produce a two-photon resonance with the desired
final state. One of the intermediate states may also be
resonant with the pump transition, but this is not always
desirable. Figure 6 shows the one- and the two-photon
resonance conditions for a ladder configuration.

III. LOSSLESS POPULATION TRANSFER
DYNAMICS

A. Dynamical eigenvalue structure

The dressed states of the lossless RWA Hamiltonian,
which provide the adiabatic states that are employed in
the STIRAP processes, can be assigned labels that iden-
tify the placement of the associated eigenvalue in an or-
dered list of eigenvalues. For example, the adiabatic state
that has the second largest eigenvalue will at all times
be uniquely defined, barring degeneracy. This property
of the adiabatic states makes it possible to deduce the
adiabatic behavior of a pulsed excitation sequence by ex-
amining a plot of RWA eigenvalues versus time. Both
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initially and Gnally the eigenvalues are the diagonal ele-
ments of the RWA Hamiltonian (the detunings) and so at
these times the curves have a unique connection (barring
degeneracy) with particular atomic states. By following
a curve that avoids all crossings we deduce the connection
between initial and Gnal atomic states.

It is this connectivity property of dressed eigenvalues
that ofI'ers the possibility for producing, by adiabatic
passage, complete population transfer between an initial
atomic state and another atomic state for which the laser
carrier frequencies maintain resonance. What cannot be
determined from the eigenvalue curves are the details of
the transition and whether a particular pulse arrange-
ment does in fact maintain adiabatic conditions.

B. Examples of population transfer vrithout loss

= 0.3 rad/ns, A~ = 0.6 rad/ns. (3.1a)

As pulse shapes we have taken the electric-field ampli-
tude to be proportional to one cycle of a squared sinusoid

Bg(t) = OP "sin (7rt/T),
n~(t) = nJ, "sin (7rt/T —7rt /T). (3.1b)

In the following examples we illustrate this adiabatic
population transfer in a three-level atom having J = 0, 1,
and 2, and with Zeeman splitting 4 = A as is appro-
priate for levels of P (as occurs with metastable neon).
There exists a nondenumerable infinity of possible choices
for polarization angles and detunings for which adiabatic
population transfer can be accomplished in the absence
of spontaneous emission.

Population transfer to J = 2, M = 0 could readily be
accomplished by choosing pump and Stokes polarizations
to both be linearly polarized along the magnetic-field di-
rection; as noted above the linkage pattern then becomes
that of the conventional three-state STIRAP. Similarly,
population transfer to ~M~ = J could be accomplished
by using circularly polarized light that again reduces the
linkage pattern to three states. However, such arrange-
ments of polarizations do not permit other choices of fi-
nal sublevels. Therefore we here consider an arrangement
that has potential linkages to all sublevels: we take the
Stokes Geld to be linearly polarized at 45 to the collinear
pump and magnetic-field direction (P~ = O', Pg = 45').
Under these conditions all of the magnetic sublevels of
the final (j = 2) level have some linkage with the ground
state. We shall show that, with this arrangement, it is
possible (if decay is negligible) to place all population
into a single sublevel by setting the combined pump and
Stokes frequencies to match the two-photon resonance
conditions with a selected sublevel.

There are several options for choosing the single-
photon detunings. For the examples presented here we
have taken the pump to be at a fixed frequency, not res-
onant with any of the excited states, and we vary the
Stokes detuning to establish two-photon resonance with
the desired Gnal state. Specifically, we choose

This functional form, unlike the often used Gaussian
pulse, goes exactly to zero at finite times, taken here
to be t = 0 and t = T for the Stokes pulse. For the
following Ggures we used the parameters

O~~" = 3 rad/ns, T = 6000 ns, tp ——2000 ns.

(3.1c)

C. Examples: Population transfer
to M = 0, +1, and +2

Figure 7 shows the behavior when we enforce two-
photon resonance with the M = 0 sublevel of the fi-

0
1.2

0.6
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0.0

4,6

r 1i7

-0.6

G
~ rE

C40
C4
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10'—
2000 4000 6000 8000
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FIG. 7. Example of time evolution for lossless nine-state
system. The top frame shows envelopes of pump and Stokes
pulses; the middle frame shows adiabatic eigenvalues (the
heavy line is the STIRAP state); the bottom frame shows
population histories. Heavy lines are states between which
STIRAP occurs. The pump is detuned from the single-photon
resonance (A~ = As = 0.6 rad/ns), Zeeman splittings

= 0.3 rad/ns, and polarization angles are PJ = 0'
and Ps = 45'. For this example two-photon resonance occurs
with M = 0 (state 7).

The following set of Ggures shows examples of complete
population transfer to a Gnal magnetic sublevel that has
been selected by adjusting the Stokes frequency, holding
fixed the two polarizations and the pump frequency. The
top frame shows the pump and the Stokes envelopes. The
middle frame shows the adiabatic eigenvalues obtained by
diagonalizing the RWA Hamiltonian at each instant of
time. The bottom frame shows the population histories
obtained from numerical solution to the time-dependent
Schrodinger equation.
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nal level (atomic state 7). From the bottom frame we
see that complete population transfer occurs into the de-
sired sublevel, just as it would for conventional three-
state STIRAP, despite the linkages to other states. It
should be noticed that, although population transfer is
eventually complete, during the process there is tran-
sient population (about 10/o) in two intermediate sub-
levels (atomic states 2 and 4). This population can un-
dergo spontaneous emission and therefore its presence
may limit population transfer and selectivity.

We can track the course of adiabatic population trans-
fer on the energy diagram in the center frame. The initial
and the final spread of dressed eigenvalues represents the
spread of Zeeman shifts. In the absence of pulsed radi-
ation interaction our choice of Zeeman splittings, taken
with the energy conventions of the RWA, leads to degen-
eracies of atomic states 1 and 7, states 3 and 5, and states
4 and 6. The pulsed radiation field removes this degener-
acy. The eigenvalue of interest here is the fourth one; it
remains nearly zero at all times and connects the initial
atomic state 1 with the final atomic state 7. Transient
population occurs in each of the intermediate sublevels.
In this case each of the sublevels of the intermediate level
(states 2—4) obtains transient population; there is no dark
state.

This same arrangement of polarizations, with atten-
dant sublevel linkages, can be used to place population
into any of the other final sublevels. Figure 8 shows pop-
ulation transfer into the final M = +1 sublevel (atomic
state 8) that occurs when the detunings are chosen to
make only that sublevel resonant. In this case it is the
third eigenvalue that is associated with the STIRAP state
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FIG. 9. Same as in Fig. 7 but with two-photon resonance
with M = 2 (state 9).

and it deviates noticeably from zero during the pulse se-
quence. As with the previous example, there is no dark
state.

Figure 9 shows the population transfer that occurs into
the M = +2 sublevel (atomic state 9) when this sub-
level obeys the two-photon resonance condition and the
other parameters are as chosen for the previous figures.
The eigenvalue of interest here is the second one. From
the eigenvalue plots it can be seen that there is a close
approach of neighboring eigenvalues at two intermediate
times. This hints that there may be difIiculty in main-
taining adiabatic conditions. The particular choice of
pulses used here produce successful population transfer,
but an inspection of data from a large set shows that
small changes of operating conditions could cause trans-
fer to fail.

An examination of the linkage pattern suggests that
this might be regarded as a four-photon resonance (one
pump and three Stokes interactions are associated with
the simplest links between initial and final atomic states).
This interpretation is consistent with the observation
that higher Rabi frequencies are required to produce pop-
ulation transfer with this choice of polarizations than is
the case for polarizations that provide direct linkages be-
tween states 1 and 9.

1O'
2000 4000 6000 8000

Time [ns]

D. Asymmetries in population transfer
to M = +2 and —2

FIG. 8. Same as in Fig. 7 but with two-photon resonance
with M = 1 (state 8).

Resonance conditions must be considered when one ex-
amines the linkage patterns. Figure 10 shows examples.
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involve the product sinPscosPg, so that the ratio of these
products is unafFected by change in Stokes polarization
Ps.

In the second sequence, with two-photon resonance es-
tablished to state 9, there are no intermediate resonances.
Although each of these sequences requires a minimum of
four photons, we would expect that the sequence to state
5 would have a stronger connection between initial and
final states. Numerical modeling shows that higher Rabi
frequencies are needed for complete transfer to level 9 as
compared to level 5, for the tuning of the laser &equen-
cies shown in Fig. 10. Numerical modeling (see below)
also shows that the occurrence of pump-laser resonance
tunings (with level 2 as examplified in Fig. 10) can have
detrimental efFects upon population transfer into final
sublevels.

FIG. 10. (a) Four-photon sequence 1-3-6-2-5 between
states 1 and 5. (b) Four-photon sequence 1-3-7-2-5 between
states 1 and 5. (c) Four-photon sequence 1-3-8-4-9 between
states 1 and 9. (d) Pour-photon sequence 1-3-7-4-9 between
states 1 and 9.

The top two frames show connections to M = +2 (state
5) through the linkages

1 W 3 ~ 6 ~ 2 M 5 [sequence (a)],

1 ~ 3 ~ 7 ~ 2 ~ 5 [sequence (b)].

E. Population transfer to the intermediate states

In conventional three-state STIRAP the intermedi-
ate state does not participate in the adiabatic dynam-
ics; the process is possible with or without resonance
of the single-photon detunings. When the system has
more complicated linkage patterns, then in general the
intermediate states participate in an essential way and
the behavior can depend qualitatively upon the status of
single-photon detunings. An interesting possibility oc-
curs, in the example of P~ = 0' and Ps = 45' polar-
izations treated above, when the pump field is resonant
with the M = +1 sublevel of the intermediate level and
there is no exact two-photon resonance. Under these con-
ditions complete population transfer occurs to the only

As shown at the bottom, two &ames connections to M =
—2 (state 9) occur through the linkages

1 ~ 3 ~ 8 ~ 4 ~ 9 [sequence (c)],

1 ~ 3 M 7 ~ 4 M 9 [sequence (d)].

These are the most direct routes between these initial
and final sublevels, although there is an infinite number
of other routes involving multiple connections and mul-
tiple loops. When the pump is resonant with state 3,
then both of these sequences (to M = +2 and M = —2)
have the same absolute values of intermediate detunings
and hence they will produce symmetric distributions into
M = +2 and M = —2. However, when the pump is
not resonant, then the two sequences will not have the
same absolute values for these detunings and one expects
difFerences in the populations reaching the final states
via two-photon resonance and STIRAP. Figure 10 of-
fers some insight into the expected behavior. All of these
sequences satisfy a two-photon resonance condition that
could arise when the pump is tuned to the blue side of
resonance. The first two &ames show two of the possi-
ble connections between states 1 and 5 when the two-
photon resonance is to state 5. There are two intermedi-
ate non-resonant detunings, but the final linkage is res-
onant. Note that the matrix element products K36K26
and K37K27 that occur in the two sequences above each
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FIG. 11. Same as in Fig. 7 but wraith the pump field reso-
nant with M = 1 (state 4). Population is transferred to state
4
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resonant final state, the J = 1, M = 1 intermediate
state. This particular state is not directly connected to
the ground state (the linearly polarized pump only con-
nects the J = 1, M = 0 state to this); the connection
can be regarded as a three-photon resonance (one pump
and two Stokes interactions; see Fig. 10). Figure 11
illustrates this case.

For application to STIRAP-type population transfer,
it is not desirable to place population into intermediate
states, either temporarily or finally, because these states
have connections, via spontaneous emission, to atomic
states that are immune to excitation by the pulsed radi-
ation. We can recognize, from the present example, that
any pump resonances with intermediate Zeeman-shifted
sublevels can be detrimental to the STIRAP process, un-

less conditions are identified that make all three interme-
diate basis states dark. This possibility will be discussed
in a companion paper [49].

F. Degeneracies and connectivity

To maintain the state vector as a single dressed state
(e.g. , the STIRAP state) there must be no possibility
of mixing this state with another dressed state. This
condition requires that the null eigenvalue remain well
separated from other eigenvalues. If this is not the case,
then we may expect that population transfer will not be
complete and that population histories may exhibit os-
cillations. Alternatively, successful population transfer
may occur by following diabatic evolution through curve
crossings. Potential problems can be revealed by exam-
ining plots of eigenvalues. Figure 12 presents qualitative
examples of two sets of adiabatic eigenvalue curves, for
the smallest magnitude eigenvalues. In the upper case
there is an adiabatic connection between desired atomic
states relating to zero eigenvalues when one of the Rabi

frequencies is zero and adiabatic passage will transfer
population. In the lower frame there is no such adiabatic
connection and the maintenance of adiabaticity will not
produce population transfer. These problems and a strat-
egy of how to identify them are discussed in the following
paper [49].

IV. POPULATION TRANSFER WITH LOSS

A. Effects of spontaneous emission

The demonstration of population transfer by means of
the Schrodinger equation, while desirable for its simplic-
ity and insights, does not adequately describe the phys-
ical situations that occur in practice. It is essential to
consider effects of spontaneous emission, which transfers
population between sublevels, diminishes coherences, and
introduces population loss from the manifold of states
that are treated. We incorporate all of these efI'ects with
the aid of the density matrix. . We have found that pa-
rameter choices that appear satisfactory for completely
coherent excitation may be poor choices when sponta-
neous emission is included. Nevertheless, our calcula-
tions suggest that, for realistic values of pulse duration
and peak intensity, it should be possible to achieve pop-
ulation transfer close to the adiabatic ideal.

B. Choice of polarizations

Simple considerations based on linkage patterns sug-
gest that certain choices of polarizations and detunings
are particularly suited to population transfer into certain
final states. Other choices are expected to be detrimen-
tal. A satisfactory choice is to take the pump polarization
to be at the angle that equalizes the three components
of the pump dipole transition moments. [This occurs at
the so-called magic angle, for which Eq. (2.6) holds. ] In
Ref. [49] we show that when two-photon resonance ex-
ists to state 7 we can force a null-eigenvalue state by the
requirement

tanPs = 2tanPJ . (4.1)

(b)

FIG. 12. Examples of adiabatic connections, with changing
time as the horizontal axis, between adiabatic states at early
times (left) and adiabatic states at late times (right). Arrows
show regions of pump and Stokes pulses. (a) Triple degener-
acy of null eigenvalue initially and finally, with an adiabatic
connection between desired initial (I) and final (F) atomic
states. (b) Double degeneracy initially and finally, with no
adiabatic path between desired initial (I) and final (I' ) atomic
states.

Here we quantify those simple predictions by showing
the dependence of the population transfer efIiciency on
the two polarization angles of linearly polarized collinear
pulses. Figure 13 shows the effect of polarization choices
on adiabatic population transfer into states 7—9, for the
parameter choices specified in Table I. States 5 and 6,
not shown here, have behavior like that of states 9 and
8. For these calculations we fixed the frequencies to force
a two-photon resonance between the starting state 1 and
the final state of interest, but we avoided single-photon
resonances.

The figures show, as expected from earlier discussion,
that the polarization choice PJ = 0 and Ps = 0, making
polarizations collinear with the quantization axis, pro-
duces nearly complete population transfer into state 7
(for which M = 0). The polarization choice PJ = 90'



576 B.%.SHORE, J. MARTIN, M. P. FEWELL, AND K. BERGMANN 52

180' 180'

150'— 150

120'- 120

S 90

30

0o

0 30' 60 90' 120' 150

180'—

180

00

00

:-'.::::-:::". :.'s''"-'.":.::::::::-")'::::'.::::::::::I:.:: '.:::.::::;J ': . :"-'0"' '::.::. ::. :. t'" "- '

30' 60 90 120

P

I

150' 180'

150'—
—0o8~0 9

120

90'—

60'—

30'—
i 99

0
0'

I
/

I

30'
I

'
I

'
I

60' 90' 120
1

I
. I

150' 180'

P

FIG. 13. Contour plots of populations reaching selected final states, as a function of pump polarization angle and Stokes
polarization angle. The pump field is not resonant (A~ = 6.28 rad/ns). Selected final states are M = 0 (state 7, upper frame),
M = +1 (state 8, center frame), and M = +2 (state 9, lower frame). Regions where transfer efficiency exceeds 95%%uo are gray.
The parameters are given in Table I. In each case the Stokes laser frequency is chosen to establish the appropriate two-photon
resonance condition.

A~ " ——6.28 rad/ns
A~ = 6.28 rad/ns

~ = 3.14 rad/ns

Bs " = 6.28 rad/ns
As = 6.28 rad/ns

= 3.14 rad/ns

Ab ——0.0151 ns
Ab, ——0.0110 ns
Abq ——0.0287 ns

TABLE I. Parameters used for calculating Fig. 13. 0&
and Qs " are the Rabi frequencies for the pump laser (P)
and Stokes laser (8). AJ and As are detunings from res-
onance with level 3 for the pump laser (P) and the Stokes
laser (S). The Zeeman splitting of the intermediate levels
(2—4) is 4 i and the splitting of the final levels (5—9) is A
The A, q with i = b and k E (a, b, c) are the Einstein coeffi-
cients; a stands for the intial state (1), b for the intermediate
states (2—4), c for the final states (5—9), and d for the sum
of all additional states that will not be part of the coherent
STIRAP process but could receive population through spon-
taneous emission.

ps =75, ps=45. (4.2)

and Ps = 0, or the choice Ps = 90' and P~ = 0', for
which one polarization is at right angles to the quantiza-
tion axis, produces nearly complete population transfer
into states 6 and 8 (for which M = +1 and —1).

On such plots the regions of high transfer efhciency will
further increase as the peak Rabi frequencies and Zeeman
splittings are increased. When the peak Rabi frequencies
become sufFiciently large, there occur polarization choices
that permit high eKciency transfer into any desired final
state, just by choosing the right frequency for two-photon
resonance. (Conversely, if the Rabi frequencies are too
small, there will exist no such region of high efIicience
common to all final states. ) One example of such a choice,
in which all Anal sublevels can be reached, is
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FIG. 14. Same as in Fig. 13 but the puinp field is resonant with state 3 (M = 0).

This choice, marked by a box surrounding the inset
p;; (i = 7—9) in Fig. 13, is appropriate to the particu-
lar pump detuning chosen for these calculations.

The sensitivity to polarization angles, shown here, is
not great when there is no single-photon resonance. How-
ever, when the pump frequency matches a one-photon
resonance, then calculations show that population trans-
fer will be poor into states 5 and 9 (less than 50%%uo) for
any choice of polarization. Examples of these cases are
shown in Fig. 14. In these cases there is no single choice
of polarization angles that will produce transfer efFiciency
above 90%%uo to all of the final sublevels.

C. EfFect of detuning

Because it is more convenient to vary the frequency
of one laser rather than to vary the polarizations, it is

desirable to be able to control population transfer by fre-
quency selection alone. Figure 13 shows that, in princi-
ple, this objective should be attainable. For the following
computations we chose polarization directions such that
all possible final states have links with the ground state,
specifically the angles P~ = 75 and Pg = 45

To interpret these results it is useful to view the locus
of points where one- and two-photon resonances occur,
as presented in Fig. 15. In this figure and the plots of
Fig. 16 the locus of two-photon resonance values follows
a straight line diagonally across the frame (the intercept
of this line differs for different sublevels, according to
their difFerent Zeeman shifts). The locus of pump reso-
nance values is a vertical line. We expect that adiabatic
population transfer will occur along the diagonals of this
plane. We expect that single-photon resonances, along
the loci shown, will affect the transfer.
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Figure 16 shows examples of Anal state population,
transferred adiabatically by counterintuitive pulse se-
quence, as a function of pump detuning and Stokes de-
tuning. The frames of this figure show that high transfer
eKciency is possible and that this efBciency has a very
marked preference for some combinations of pump and
Stokes frequencies.

The narrow ridge indicating very high, and selective,
population transfer coincides with the two-photon reso-
nance condition. The width of this narrow feature, where
STIRAP takes place, is the two-photon linewidth.

The weaker values of population transfer, forming a
shallow background at all detunings, is caused by optical
pumping. This mechanism is strongest when the pump is
resonant with an intermediate state whose spontaneous
emission will populate those final states whose magnetic
quantum number differs from the intermediate state by
no more than one unit. This mechanism produces the
broad ridges, with widths set by the power-broadening
of the pump transition.

A set of narrow valleys runs parallel to the sharp
STIRAP ridge. These are regions of the plot where
STIRAP transfer takes place to other final states. The
widths of all the features, both the central ridge and the
adjacent valleys, increase with increasing Rabi frequency.
This is an example of power broadening.

The STIRAP ridge has one or two distinct notches,
where the population transfer drops dramatically. De-
tailed examination of time histories and dressed state
components have revealed several causes for such fail-
ures of population transfer. In some cases there occurs a
failure of the initial state to connect adiabatically to the
desired Anal state and population merely returns to the
initial state after the pulse sequence concludes. Other
failures are due to a violation of the adiabatic criterion.
This need not prevent population transfer because it is
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sometimes possible to move population diabatically. This
is further discussed in Sec. V and, in particular, in the
following paper [49].

D. Dependence on Rabi frequerxcy

Although the choice of polarizations and frequencies
are the most critical decisions to be made, population

FIG. 16. Population reaching levels (a) 7, (b) 8, and (c) 9
as a function of detuning of the Stokes laser and the pump
laser for P~ = 1.31 rad and Ps = 0.785 rad. Other relevant
parameters are given in Table I.
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problems that can occur when implementing the proce-
dures. The magnetic sublevel structure leads to compli-
cations of the simple STIRAP concept because multilevel
linkages occur, involving branching and competition be-
tween possible transfer paths. Consequently, there occur
many opportunities for crossings and near crossings of
adiabatic eigenvalues. These have important efFects.
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FIG. 17. Population reaching states 7,8,9 (M = 0, —1, —2)
versus the peak value of Rabi frequencies 0& " ——Oz ".

3.14 rad/ns and the Stokes laser frequency is tuned
to match the two-photon resonance with the desired sublevel.
The polarization angles are Pr = 1.31 rad and Ps = 0.785
rad. The other values of parameters are those given in Table
I.

transfer also is affected by the strength of the pulses,
as expressed by the peak Rabi frequencies. Figure 17
presents an example of population transfer into states 7—
9. Population transfer increases with increasing Rabi fre-
quency, until complete transfer occurs. Population trans-
fer reaches a maximum for peak Rabi frequencies around
2 rad/ns. A further increase in pulse strength causes
a decline in this population. Due to increased nonadi-
abatic coupling more population is placed into excited
states, from which it is lost by spontaneous emission.

V. DISCUSSION AND CONCLUSIONS

A. Discussion

Our specific findings [52] include the following. The
simple choice of polarizations P~ ——0 and Pg g 0, which
might appear to be a natural choice, turns out not to be
the best choice for transfering population to large M val-
ues. This choice provides direct coupling from the initial
state into only one excited sublevel M = 0. Transfer of
population into M = 1 proceeds with one further pho-
ton, but transfer into M = 2, though possible, requires a
three-photon step, entailing a higher Rabi frequency than
is required with other polarization choices. We can al-
ways choose directions of linear polarization so that there
is at all times an adiabatic state with null eigenvalue and
no component of population in any excited magnetic sub-
level.

If there is a two-photon resonance to state 7 and there
is a one-photon resonance between states 1 and 3, then
state 3 is a dark state but the adjacent sublevels are
transiently populated. This is a consequence of having
nonzero linkages to other final states, i.e. , the nonreso-
nant pathways inHuence the dynamics. The population
in any of the excited sublevels is subject to loss by spon-
taneous decay and may thereby prevent complete pop-
ulation transfer. This transient population occurs with
greatest probability when the pump field is resonant with
state 3 and so it can be reduced by avoiding a one-photon
resonance of the pump transition. This loss of transfer
eKciency has been observed, but not yet reported in the
published literature; see [53].

We have carried out computer simulations of pulsed
excitation by solving the equations of coherent excita-
tion for the populations subject to simplified pulses. We
employ both the time-dependent Schrodinger equation
and, to include spontaneous emission, the density matrix.
From these results, and others reported in [49], we con-
clude that it is possible to produce highly selective pop-
ulation transfer into selected Zeeman-shifted magnetic
sublevels, using a generalization of the STIRAP mech-
anism. However, a magnetic sublevel structure, usually
present, must be considered. When spontaneous emission
is negligible, there exist many parameter choices (polar-
izations and detunings) that can produce complete pop-
ulation transfer. Many of these involve transient popula-
tion in intermediate states. It is important to recognize
that these may fail to be effective choices when spon-
taneous emission becomes significant because loss and
optical pumping can ruin the transfer eKciency.

We have discussed various goals for population trans-
fer by a generalized STIRAP procedure and a number of

C. Key issues for STIRAP

We have identified the following four key issues that
must be considered when attempting multistate popu-
lation transfer by counterintuitive pulse sequences (and
there are more than three states involved in the linkage).

(1) Initia/ projection When the pum. p pulse is absent,
initially, there must be a single adiabatic dressed state
that coincides with the initial atomic state. There Inay
be a problem if the null eigenvalue remains degenerate
when the Stokes pulse is applied.

(2) Adiabaticity. The system should remain in a single
adiabatic state. This requirement has been clarified for
conventional STIRAP (i.e. , eigenvalues must remain well
separated). Multistate systems introduce multiple adi-
abatic eigenvalues and the interplay between these can
become quite complicated, often with near degeneracies
and curve crossings occurring. EfEcient population trans-
fer may take place even when nonadiabatic evolution oc-
curs, so that examination of adiabatic energy curves does
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not always give a clear prediction of success or failure of
population transfer.

(8) Connectivity. When the Stokes pulse is absent,
toward the conclusion of the counterintuitive pulse se-
quence, the adiabatic state of interest should coincide
with the desired final state. The existence of a non-
degenerate zero eigenvalue when only one laser is present
does not guarantee the required adiabatic connection.
There may be null eigenvalue degeneracies, but these are
not detrimental.

(g) Darkness The. adiabatic dressed state that con-
nects to initial and final atomic states should have a
negligible component of any intermediate sublevel. This
condition holds for conventional three-state STIRAP,
but may prove unavailable for more general cases. This
fourth condition must be satisfied if the rate of sponta-
neous emission is appreciable. For the cases treated here,
of J = 0 to 1 to 2, it is always possible to ensure the ex-
istence of a maximally dark state by suitable choice of
polarizations. (We shall discuss this further in the fol-
lowing paper [49].)

D. Cautions

For successful population transfer, two-photon reso-
nance is needed, but does not by itself guarantee success.
Unlike the case of three-state STIRAP, one-photon reso-
nance may be detrimental to population transfer because
it may place transient population into levels subject to
spontaneous decay. There occur other poor choices for
laser frequencies, not directly related to one-photon res-
onances, that fail to give population transfer.

Population transfer success depends, sometimes in a
subtle way, on polarization angles, Zeeman splitting, and
laser detuning. This is because the linkage structure
of the Hamiltonian creates many radiation-induced cou-
plings between adiabatic eigenvalues, exhibited as near
degeneracies and curve crossings.

We have found situations where, despite making ap-
parently reasonable choices for all the parameters, popu-
lation fails to transfer. For example, when there is a two-
photon resonance to state 7, no one-photon resonance (to
minimize detrimental optical pumping), a possible adia-
batic connection between desired initial and final states,
and the polarization angles have been chosen to ensure
a completely dark state at all times, then application of
counterpropagating pulses may fail to place any popula-
tion into the expected final state.

Several things may be occurring to cause such unex-
pected failure. The interplay among adiabatic eigenval-
ues may prevent an adiabatic connection of the initial
and the final states.

We have also found cases where population transfer
succeeds, even though there is no adiabatic connection.
The crossings of eigenvalues may be such that transfer
through the crossing is diabatic. In this situation the
transfer works, although adiabatic considerations would
predict failure [49].

E. Recommendations

The choice of experimental conditions (laser polariza-
tions and frequencies) depends on the objectives of the
generalized STIRAP process. If the goal is to transfer the
highest possible fraction of atoms from an initial state to
a single excited state, irrespective of magnetic sublevels,
then it is best to choose polarizations that break the
multilevel system into separate three-level subsystems.
This occurs with parallel linear polarizations of the ra-
diation 6elds (any magnetic Geld must be aligned in this
same direction). Then one has conventional three-state
STIRAP, with no population in radiatively decaying sub-
levels.

We have here stressed an alternative objective: to
transfer the highest possible fraction into a specific mag-
netic sublevel. Then it is desirable, if possible, to reduce
the number of coherently coupled sublevels by starting
from J = 0. One should choose polarization states of the
light that will provide optimum excitation linkages. How-
ever, one may wish to study the orientation dependence
of a collision process. In such cases one may wish to vary
the final magnetic sublevel, during the course of consec-
utive experimental runs, by using linearly polarized light
in a fixed geometry and varying the frequency of one
laser. We have demonstrated how this can be done. It
is desirable to establish the most general linkage pattern,
one which connects all sublevels via a succession of single-
photon transitions. The problems that arise in meeting
this objective are the main concerns of the present work.

F. Conclusion

Coherent population transfer based on counterintuitive
pulse sequences and a generalized STIRAP procedure
has, once again, proven to be a powerful and versatile
technique. When applied to multilevel problems, success-
ful population transfer is only guaranteed after careful
analysis of the situation and proper choice of experimen-
tally controllable parameters.
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APPENDIX: RWA MATRIX ELEMENTS

For general polarization the coupling coefBcients K,~

can be constructed via the following steps.
(i) Choose a convenient reference frame for the electric

field vector (the polarization direction) of the pump field
and a frame for the Stokes Beld. These frames need not
coincide.

(ii) Express the electric field vectors, in their own ref-
erence &ames, as linear combinations of unit spherical
vectors, corresponding either to a single linear polariza-
tion vector or to a pair of circularly polarized unit vectors
(the helicity basis).

(iii) Use rotation matrices (of order 1) to express these
radiation-frame basis vectors in terms of spherical unit
vectors in the reference frame deBned by the static mag-
netic field. This is also the reference kame for the angular
momentum states of the atom.

(iv) The rotated spherical unit vectors give rotated
components of the dipole transition operator. Take ma-
trix elements of these between atomic states. Application
of the Wigner-Eckert theorem [11,51] gives a 3j symbol
and the coordinate transformation gives a rotation ma-
trix element. The product of these, when multiplied by
an electric Beld amplitude, is a Rabi frequency appropri-
ate to a particular sublevel transition.

Following this approach, we obtain the matrix elements
of the electric dipole interaction in an angular momentum
basis, expressed as Rabi frequencies [50,51]. For the 1 ~
2 transition the matrix element is

AQ(JiMi, J2M2)

= —F~) (—1)~eq(JiMi[d qIJ2M2). (Al)

A comparable formula applies to the 2 ~ 3 transition,
but with the replacement of the complex-valued envelope
E'& with fg. We extract the dependence upon magnetic
quantum numbers into a 3-j symbol by employing the
signer-Eckart theorem to write

tiff (J1M1 J2M2)

= —~p( JiIldlI J2)

The prefactor to this summation represents a root mean
square Rabi frequency, averaged over the dipole orien-
tation and the magnetic sublevels. The reduced dipole
matrix element (Ji

I Id] I J2) that occurs here also occurs in
such spectroscopic observables as oscillator strengths and
Einstein A coeKcients. The connection with the latter,
for example, is (see [ll], p. 1353)

where I is the instantaneous irradiance (power per unit
area) and g, is the statistical weight of the upper level.
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