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We investigate the coherent and incoherent contributions of the scattering spectrum of strongly
driven two-level atoms as a function of the initial preparation of the atomic system. The initial
“phasing” of the coherent superposition of the excited and ground states is shown to influence

strongly the generation of both harmonics and hyper-Raman lines.

In particular, we point out

conditions under which harmonic generation can be inhibited at the expense of the hyper-Raman
lines. Our numerical findings are supported by approximate analytical evaluations in the dressed

state picture.

PACS number(s): 42.50.Hz, 42.65.Ky, 42.50.Ar

I. INTRODUCTION

The coherent interaction of a single laser mode with a
single atom as represented by a single dipole transition
and situated in ordinary vacuum is considered nowadays
as a simple and well understood problem. Mollow [1]
first predicted that the scattering spectrum of such an
atom displays a narrow elastic contribution at the laser
frequency and an inelastic triplet structure, in which the
linewidths are governed by the atomic relaxation con-
stants and the splitting by the amplitude of the driving
field. The underlying physics has been satisfactorily ex-
plained by Haroche [2], Haroche and Hartmann [3], and
Cohen-Tannoudji and Reynaud [4] and others in the pic-
ture of dressed states, i.e., the eigenstates of the Hamil-
tonian containing the laser field, the atom, and the in-
teraction between both. The area has been described
comprehensively in several review articles [5-7].

The situation changed substantially when strong field
effects were considered and especially when experimen-
talists achieved laser field strengths leading to multi-
photon absorption and high harmonic generation, a de-
velopment which has recently been summarized in var-
ious review articles [8-10]. A two-level model is an ac-
curate representation of the atomic dynamics provided
that all other levels are so weakly coupled that they play
a negligible role in the transitions (i.e., that detunings
are always very much larger than dipole laser couplings).
In very strong fields this is likely not to be valid, and
many levels, and continua (leading to ionization), will
play an important part in a precise description of the
atomic response. Nevertheless, the two-level model re-
mains a useful (because soluble) idealization which has
been widely employed to clarify conceptual matters (es-
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pecially those of the coherences and correlations of cen-
tral interest here), while recognizing that the two-level
model is not a good quantitative model of the atomic
response to very intense fields [11-14]. Of course, to
describe multiphoton absorption and radiation of high
harmonics, it is necessary to abandon the rotating-wave
approximation (RWA), although we recognize that, if
counterrotating terms are important in electric dipole
transitions, then it is likely that other levels beyond the
two under consideration are likely to contribute substan-
tially to the atomic dynamics. Sundaram and Milonni
[15] pointed out in a more appropriate approach without
the RWA that in such strong fields the scattering spec-
trum of a two-level atom displays a similar succession of
harmonic multiples of the laser field frequency as a more
realistic model, i.e., an initial exponential reduction in
harmonic intensity, then a plateau and a cutoff.

In this context there has also been substantial discus-
sion on the question of whether the scattering spectrum
of a strongly driven atom needs in fact to be evaluated
from the full two-time correlation function of the dipole
[7,16-18]. For resonant light scattering of the Mollow
type, both contributions to this complete spectrum, the
coherent or mean (one-time) dipole part and the inco-
herent or quantum fluctuation part, are of significance.
Their importance in high harmonic generation has been
investigated recently by many authors [13—-22]. While
these papers investigate in some detail how the various
parameters of the laser excitation and the spatial dis-
tribution of atoms affect these spectral structures, less
attention, it appears, has been paid to the influence of
the single atom parameters. In particular, initial coher-
ences of the atom were shown to significantly affect the
absorption and dispersion properties of the atom in the
low intensity regime; see, e.g., [23].

The object of this paper is to investigate the influ-
ence of the initial preparation of the atomic system on
the two kinds of contributions of the harmonic spectrum.
Particular emphasis is placed on atomic systems which
are prepared in a coherent superposition of two atomic
levels via a relatively weak laser field prior to the inter-
action with a superstrong short laser pulse. While the

525 ©1995 The American Physical Society



526 GAUTHEY, KEITEL, KNIGHT, AND MAQUET 52

total spectrum is in fact not very sensitive to the initial
condition, we find that the coherent contribution to the
harmonic generation can display striking variations as a
function of the phase of the initial dipole and even totally
disappear at a particular phase. This could facilitate the
identification of hyper-Raman lines [21,22] which are usu-
ally overwhelmed by intense harmonics. In the analytical
calculations in the dressed state picture, we note a total
cancellation of interfering dressed transitions in the co-
herent part apart from a single term that is weighted by
a sine in the initial dipole phase.

In Sec. II we derive the emitted light spectrum in the
Heisenberg picture and identify its coherent and inco-
herent contributions. This is followed in Sec. III by an
analysis of the expressions for the coherent and incoher-
ent spectra for various initial states, which are the ground
state, the excited state, and in particular superpositions
of both. We also present the results of a numerical model
without the RWA in this section and describe and inter-
pret these results in the following Sec. IV. The analytical
model in Sec. V in the dressed state picture and within
the RWA is then employed to obtain qualitative insights
concerning our numerical findings and the paper ends
with our conclusions. Two Appendixes contain mathe-
matical details of couplings and of the RWA.

II. EMITTED LIGHT SPECTRUM
A. General expression

The central concepts of the definition of the spectrum
of a driven atomic system have been investigated, among
others, by Mollow [1], Cohen-Tannoudji [5], Knight and
Milonni (7], Cresser [18], and Feneuille [24]. This problem
necessitates a treatment involving the quantum nature of
light, and a description of the spectrum from a quantum
point of view. The atom is coupled to the multimode
quantized light field, which is given in the dipole approx-
imation at the position of the atom by

(2R \ M2 .
B=iY (T5%) @a-ddie O

k,A

where ay) and al)‘ are the photon annihilation and cre-
ation operators, respectively, for a plane wave with wave
vector k and polarization A. V is the volume of quan-
tization and we have chosen a linear polarization basis,
have taken the unit polarization vectors €x) to be real,
and neglected the extension of the atom compared with
the wavelength of the laser field.

We will denote the quantized field amplitude for each
mode (k, A) as Ex) = (27rﬁwk/V)1/2€k>‘. The Hamilto-
nian describing the interaction of the radiation field with
the single electron of the two-level system is given in the
dipole approximation by

H=H,+Hgr—d-E. (2)

Here Hy and Hp denote the Hamilton operators for the

atom and the field, respectively, and d is the dipole op-
erator, which we take to be linearly polarized as we will
only consider the case of a linearly polarized incident
laser field relevant for the situation of harmonic genera-
tion.

The dipole operator may be expressed in terms of the
atomic transition operators o, = |n) (m|:

d = zé, = p(o12 + 021)éz, (3)

where u = p12 = po; is the electric-dipole transition ma-
trix element between the two states and €, is the unit
polarization vector of the dipole, taken to be oriented
along the direction of polarization of the laser field. We
denote |1) and |2) as the ground and excited states, re-
spectively, so that 012 and 03, are the lowering and rais-
ing operators. The Hamiltonian can therefore be written
as

H = E 011 + Ez022 + Z ﬁl‘-’kai)‘akk
KA

—iﬁz Ciap(o12 + 021) (axr — aL\)a (4)
K

where Cy) = Eg) - €;/h. We have omitted the zero point
energy of the field, and (F2 — E1)/A = wo is the atomic
transition frequency between the two levels.

According to the approach advocated by Scully and
Lamb [17], and by Glauber [16], the quantum spectrum
of emitted light during the time interval [0, T] is defined
in the Heisenberg picture as [18]

T T
S(w,T) = /0 dt" /0 dt' (B~ (¢")E* (')
x exp[—iw(t’ —t')], (5)

where E*(t) = izk, » Exxaxa(t) is the positive frequency
part of the field operator (1) and E~(¢) = (E*)T(t). This
form of the spectrum is related to the correspondence
principle spectrum defined in [13,14] and has the attrac-
tive feature of yielding a formal expression equivalent to
the classical definition of the spectrum. Considering the
case when the laser pulse is applied during the interval
[0,T] and when the correlation function of the field tends
sufficiently fast to zero before the end of the interval T,
the spectrum (5) does not change significantly after this
time and may also be written as

S(w) = /_ _a /_ (B (¢)B())
x exp[—iw(t’ —t')]. (6)

The field correlation function can be obtained by de-
termining the evolution of the light field plus source-atom
system as it would occur in the absence of any detector.
The evolution equation for the annihilation operator is
given in the Heisenberg picture as

Al (t) = ——iwkak;‘(t) + Ckkl'(t), (7)

where x(t) represents the dipole operator in the Heisen-
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berg picture: z(t) = Ut (t)zU(t) with U(t) the evolu-
tion operator of the system. We would like to remark
here that, had we analyzed the case of a rapidly evolv-
ing dipole, we would have arrived at a spectrum which
is governed by the autocorrelation of the dipole accelera-
tion [10,19,20,25]. In the present situation where we ana-
lyze the evolution within a two-level model and explicitly
exclude ionization, it is straightforward to relate the ac-
celeration autocorrelation to that of the dipole through
a factor w* (Ref. [15]). The solution of Eq. (7) is found
to be

ax (t) = axa(0) exp[—iwyt]

+Cix /0 Loty explive(ts — 0. (8)

We see from Eq. (8) that the annihilation operators con-
tain a free evolving term and a source term. When re-
placing these expressions in the positive and negative fre-
quency parts of the field operator (1) we find

E* (t) =1 Z Ek,\ak)‘(O) exp(——iwkt)
Y

+1 Z Ex»Crx /ot dtyxz(t,) expliwg(t1 — t)]. (9)

kA

Therefore the electric field operator consists of two rather
different components and we write it as E*(t) = EX () +
EZ(t). The first term on the right hand side corresponds
J

(E=(t")E* (t')) = Ep¢Ere(a},(0)are(0))e™*t" emiont

A

to the field present even in the absence of the atom, i.e.,
the freely evolving field, whereas the second term is the
source field or radiation reaction field of the point dipole.

The system is taken to be prepared in some state at
t = 0, the initial time at which the laser is turned on. An
appropriate choice for the initial state of the field is one
in which there is no field radiated prior to t = 0. Hence,
we consider only the laser mode is excited at the initial
time.

Let us now determine the correlation function of the
field in order to calculate the spectrum as given in (6).
By distinguishing between the freely evolving and source
parts of each component E*(t) or E~(t) of the total field,
we can write the correlation function as

(B™(¢")E¥(¢)) = (Eq (t")Eg (') + (E5 (t")Eg (t'))
+(Eg (t")E§ () + (B3 (t")ES (1))
(10)

This expression shows that the correlation function is
made up of three different contributions: first the cor-
relation function of the free field, then the two complex
conjugate correlation functions between the free field and
the source field, which we can relate to an interference
term, and finally the correlation function of the source
field.

We now write the field correlation function (10) in
terms of the positive and negative frequency parts of the
field given in (9):

t“
+EEkAEL£CkA/ dtz(x(tz)e_iw"(t’—t )(.LL[(O))E_“"L2 + c.c.
0

t” tl
+ Z EkAEk’)"Ck)\Ck'A’ </ dtz / dtlm(tz)m(tl)e_iwh (t2—t )eiwm(h —t’)>’ (]_1)
0 0

kA

and we note that the only mode contributing to the freely evolving part of each operator is the one populated at time
t = 0, that is, the laser mode characterized by a wave vector L and a polarization £.

Substituting the field correlation function (11) in the expression for the spectrum (6), we find that the total spectrum
resulting from the three contributions mentioned above becomes

S(w) = (Bpe)® [§(w — wr)] (a},(0)are(0))

oo t”
+2(8(w — wp)] Re [ZAM [ dere [ dtataaanaoeiontat )}
kA —o0 0

oo

+ Z Bkk'AA'/

e o]
dtlle—iwt”/ dtleiwt'
I, k! —oo —oo
where Ax)y = EaEL:Cky and Bixax = EaEwx
CkaCkrar. Due to the above choice of the initial state,
the first contribution to the spectrum, which is that
of the freely evolving field alone, shows a & function
0(w — wr) and thus only gives a nonvanishing value at
the laser frequency. The second contribution, related to
the free-field—source interferences, also shows a § func-
tion at the laser frequency for the same reason and hence
only accounts for this particular frequency. This has hap-

tl' t'
/ dt / dty (@ (t2)(tr))e~ =t giwnr (ta=t)  (19)
0 0

[
pened because one of the two inputs for the two-time
expectation value was simply the coherent driving field
and the corresponding integral of the oscillating term
expli(w — wr)t] generates the § function §(w — wr). As
we are interested in the multiphoton response of the sys-
tem, and in the measurement of harmonic generation as
well as hyper-Raman processes, we will not include these
two terms in our final expression of the spectrum. Hence
the spectrum which we consider is given by the spectrum



528 GAUTHEY, KEITEL, KNIGHT, AND MAQUET 52

radiated by the source field:

S(w) = Z Bkkl)‘)‘,/ dt le-—lwt / dtl iwt’
k,\ k!, R
/ dt, / dty (2 (t2)z(tr))
..zwk(tg—t ) ‘lwkl(tl—‘tl (13)

At this point it is reasonable to make the Markov ap-
proximation as usual. It is based on recognizing that
the vacuum field contains contributions over a very wide
range of frequencies, and this range is broad compared
with the inverse of the response time of the atomic
dipoles. In this way, the sums over the modes can be
extended to their continuous limit as V' — oo:

1 1
— a3k .
Vv kz; - (271')3 / z)\:

The factors Byxrax' appearing in the expression of the
spectrum (13) correspond to the densities of modes of
the environment which can be assumed to be weakly fre-
quency dependent. The integrals over the wave vectors
define in each case a function of ¢; or t; which is sharply
peaked around t; or t; equal to t' or t”, respectively,
and thus the evolutions of the lowering or raising dipole
operators can be taken to be described by their freely
evolving form. Hence the integrals over ¢; and t; can be
replaced by

t”
(@ (t")z(t) / dts
t'
X/ dtle_i(wk—wo)(tz-t")ei(w,,:-—wo)(tl—t').
0

This expression is formally integrated as

—i(wr—wo)t'" _ i(wir —wo)t' _
(=(")(t)) [ | 1] [ o 1] .

t(wr — wo) t(wrr — wo)

After sufficiently long times [6,26] (i.e., ' and ¢ much
larger than 1/wyg), it becomes

(@20 [P (g ) + mo(wr — o)

[frtag) ]

P and § denote the principal part and the é function
as usual. We will not consider the negligible principal
part term and the proportionality factor which also in-
cludes the sum over the polarizations. This leads us
to the scattering spectrum as adopted by many authors
[7,14,15,26-32] and in general obtained by use of the cor-
respondence principle [13,14]:

S(w) = /_ = /_ T e =) (g z(¢)).  (14)

As we are in the Heisenberg picture, the correlation func-
tion is calculated with respect to the initial state of the
system.

B. Coherent and incoherent spectra

Let us consider a complete and orthonormal set of
states {|¥,,)} containing the initial state |¥(0)) = |¥;)
of the atomic system. After inserting the closure relation
over the states > |¥,,){(¥,,| = 1 into the dipole correla-
tion function we can write, in the Heisenberg picture,

(@(t")2(t) = (Wilo(t")|2:) (Tila ()] T:)
+ S () [ W) (o) | E). (15)

m#i
The spectrum (14) can therefore be written as
S(w) = So(w) + S1(w), (16)

where

So(w) = l / dte

/ dte= i (U, [a(t)| @

Sr(w) = (7)

m#i

which shows a separation into the coherent spectrum
Sc(w) or spectrum of the mean dipole, and the incoher-
ent spectrum S7(w) due to the quantum dipole fluctua-
tions. Later on in this paper we will refer to the respec-
tive time dependent matrix elements (¥;|z(t)|¥;) and
(¥;|z(t)|¥.m) (m # i) as the “coherent” and “incoherent”
amplitudes of the spectrum. Let us remark here that, in
all calculations of the correlation function, it is necessary
to distinguish between the matrix element of the dipole
fluctuations (¥;|z(¢)|¥.,) and its complex conjugate for
determining the incoherent amplitude of the spectrum.
Indeed, the definition of the Fourier transform in (17)
implies that the incoherent amplitude of the spectrum in
the case of an initial preparation in a state |¥;) is given
by the following matrix element (¥;|z(t)|¥,,) and not
by its complex conjugate. At this point we would like to
emphasize that the initial state |¥;) influences the spec-
trum, as will be the major topic of this paper, though the
basis choice {|¥,,)} does not. However, to separate the
spectrum uniquely into a coherent and incoherent contri-
bution we needed to choose an orthonormal set including
the initial state |¥;). We next calculate both parts of
the spectrum for different cases of initial preparation of
the system, that is, in its ground or excited state, or in
a coherent superposition of both.

C. Multiatom spectra

For a sample of N atoms the spectrum Sy (w) arises
from the sum over the contributing dipoles z,(t) and
reads
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N =) oo
SN((.U) — } : / dt” / dtle—iw(t”_tl)<wn (t"):l:p(t'))
1J—o0 —oo

n,p=

= CN((U) +IN(w). (18)

Here we define the coherent part of the spectrum (with
respect to interatom coherence) Cy and the incoherent
part Iy as follows [13]:

N o oo
Inw) =3 f ae" [ atremie =) (g (1) ()
n=1Y—0o© — o0
o« N,

Cn(w) = i /:dt"

np=ln#p" "

x / dt'e= "~ (g (¢")a, () o« N (19)

We may now split the above coherent and incoher-
ent parts with respect to the interatom coherence into
their contributions of the coherent and incoherent parts
with respect to intraatom coherence [19,20], i.e., into the
mean dipole and quantum fluctuation contributions. In
the case of the incoherent spectrum we have both N-
dependent mean dipole and fluctuation terms:

In@) = [t [ apemew=)

N
xY [(‘I‘ilwn(t”)l‘l’iﬂ‘l’ilwn(t')I‘I’i>

n=1

+ D (Uilen (") W) (Tmlea ()| 2:) |, (20)
m#i

while for the coherent spectrum we obtain, under the
assumption that the atoms are not correlated to each
other,

oo oo

Cn(w) = / dt” / dt' et —t)
—o0 —oo
N

X D (Tilon (t") L) (Lilzp ()| Ts).  (21)

n,p

Thus all the N2 dependence is contained in the mean
dipole term of the atoms which usually overwhelms the
N-dependent quantum fluctuation term. In the following
we will therefore only discuss single atom features, keep-
ing in mind that the mean dipole contributions detected
in the forward direction are N2 dependent and that the
quantum fluctuations are N dependent.

III. EFFECT OF INITIAL PREPARATION

A. Preparation in one of the two levels
of the system

In the case of initial preparation in one of the two levels
of the system, we can simply apply Eq. (15) and obtain

the corresponding dipole correlation functions. In the
case of preparation in the ground state |1), we find

(@)= () = (L=(t")|1)(1|=(t)]1)
+(1|=(2")]2)(2l=(t')]1) (22)

and, in the case of preparation in the upper state |2), we
have

(@(t")=(t) = (2l=(t")[2)(2]=(t)[2)
+2l2(E")[1)(1]=()]2). (23)

We see that, due to the choice of the closure relation in
the {|1),|2)} basis, which is orthonormal and includes in
both cases the initial state |¥;), each correlation function
separates into a coherent (diagonal) and incoherent (off-
diagonal) contribution.

The spectra are calculated according to Sec. IIB in the
{|1),|2)} basis set, and result in a coherent part given
by the dipole niean value, and an incoherent part corre-
sponding to the dipole fluctuations. The numerical treat-
ment and the discussion of the results are presented in
Secs. ITIC and IV, respectively.

B. Preparation in a coherent superposition of states

Let us consider an initial state |¥(0)) prepared in such
a way that there is maximal initial coherence between the
two levels |1) and |2), by the action (say) of a preparation
pulse, applied prior to ¢ = 0 which is the turn-on time of
the main pulse, so that

[2(0)) = +e%(2)), (24)

1
—(1
25
where ¢ is an adjustable phase. In dependence on the ini-
tial preparation, we shall see that the choice of the basis
is fundamental for understanding the physical meaning
of the spectrum, that is, to distinguish between the co-
herent and incoherent amplitudes as previously defined
in Sec. IIB.

To that end let us follow Eq. (15) and now consider
the orthonormal set of states {|¥(0)),|¥+(0))}, where
the state |¥+(0)) is the orthonormal supplement to the
initial state |¥(0)) given in Eq. (24):

T (0) = = (1) - ]2)). (25)
V2
{I¥(0)), |¥+(0))} is complete and orthornormal. Accord-
ing to Sec. IIB, the corresponding correlation function
can thus be expressed as

(@(t")=(t)) = (L(0)|=(¢")|¥(0))(¥(0)|=(t))|¥(0))
+H(T(0)[z(t") T (0))(T(0) ()| 2(0))
(26)

and the scattering spectrum is then given in this basis by
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2

Su@o=]/dm-”%wmwumwm»

2

+} / dte™t (T (0)|z(¢)|TL(0))] , (27)

where we recognize the first and second terms, respec-
tively, as the coherent and incoherent parts of the spec-
trum, which are both expressed in the Heisenberg pic-
ture. Using any other basis for the closure relation we
would not have obtained this particular separation of the
spectrum.

The expressions for the average of the dipole moment
and its fluctuations are developed in the former basis
{|1),|2)}. Using the fact that the trace of the time de-
pendent operator is equal to zero, Tr[z(t)] = 0, we find
that the coherent amplitude of the spectrum is given by

(TO)]e(t)2(0)) = 1 [#(1la(t)[2) + e (2|z(t)[1)]

2
(28)

whereas the incoherent amplitude is expressed as

(2 (0)[() 24 (0)) = 3 (1= (2)[1) — (2l=()[2)]
5l (1a()2)
e (2la(t|L)] (29)

We see that only the incoherent amplitude contains diag-
onal elements with respect to the {|1),|2)} basis, whereas
both coherent and incoherent amplitudes contain off-
diagonal elements, the latter being associated with the
initial phase .

C. Model and numerical calculations

We assume the laser driving field to be in a coherent
state so that we can adopt a semiclassical model in which
the quantum atomic system interacts with the classical
electric field E = Eg sin(wgt) with wy, the laser frequency
and Eg its amplitude, oriented along the polarization axis
é.. This model is furthermore justified as we only con-
sider the spectrum radiated by the source, which remains
unchanged if we replace the quantized driving field by an
approximate classical field. The interaction Hamiltonian
in the dipole approximation is

H; = —d - E(t) = iQpsin(wrt), (30)

where d is the quantum dipole operator defined in Sec.
IIA. We have introduced in the above expression the
Rabi frequency Q¢ = —E¢ -d/h = —Eq - pé,;/h, and
will also denote A = wy — wr as the detuning between
the atomic and the laser frequencies.

The total Hamiltonian is H = Ho + Hr + Hy, and
the time evolution of the system is governed by the
Schrédinger equation

2 0|%) _
ihgt = H|T). (31)

As we have seen in the previous sections, both coherent
and incoherent spectral amplitudes can be developed in
the two-level {|1),|2)} basis, whatever the case of initial
preparation. Hence we only need to determine the time
dependent matrix elements of the dipole in this basis. In
the Schréodinger picture, the wave function at time ¢ is
expressed as

[ (2)) = U@®)[¥(0)) = e1(t)1) + e2(2)[2)- (32)

If the electron starts in the lower level, we denote the
time dependent wave function as |¥(t)) = U(¢)|1) =
a(t)|1) + b(¢)|2). If the initial state of the system is the
upper level, we write |¥(t)) = U(t)|2) and this is equal
to a’(t)|1) + b'(¢)|2). Hence the evolution operator is ex-
pressed in the {|1),]2)} basis as

_ ( a(®) o'(2)
v = (5 54 ) (33)
The equations of motion for the time dependent coeffi-
cients c;(t) and cp(t) are derived from the Schrédinger
equation:

thé1(t) = Erer(t) + A sin(wrt)ca(t),

théa(t) = Eaca(t) + A sin(wrt)e (2). (34)
For convenience we will take E} = —fiwo/2 and E; =
+Fwo /2.

Let us remark at this point that strong fields may
partly ionize the atom and generate substantial level
widths of the order of Awg for laser field amplitudes rel-
evant for harmonic generation of the order of 1072 a.u.
[33]. Nevertheless, we omit these widths in our approx-
imate consideration and assume the pulses to be short
compared to the atomic relaxation times, i.e., we do
not take into account relaxation effects and hence our
model associates infinite lifetimes for the ground and up-
per level.

We will analyze separately the amplitudes correspond-
ing to the coherent and incoherent parts of the spec-
trum as defined in Sec. II B, for each particular initial
preparation of the system. The corresponding time de-
pendent dipole matrix elements are calculated in the
Heisenberg picture, with the dipole operator expressed as
z(t) = UT(t)zU(t). The notation p will denote the time
independent dipole transition matrix element (1|z|2) =
(2|z|1). The coherent and incoherent amplitudes for all
cases of different initial preparation can be determined by
only knowing the different matrix elements of the time
dependent dipole operator in the {|1),|2)} bare state ba-
sis.

In the case of ground state preparation, the coherent
and incoherent amplitudes are given, respectively, by

(1z(2)[1) = pla®()b(t) + b*()a(t)], (35)
(L (t)[2) = pla ()b’ (t) + b*(t)a’ (¢)]. (36)
In the case of upper state preparation, the amplitudes

corresponding to the coherent and incoherent parts of
the spectrum are given, respectively, by (37) and (38),
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and can be derived from those obtained in the case of
ground level preparation. The trace of the time depen-
dent operator being equal to zero, we find that the co-
herent amplitude is given by

(2l (t)[2) = pla” (&) (t) + o' ()67 ()] = —(1|z(¢)|1)
(37)

and due to the Hermiticity of z(¢) we find for the inco-
herent amplitude

(2le(t)[1) = pla” (£)b(t) + b (t)a(t)] = [(1]=(2)2)]"-
(38)

In the case of an initial preparation in a coherent su-
perposition of states, the expressions for the coherent and
incoherent amplitudes of the spectrum appearing in the
correlation function of the dipole (26) can be developed
in the {|1),|2)} basis according to (28) and (29). We find
that the coherent part is expressed as follows:

(2(0)[2()| % (0)) = & {e* [a* (¥ (2) + b (1)’ (8)] + c.c.}
(39)
and for the incoherent part we find
(2(0)|z(8)[2(0))
= pla*(t)b(t) + c.c]
+§ {e=% [a* ()b(t) + b (t)a(t)] —c.c.}.  (40)

It is interesting to remark here that, in the case of initial
coherence with an initial phase ¢, the coherent amplitude
consists of terms which are all ¢ dependent, whereas the
incoherent amplitude contains ¢ independent as well as
¢ dependent terms. This helps us already at this stage
to gain insights as to the origin of the strong dependence
of the coherent amplitude on the initial phase of prepa-
ration.

The system of evolution equations (34) is solved
numerically without making the RWA approximation
with an adaptative time step fourth order Runge-Kutta
method [34]. The Fourier transformations are performed
using the fast-Fourier-transform algorithm [34] with a
time step dt = T,/256, where T}, is the optical period.
The laser pulses considered have a duration of 64 cycles
and correspond to monochromatic square pulses.

IV. DISCUSSION OF NUMERICAL RESULTS

The main object of this section is to present the struc-
tures of coherent and incoherent spectral contributions
for a driven two-level system as a function of the initial
preparation. We study the cases both of initial prepa-
ration in one of the two states and of preparation in a
coherent superposition. The atomic frequency in all cases
is wo = 0.3 a.u. while the Rabi frequency in comparison
is chosen as large as 0.1 a.u. A significant problem of this

numerical analysis has been the existence of background
noise which arises due to the presence of § functions in
the time evolution of the dipole operator without relax-
ation. We have addressed this rather technical problem
in Appendix A and in further detail in a previous contri-
bution by two of us [35].

A. Preparation in the ground or excited state

We would like to begin our discussion with the con-
ceptual case of initial preparation of the atom in the
ground state and then the excited state. We have ap-
plied a square laser pulse of 64 cycles, a Rabi frequency
Qo of 0.1 a.u., and a driving frequency wy, equal to 0.145
a.u. which yields a detuning of A = wy — wp = 0.155
a.u. It has been noted that a sudden turn-on (as in a
squared pulse) may lead to the generation of unphysical
even harmonics for hydrogenic systems [10] which we do
not observe for our driven two-level system without re-
laxation. We assume that the relation between turn-on
time and atomic lifetime is of significance for even har-
monic generation. In the absence of atomic relaxation,
this ratio is independent of the turn-on time and this may
be why we find that even harmonic generation does not
depend on the turn-on time (see also [15]).

The full spectrum obtained for a ground level prepa-
ration is given in Fig. 1(a), and shows harmonics at odd
multiples of the laser frequency as well as hyper-Raman
peaks positioned as side peaks of each harmonic peak.
Hence the spectrum appears as a succession of triplets
centered around the odd harmonics of the laser frequency.
The triplet structure can be understood due to the tran-
sitions among the corresponding dressed states as will be
explained in more detail in Sec. V. Let us nevertheless
point out now that the position of the sidebands is gov-
erned by the Rabi frequency and the detuning, so that
the side peaks are positioned at the frequencies nwy, + €2,
where Q = 1/QZ% + A2 denotes the generalized Rabi fre-
quency and n is an odd integer number. For very intense
laser fields 2 may happen to be larger than wy with the
consequence of the overlapping of the triplets. The corre-
sponding coherent and incoherent parts of the spectrum
of Fig. 1(a) are given in Figs. 1(b) and 1(c). The com-
parison to the full spectrum reveals that both coherent
and incoherent spectra contribute to the harmonic and
hyper-Raman lines. However, for the particular laser ex-
citation considered, the major contribution to both kinds
of peak comes from the coherent spectrum.

A related analysis has been made for the case of upper
level preparation. In the full spectrum [Fig. 2(a)], the
peak corresponding to the Rabi shifted atomic frequency
becomes predominant. We find that hyper-Raman lines
have much larger amplitudes compared to the case of
ground level preparation [Fig. 1(a)], whereas the har-
monic peak amplitudes tend to remain unchanged. When
we analyze this effect with respect to the coherent and
incoherent parts [see Figs. 2(b) and 2(c)] we see that the
coherent spectra obtained when taking |1) or |2) as initial
states are identical [Figs. 1(b) and 2(b)]. This can simply
be related to the vanishing trace of the dipole operator



532 GAUTHEY, KEITEL, KNIGHT, AND MAQUET 52

0
(a)
2+
w
& o K@L\
]
-8 +
-10 1 1 1 L 1 | 1
0 1 2 3 4 5 6 7 8
/W,
o ———
(b)
2+
3 a4l j\
O
Z \
g oy |
8 |- l[—k\v\\x
-10 L L 1 1 L L
0 1 2 3 4 5 6 7 8
W/0,
0
©
-2
A
g o
-8 +
-10 1 L L L L L 1

/0

FIG. 1. The logarithm of the full spectrum S(w) (a), its
coherent part S¢(w) (b), and incoherent part Sr(w) (c) are
shown under conditions of excitation from its ground level
with a Rabi frequency of 0.1 a.u. and a laser frequency of 0.145
a.u., which gives a detuning of A = 0.155 a.u. The Fourier
transforms are computed for pulses that are 64 cycles of the
laser frequency in duration, and the frequency unit is the laser
frequency. Since Q/wr, = 1.27 the triplets overlap each other.
For this reason the hyper-Raman line at wr, — €2 is not visible
and we note a peak at —wz + §2. The hyper-Raman line at
5w, + € is only visible in the coherent part of the spectrum.

(37). Changing the initial state from |1) to |2) only has
an effect on the incoherent part of the spectrum, where
the hyper-Raman peak amplitudes are larger [see Figs.
1(c) and 2(c)].

B. Preparation in a coherent superposition of states

We now turn our interest to the case when the ini-
tial state is a superposition of both levels with maximal
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4 b

log,, S(w)
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log,o Sc(w)
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\ )\ ©

log,, S,(w)

-10 ! ) 1 L 1 ! |

/0
FIG. 2. The logarithm of the full spectrum S(w) (a), its
coherent part Sc(w) (b), and incoherent part Sr(w) (c) are
shown under the same conditions of excitation of the system
as in Fig. 1, but from its upper level.

coherence as given in Sec. III B, and investigate the spec-
tral components as a function of the phase . As in the
previous case we experience numerical problems due to §
functions arising from the evolution of the dipole without
the laser field as discussed in Appendix A (see also [35]).

‘We here consider the response of the two-level system
to the presence of a laser field as a function of the initial
phase of preparation . We keep the same excitation pa-
rameters as in Sec. IV A and first consider the example
of the particular phase of initial preparation ¢ = 0. The
full spectrum in the case of initial coherence is shown
on Fig. 3(a). When we compare it to the full spectra
obtained in the cases of single level preparations [Figs.
1(a) and 2(a)], we see that it shows peaks positioned at
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FIG. 3. The logarithm of the full spectrum S(w) (a), its
coherent part S¢(w) (b), and incoherent part S;(w) (c) are
shown for the system initially prepared in a coherent super-
position of states with a phase ¢ = 0, and submitted to a
laser pulse excitation of 64 cycles, with a Rabi frequency of
0.1 a.u. and a laser frequency of 0.145 a.u., which gives a
detuning A = 0.155 a.u.

the same frequencies, and in particular presents the same
characteristic shape of a succession of triplets. However,
while the harmonic lines seem identical in amplitude, the
hyper-Raman peak strengths are different from those ob-
tained in both single level preparation cases, though are
closer in strength to those obtained in the case when the
system is initially prepared in the upper level |2).

The coherent spectrum [see Fig. 3(b)] shows significant
differences when compared to both single state prepara-
tion coherent spectra [Figs. 1(b) and 2(b)]. The main dif-
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FIG. 4. Same as in Fig. 3, but for the system prepared in a
coherent superposition of states with an initial phase ¢ = /2.

ference is that the harmonics disappear from the coherent
spectrum. Moreover, the hyper-Raman peaks have much
larger amplitudes than in the coherent spectra with no
initial coherence. We therefore believe that proper initial
preparation may be the key to the observation of hyper-
Raman lines. The incoherent spectrum [Fig. 3(c)] shows
much more intense harmonics than in the case of single
level preparations [see Figs. 1(c) and 2(c)], and hyper-
Raman peaks quite similar to those obtained with the
upper level preparation. We thus find in this case that
the chosen initial phasing has led to a transfer of output
energy from the coherent to the incoherent contribution
of the spectrum.

We next turn our attention to the effect of a varying
phase of initial preparation. Here it appears that the
full spectrum is not affected visibly when changing the
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phase [see Fig. 4(a) for the case ¢ = w/2]. We note that
the coherent spectra depend upon the initial phase of
preparation. The most important feature of this behavior
is that both particular initial phases ¢ = 0 [see Fig. 3(b)]
or ¢ = 7 give rise to the disappearance of all harmonic
peaks from the coherent spectra. Any other values of
the initial phase [see Fig. 4(b) for the case ¢ = /2] give
coherent spectra which contain harmonics. Let us remark
here that the comparison of coherent spectra obtained for
various phases different from the particular cases ¢ = 0
or w shows that the differences occur in the amplitudes
of the harmonics, which are higher, for example, for /2
than for /4.

The effect of a varying phase of initial preparation has
also been investigated on the incoherent part of the spec-
trum. Both particular cases ¢ = 0 [Fig. 3(c)] or ¢ =«
give identical incoherent spectra. But taking other val-
ues of ¢ [see Fig. 4(c) for ¢ = m/2] shows smaller hyper-
Raman peaks amplitudes in the incoherent spectra when
compared to the cases where ¢ = 0 or w. Let us re-
mark here that, apart from the cases where ¢ = 0 or 7
(which correspond to the extreme cases where harmonic
generation only comes from the incoherent part of the
spectrum), the incoherent spectra obtained for different
phases ¢ give the major contribution to the harmonic
lines (as they have much higher amplitudes than those
visible in the coherent spectrum).

In Sec. V we will give some analytical insights into the
origin of these effects, by determining the dependence of
the coherent and incoherent amplitudes of the spectrum
upon the initial phase of preparation and in particular
we will investigate the disappearance of harmonic lines
from the coherent spectra for the specific phases ¢ = 0
or m.

The same analysis has been performed for various con-
figurations of the laser pulse excitation. Changing the
frequency of the laser or its amplitude showed the same
general behavior of the system with respect to its initial
phase of preparation ¢. It also reproduced the character-
istic features expected for each triplet and in particular
the shifts of the side peaks with respect to the central
peak occurring when varying the generalized Rabi fre-
quency Q (see Secs. IVA and V and Refs. [36,37]).

We have also investigated the response of the system
when submitted to a more realistic short sin? pulse cor-
responding to a laser field E(t) = Eq(t) sin(wrt) with a
time dependent amplitude Eo(t) = sin®(2nt/T), where
T is the duration of the pulse. Our analysis reveals es-
sentially the same behavior of the system when varying
its initial phase of preparation ¢. Hence, as the response
of the system to a varying phase of preparation is not
altered by the shape of the laser pulse, and moreover as
the best pulse form for the production of stable hyper-
Raman lines is a flat top one [22], we restrict the study
presented here to the case of a square pulse.

V. DRESSED STATE ANALYTICAL APPROACH
WITHIN THE RWA

In Sec. IIIC we have given the formulations of the co-
herent and incoherent amplitudes of the spectrum, for

different initial preparations, as a function of the time
dependent coefficients of the wave function. These coef-
ficients are determined according to the evolution equa-
tions (34), which can only be solved exactly numerically.
Nevertheless, it is possible to obtain analytical solutions
for these equations within the RWA (see Appendix B),
and the coherent and incoherent parts of a fluorescence
triplet of the spectrum can be directly expressed analyti-
cally in the bare state basis. Such an analytical approach
can help in order to gain some intuition into the nature
of the spectrum, and in particular to understand the dis-
appearance of harmonics in the coherent spectrum for
specific phases of initial preparation. Nevertheless, the
bare state picture is not sufficient for us to understand
the succession of triplets in the spectrum [38,39]. Hence
we have chosen to perform analytical calculations in the
dressed states basis, which presents the most natural set
of states as the eigenbasis of the complete Hamiltonian,
and indeed confirms the interpretation of the spectrum as
a succession of triplets centered around the odd harmon-
ics of the laser frequency. Considering that the laser is in
a coherent state we will consider a semiclassical approach
of the dressed picture.

A. The dressed states basis

The semiclassical dressed states (Ref. [40] and Fig.
5), are obtained by diagonalizing the RWA interaction
Hamiltonian, expressed in the rotating frame after trans-
formation of the equations of motion [Eq. (B1)] in the
case of a sinusoidal laser field E(t) = Egsin(wt). The
wave function in the rotating frame is thus given by
|¥r) = R|¥), where R is the transformation operator
of rotation, and the corresponding Hamiltonian is, with
respect to the {|1),]2)} basis,

- A —A 0 e—i-n'/z
Hpwa = = . 0 41
RWA 2 Qoe"r/z A ) ( )
1+ (n)>
12,n> *
.}_ — — %A t lag (n)
I1,n+1> !
1 ’ \J
I I=(n)>
t
Iﬂm
|
| I+(n-1)>
I 12,n-1> )
_’_.__hAt 180 (n-1}
I1,n> ;
I=(n-1)>

FIG. 5. Unperturbed levels (left part) and dressed states
(right part) energy diagram of a two-level system with bare
states denoted |1), |2). We show here two particular “multi-
plicities” of the laser, {n} and {n —1}, where n represents the
number of laser photons. A = wg — wy, is the laser detuning
on the |1) — |2) transition and is here taken positive.
is the generalized Rabi frequency. The single headed arrows
represent the allowed transitions between the dressed states
of two adjacent multiplicities.
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where A = wo—wy, is the detuning and €y is the resonant
Rabi frequency. We would like to stress here the phase
factor e™/2 which arises from the choice of a sinusoidal
structure of the field rather than a cosinusoidal one.
The eigenvectors of this Hamiltonian are known as the
semiclassical dressed states, and are found to be

|+) = cos (8/2) exp(—im/4)|1) + sin (6/2) exp(im/4)|2),
|=) = —sin (6/2) exp(—im/4)|1) + cos (8/2) exp(iw/4)|2)
(42)

with tan(d) = —Qo/A, cos(d) = —A/Q, and sin(f) =
Qo/2, where Q = /2% + A2 is the generalized Rabi fre-
quency. The corresponding energies for each state are
E; =hQ/2 and E_ = —hQ2/2.

B. Time dependent dipole operator
in the dressed states basis

Let us express the time dependent dipole operator x(t)
in terms of its positive and negative frequency parts:

z(t) =zt (t) + = (t), (43)

where zt(t) = Ut(t)o12U(t),  (t) = Ut (t)o21U(t), and
012 and o2; denote the lowering and raising atomic op-
erators, respectively. The expression for the positive fre-
quency part z*(t) of the dipole in the dressed state basis
is

2+(2) = L0 exp(—iwrt){[14) (H ~ |-)(~1)

+% (1 - %) expl—i(wr ~ Q)t]|+)(~|

% (1+F) evl-iton + DA, (0)

while the negative frequency part z~(t) is the corre-
sponding dual operator given by z7(t) = [m+(t)]1. We
can see from Eq. (44) that the dressed state basis is much
more favorable for the purpose of an intuitive under-
standing than the bare state basis, because every one
of the three terms in the previous equations can be asso-
ciated with one of the peaks of a triplet. As an example
the term oscillating as cos[(wr + Q)t] gives rise to a peak
in the spectrum at the position (wr + ©2) which arises
due to the time evolution of the coherence between the
|[+) dressed state of the {n} multiplicity (where n repre-
sents the number of laser photons) and the |—) dressed
state of the {n — 1} multiplicity (Ref. [40] and Fig. 5).
Harmonic generation and fluorescence are interpreted as
a radiative cascade between different multiplicities of the
dressed state picture. We also see that, as opposed to the
sidebands, the central contribution to the spectrum arises
from two coherences and we can expect interferences.

C. Coherent and incoherent contributions
to the spectrum

In this section we determine the analytical expressions
for the coherent and incoherent amplitudes of the spec-
trum for each case of initial preparation, with regard to
the transitions between dressed states and to their cor-
responding frequencies.

1. Preparation in the ground or ezcited state

The ground state |1) and the upper state |2) are ex-
pressed in the dressed state basis as, respectively,

1) = /4 cos(6/2)|+) — e™/4sin(6/2)| -,

|2) = e~*/*5in(0/2)|+) + e~/ * cos(6/2)|—). (45)

Let us first consider the case of ground state prepara-
tion. The coherent amplitude of the spectrum or mean
value of the dipole operator is given by

@ = O {z@)14) - -le@]-)
O He()) + (eI} (46)

After expressing the matrix elements of the dipole oper-
ator in the dressed state basis as given from Eq. (44) we
find that the coherent amplitude in the case of ground
state preparation is given by

(1=z(®)[1) = u%g {——Ad sin(wrt)

_% (1 - %) sin [(wr — Q)t]

+% (1 + %) sin [(wr + Q)t]} (47)

The Fourier transform of the mean value of the dipole
(1]z(t)|1) will give the coherent part of the spectrum. It
will obviously have peaks at wr, wr + 2, and wp — Q.
(Here the detuning determines the relative strengths of
the peaks.) The transitions at the frequency wy corre-
spond to the harmonic peaks and arise from the tran-
sitions between the two dressed levels |+) (or the two
dressed levels |—)) of two adjacent multiplicities {n} —
{n — 1}; the transitions at wy + Q and wy — Q corre-
spond to the hyper-Raman peaks observed as sidebands
of each triplet. The peak located at wy + 2 is generated
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by the transition between the upper dressed state |+) of
a multiplicity {n} to the lower dressed state |—) of the
multiplicity {n — 1} while the peak located at wy — Q

DO (a4 = (~la@)]-))

—ieos® oo

(U(®)]2) = —i

corresponds to the transition between the lower dressed 2
state |—) of a multiplicity {n} to the upper dressed state 1 — cos(0)
of the multiplicity {n — 1} (see Fig. 5). +i-—?—(—-|m(t)|+). (48)

The incoherent amplitude is given by the fluctuations
of the dipole between the two bare states. It is expressed When replacing the matrix elements by their expressions,
in terms of dressed states as we find

(e()[2) = —i (%9)2sin[th] +4 (1 - %) {cos[(wL — Q)] + i sinl(w, - Q)t]}

7
+§ (1 + —3—) {cos[(wL + Q)] - i% sinf(wg, + Q)t]} . (49)

[
Again we find the three contributions corresponding to 1 .. i(o—m .
the harmonic line and hyper-Raman peaks of the triplet [®(0)) = Ee " {COS(G/Z) +efem/ 5111(0/2)} +)
around the fundamental. We understand that there is 1 sraf. .
a succession of dressed states with field quantum num- —Ee“’/ {sm(G/ 2) - eile=m/2) cos(0/ 2)} [-)
ber n and all the high order triplets arise in an approach (50)
without the RWA due to transitions among dressed state

. 1 . .
multiplicities that differ from each other by an odd pho- and its orthogonal supplement |¥=(0)) is given by

ton number of the field. 1 . .
The coherent and incoherent amplitudes of the spec- |T+(0)) = 756""/4 {COS(G/Z) — gile==/2) sin(0/2)} |+)
trum in the case of upper level preparation are easily
derived from those obtained in the case of ground level 1 . /4) sin(0/2
preparation as was pointed out in Sec. IIIC. _—26 sin(6/2)

+e'=™/2) cos(0/2) } |=). (51)
2. Preparation in a coherent superposition

The coherent amplitude for the spectrum, which corre-

In the case of initial coherence, the initial state |¥'(0))  sponds to the dipole expectation value, is formally given
[Eq. (24)] is expressed in the dressed state basis as in the Heisenberg picture as
]
sin(#) sin(yp) 1 . .
(T(0)]2(t)[2(0)) = ——5—— {{+]2(t)|+) = (=|2(t)| =)} + 3 {cos(8) sin(p) — i cos(¢)} (+]x(t)|-)
1 . .
+1 {cos(®) sin(p) + i cos()} (~le(O)] ). (52)

After expressing the matrix elements according to the expression for the dipole operator in the dressed state basis (44),
we find that the coherent amplitude is equal to

(T (0)e(t) | B(0)) = u(%) sin(wit)sine) + 5 (1= 5 ) {eosl(wr — )] cosly) = G sinl(wr - ) sn) |

+% (1 + %) {cos[(wL + Q)t] cos(p) + % sin[(wz, + Q)t] sin(tp)} . (53)

The coherent part of the spectrum, given after Fourier transforming this expression, will have peaks at wy and wy +€.
It is of interest to notice here that the contributions to the harmonic lines at the frequency of the laser (coming from
the transitions between the same type of dressed states, that is, upper levels or lower levels, of adjacent multiplicities)
are totally dependent upon the initial phase of preparation (see also [38,39]). Hence we see that, for the particular
phases ¢ = 0,7 the harmonic contributions cancel out, and this is in agreement with our numerical results (see Sec.
Iv).

The incoherent amplitude, given by the fluctuations of the dipole between the initial state and the orthogonal state,
is expressed in the dressed state basis as
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(R (0)[2(2) [ 2+ (0)) = 5 {cos(6) + isin(0) cos(p)} {(+]z(t) +) — (~I=(®)| )}
~ 5 {5in(6) + sin(p) — i cos(6) cos()} (+]2(1)|-)

~ {5in(6) — sin() s cos(6) cos()} ~ [z (2) +) (54)

and it is finally expressed according to (44) as

@O 0) = (T ) sinwrt) {~ G +i( ) conte

+§ (1 - —3—) sin[(wg, — Q)¢] {— (%’) - 1% COS(<P)}

+£ (1 - %) cos[(wz — )] {—isin(¢)} + & (1 + %) sin[(wr, + 2)1] { (ﬁ> + i% Cos(cp)}

+g (1 + %) cos[(wg, + Q)t] {-—z sin(p)}. (55)

We see here that the first term of the incoherent ampli-
tude, which gives the incoherent contribution to the har-
monic lines, does not depend totally on the initial phase
of preparation, as opposed to the coherent contribution
to harmonic generation which was shown to depend en-
tirely on the phase in Eq. (53). Out of resonance, the
harmonic lines do not vanish from the incoherent spec-
trum when varying the phase of initial preparation.

VI. SUMMARY AND CONCLUSIONS

In this paper we have investigated the influence of ini-
tial preparation on the harmonic spectrum of a strongly
driven two-level system. The general structure of a suc-
cession of triplets was shown to remain mostly robust
though quantitative changes are visible. This occurs in
spite of the intuitive understanding that initial conditions
within the atom are expected to be “forgotten” rather
quickly given the large number of Rabi oscillations in a
very strong laser pulse.

The most interesting effects arise in the case of initial
“phasing” of the atom, i.e., the preparation into a coher-
ent superposition. Although the total spectrum shows no
dramatic influence on the particular phase choice, its co-
herent and incoherent contributions turn out to display
significant dependences.

The coherent part was expected to be dominant in
forward scattering because of its N2 dependence on the
atom density V. Just here we found harmonic generation
can be transformed from vanishing to existent as a func-
tion of the initial phase. This seems significant because
this could clearly improve the detection of hyper-Raman
lines which are usually dominated by the strong harmonic
peaks.

The approximate analytical calculation in the dressed
state basis allowed us to understand the succession of
triplet structures of one harmonic and two Rabi shifted
sidebands due to transitions among dressed states. We
have associated the various terms for the time depen-
dent dipole operator in the dressed state basis with the

2o

r
corresponding spectral peaks. Thus it was also clear to
see analytically that the harmonics can disappear for a
proper phasing of the initial dipole in the coherent con-
tribution of the spectrum. As opposed to the sidebands,
the harmonics arise due to transitions between the same
dressed states, i.e., in a fully quantum mechanical treat-
ment between those that only differ from each other by
the photon number of the field. The corresponding con-
tributions due to the |[+) — |+) and |—) — |—) dressed
state transitions depend on the initial phasing, and we
find that they can cancel each other out in the coherent
contribution to the spectrum for a proper choice of the
phase and thus lead to the disappearance of harmonics.
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APPENDIX A

In this appendix we discuss the numerical problems
experienced due to § functions arising in the time evo-
lution of the dipole operator without relaxation. Those
can be understood by considering the spectrum without
the presence of the field. One can obtain a reduction
of background noise in the driven two-level system by
subtracting the spectral components due to § functions
arising in the spectrum without laser field.

In the absence of a laser field, the evolution equations
for the time dependent amplitudes ¢;(¢) and cz(t) reduce

to
Ldeqg(t
’Lh%t(—) = E1C1 (t),
n 22 _ Frca(o), (A1)
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and they have for solutions:

C1 (t) = 61(0) exp(—zElt/ﬁ),
c2(t) = c2(0) exp(—iExt/kR).

Using the notations introduced in Sec. ITI C, we find that
their expression in the case of ground state preparation
is given by a(t) = exp(—iE t/k) and b(t) = 0 whereas in
the case of the excited state preparation they are equal
to a’(t) = 0 and b'(t) = exp(—iF2t/h). The evolution
operator is thus given by

e—iB1t/h 0
U(t) = ( 0 e—iEat/h | -

Hence the matrix elements corresponding to the mean
dipole are equal to zero:

(A2)

(A3)

(z(®)|1) = (2|=(t)|2) = 0, (A4)

whereas the dipole fluctuation matrix elements are equal
to

(12(8)12) = [2l=()|1)]" = p exp[—i(Ez — B1)t/H].
(A5)

Hence the full spectrum, in the absence of a laser field,
reduces to the incoherent spectrum related to the fluc-
tuations of the dipole. In the case of a ground state

preparation, the spectrum is then given by
2 2
- ‘ [ aemitereonal.

5() = | [ deeleteyi)

(A6)

It is proportional to a § function §(w + wo) and will thus
give a peak in the unphysical negative frequency range
at w = —wg.

In the case of the initial preparation in the excited
level, the spectrum in the absence of the laser field is
proportional to the § function é(w — wp) and will thus
give a peak in the positive frequency range at w = +wy.
Thus, in the absence of a laser field, the spectrum shows
an atomic peak at w = —wq in the case of initial ground
state |1) preparation [see Fig. 6(a)], and at w = +wo when
the system is initially in the upper level |2) [Fig. 6(b)].
These peaks correspond to the § functions §(w + wp) and
8(w — wo) associated with the incoherent spectra in the
absence of a laser field, which is the only part contribut-
ing to the full spectrum as it is related to the fluctua-
tions of the dipole which have a nonzero value even in
the absence of excitation, whereas the mean dipole mo-
ment giving the coherent part of the spectrum is equal
to zero. Nevertheless, the peaks obtained in our present
calculation are broader and show very high wings com-
pared to the ¢ function shapes expected. This is due to a
numerical artifact in the Fourier transform coming from
the fact that the time step used for the numerical algo-
rithms employed is adapted to the laser frequency (taken
as wy, = 0.145 a.u.) and thus not to the atomic frequency
for the particular values chosen in this example. The

0
(@)
2k
w
2 sl
8 |-
-10
-20 0 20
®/0,
° |
(b)
2l \
|
w2
& s
.
8+
-10 = . Sememee : . .
-20 0 20
0/0,

FIG. 6. The logarithm of the full spectrum S(w) in the
absence of a laser field for the system initially in its ground
state (a) and excited state (b). The frequency unit has been
chosen as wr = 0.145 a.u. and thus allows a comparison with
the results with laser excitation.

problem of the background and of its reduction has al-
ready been discussed in previous work on the ground level
preparation [35].

The corresponding problem arises also for the case of
an initial preparation of the atom in a coherent superposi-
tion of the laser field. We have considered separately the
coherent and incoherent parts of the corresponding spec-
trum in the positive frequency range. It appears that,
even in the absence of laser excitation, both coherent and
incoherent spectra contribute visibly to the atomic peak
in the full spectrum if the system is initially prepared in
a coherent superposition of levels, whereas in the case of
single level preparation the incoherent spectrum was the
only one contributing to this component. This particu-
lar effect is due to initial coherence, as in this case both
coherent and incoherent parts of the correlation function
contain dipole fluctuation terms between the ground and
upper level [see Eqgs. (28) and (29)], which give a spec-
trum even in the absence of an excitation, while for a
preparation in a single state, and thus no initial coher-
ence, the fluctuations of the dipole only appear in the
incoherent term of the correlation function [see Eq. (22)].
The same analysis has been made, still in the absence of a
laser field, for various phases ¢ and showed no particular
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dependence of the full spectra or of both its contributions
upon the initial phase.

APPENDIX B

The system of equations of motion (34) for the time
dependent coefficients ¢;(t) and c2(¢) governing the evo-
lution of the wave function is expressed in the interaction
representation as

indé(;t(t) - éz(t)%{exp [i(wr — wo)f]
) —exp [—i(wr + wo)t]},
in %20 5, ) ™00 ferp fiwr + o)
—exp [—i(wr — wo)t]}, (B1)
where ¢1(t) = ci(t)exp(—iwot/2) and éx(t) =
c2(t) exp(twot/2).

If we assume that the interaction matrix elements
are much smaller than the energies of the unperturbed
Hamiltonian, the amplitudes can be replaced by an aver-
age over the time 7 such that (1/wr) < 7 < (1/|V]),
where 1/wy is the optical period and 1/|V| the evo-
lution time. Hence, when close to resonance, and for
rather small intensities of the laser field, it is possible to
make the RWA by neglecting the fast oscillating terms
exp[i(wz + wo)t] and Egs. (B1) reduce to the standard
textbook Rabi equations

ihdééft) = Ez(t)% exp [i(wr — wo)t],
iﬁdc;t(t) =& (t)% exp [—i(wr — wo)t] . (B2)

Using the same notation as in Sec. V, we find that, in
the Schrodinger picture, the solution of this system for
the initial state being the lower level |1) is given by

a(t) = %3 exp [—i(A + Q)t/2] exp (iwot/2)

+A2“;29 exp [—i(A — Q)t/2] exp (iwot/2), (B3)
b(t) = zs;—;; exp [—i(—A + Q)¢ /2] exp (—iwot/2)

—i;l—;; exp[i(A + Q)t/2] exp (—iwot/2),  (B4)

and for the case when the initial state is the upper level

12)

a'(t) = —i;l—;; exp [—1(A + Q)t/2] exp (iwot/2)

+i522—;; exp [—i(A — Q)t/2] exp (iwot/2) (B5)
B(t) = 25T expl-i(-A + 2)t/2] exp (~iwot/2)
+—_A29+_S_Z exp [i1(A + Q)t/2] exp (—iwot/2) . (B6)
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