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It is shown that the high-frequency approximation describes the lack of stabilization for the zero-range
models in dimensions higher than 1. The same conclusion has been drawn from the exact solution of this model
in the three-dimensional space. Hence, there are no contradictions between the predictions of the exactly
soluble models and the high-frequency approximation. On the other hand both the exact numerical analysis and
this approximation leads to the stabilization for the one-dimensional & potential. This means that the high-
frequency approximation does correctly predict both the presence and the absence of stabilization effects.
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The quantum processes that arise from the interaction of
atoms, molecules, or solids with strong laser fields have re-
cently attracted a lot of attention [1]. The zero-range poten-
tials have proved to be the very convenient models for a
qualitative analysis of such processes. In particular, they
have been used for the investigation of multiphoton pro-
cesses in atomic physics in the presence of a strong laser
field. It appears that the zero-range potentials qualitatively
well describe such processes as the low-frequency free-free
transitions [2], the higher harmonic generation [3], the res-
cattering effects in the above threshold ionization [4], or the
electron photodetachment [5]. On the other hand, we observe
recently a very energetic discussion of what is known as the
stabilization of ionization in the presence of a superintense
laser field [6]. Zero-range potentials have also been used for
the analysis of this phenomenon with sometimes contradict-
ing conclusions. For instance, it was claimed that the one-
dimensional zero-range model describes both the stabiliza-
tion effect [7] and the lack of it [8]. The recently published
accurate numerical analysis of this model [9] shows that the
stabilization does occur, although it is still not known
whether the trajectories of the poles of the multichannel scat-
tering amplitude in the complex energy plane can continu-
ously be connected to the bound-state energy of the radia-
tionless model.

For the three-dimensional problem the analysis of the sta-
bilization effect could even be made more transparent, be-
cause there exists the exactly soluble case of a circularly
polarized laser field [2,10], that allows us to write down an
exact transcendental equation to determine the complex-
valued energy. The asymptotic analysis of this equation
shows [11] that there is no stabilization for this model, which
was also confirmed to some extent by the numerical analysis
[12]. On the basis of this finding the conclusion has been
drawn [11] that there is every reason to believe that this
statement remains true for the ground states of atoms, for
instance the hydrogen atom. However, before making such
generalizations we should be sure that the zero-range models
for dimensions higher than 1 really contradict the high-
frequency mechanism of the stabilization [13,14]. The aim of
this Brief Report is to show that the high-frequency approxi-
mation does describe the lack of stabilization for zero-range
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interactions in dimensions higher than 1, therefore there is no
contradiction between this approximation and the results that
can be deduced from the exactly soluble models with local
interactions.

The convenient starting point for the derivation of what is
called the high-frequency approximation is the Schrodinger
equation in the form (the units in which A=c=m=1 are
used here) [14]

i0,4(r, 1) =[ — 1A+ V(r+ al1))y14(x,1). (1

Let us stress, however, that by a proper analysis of the wave
equation in both the position and the velocity gauges one
will also end up with the same conclusions. Namely, that in
order to discuss quantum processes governed by the exact
time-dependent Schrodinger equation (1) it suffices in the
high-frequency limit to consider the truncated system of the
time-independent equations [13,14]

[E+3A—Vo(r)]go(r)=0 2)
and
[E+nw+3A—=Vo(1)]¢h,(r)=V,(r)¢o(r),
n=*x1,%2,... (3

for the Fourier components of the exact time-dependent
wave function

P(r,0)= nEZ e iETnOy, (1), (4)

in which Z is the set of all integers, E is a quasienergy, and
V., (r) are the Fourier components of the time-dependent po-
tential V(r+ a(r)). For quasibound states considered in this
paper the quasienergy £ is a complex quantity with a nega-
tive imaginary part. The analysis of corrections shows [14]
that such a truncation is justified provided that the absolute
value of E obtained from the basic equation (2) is smaller
than the laser-photon energy w. Let us emphasize however
that it does not necessarily mean that the frequency has to be
really large, because for very high intensities of the laser
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field all quasienergies of quasibound states collapse into the
Rydberg states [15], for which the high-frequency condition
can be fulfilled by optical fields.

Thus, if we want to observe the stabilization effect, we
have to be sure that there are quasibound states where elec-
trons can remain, i.e., that the effective potential V supports
at least one bound state. For potentials that are negative and
vanish at infinity this is always true in the one-dimensional
space, but it is not so for two- or three-dimensional cases
[16]. In particular, as it will follow shortly, this statement is
not valid for two- or three-dimensional zero-range medals,
hence one should not expect stabilization for them. However,
before discussing this subject we have to provide the math-
ematically rigorous definition of the zero-range interaction. It
has been proven [17] that such an interaction can be consid-
ered as the limiting case of a separable potential. To be more
specific, let us consider the time-independent Schrodinger
equation with the nonlocal separable potential

(E+58)p(r)= —xsmf Al S (), (5)

in which d is the space dimension, A>0 is a coupling con-
stant, and

r2
S(r) =<mz>"”2exp( - p), ©

with an arbitrary real and positive parameter o. The local
zero-range potential is attained in the limit o—0, in which
S(r)— é(r). However, in order to get the finite expression
for the scattering amplitude we have to assume that the cou-
pling constant A\ in this limit behaves like

(2|Egh ™12, d=1

. —[C+In(|EglaD) 27w, d=2
ATl= ) . @)
——~mE ), d=73,
7r\/27r(0' l‘B|

where Ej is the energy of the bound state, whereas C is the
Euler constant. It is clear from this expression that only for
d=1 the inverse of the coupling constant A~ ! stays finite.
This means that the two- and three-dimensional & potentials
are too strong to support the bound state of a finite energy,
and in order to prevent the collapse of this bound state to
—oo we have somehow to weaken such potentials. This goal
can be achieved either by an infinitesimally small coupling
constant, or by some extra operations that accompany the &
function [18] (it is not the aim of this Brief Report to prove
the equivalence of these two approaches; let us only note that
they lead to the same expressions for cross sections and ion-
ization rates). Since the procedure described above is more
convenient for the discussion of the high-frequency limit,
therefore we shall use it in our further analysis.

The dynamics of a charged particle interacting with such a
nonlocal potential and an electromagnetic plane wave in the
dipole approximation is governed by the gauge-covariant
Schrodinger equation [19]

(i9,+ $A) (r,t)=—\ explieA(r)-r]S(r+ a(r))
dedr’exp[—ieA(t)m']

XS*(r' + a(t))(x' 1), (®)

in which @(r)=e&(r) and &(t) is a time-dependent oscil-
lating electric field which is supposed to describe a mono-
chromatic laser field. We assume that the laser field is circu-
larly polarized,

&(1)=&p[ e,cos(wt+ 8) + e sin(wr+ )], 9)

where & is the field amplitude, w is the frequency, whereas
d is an arbitrary phase. Since o is supposed to be infinitesi-
mally small, hence S(r) is very close to the & function,
therefore we shall neglect in our further discussions the ex-
ponentials exp[ieA(r)-r] and exp[—ieA(?)-r'] in this equa-
tion. In other words, this means that in the limit c—0 our
nonlocal separable potential becomes the local one. Let us
emphasize however that it does not mean we have made
some approximations. The analysis that will follow can be
performed with the full equation (8) and we have checked
that all physical quantities in the zero-range limit are inde-
pendent of these exponentials and that their role consists
only in longer intermediate expressions.

Hence, Fourier analyzing the time-dependent Schrodinger
equation we arrive at

(E+nw+%A)¢n(r)=_)\ Z ddrlvn—n’(rvr,)wn’(r,)a

n'el
(10)
where
vn<r,r'>=,§Z S (D)SFE(),
S+ a(z))=kEZ Si(r)e ket (11)

The high-frequency approximation says that the infinite sys-
tem of time-independent equations (10) can be truncated in
the first step to the single equation for the elastic component
fo. Let us however not make such a drastic simplification
and assume that the infinite system (10) can be truncated to
any finite system of equations of the form

(E+no+3A)g,(r)

==\

n' ey

dér'V,_,(r,x' Y, (r'),

n EZo, (12)

in which Z, is an arbitrary finite subset of integers that con-
tains 0. Our goal is to show that such a truncated system in
the zero-range limit cannot support any bound states (pro-
vided of course that the laser field does not vanish), thus
cannot describe the stabilization effect. To this end let us
replace the system of differential equations (12) by the
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equivalent system of integral equations that already incorpo-
rates boundary conditions proper for quasibound states [19],

dr'd%" Gy (v, ;E+nw)

Yu(r)=—\ 2

n' eZy

Xvn—n’(rﬂvr,)l/,n’(r,)’ nEZO9 (13)

in which the Green function G is equal to

Go‘(r,r’;E)=i1+d/2f ds(2ms) 4
0

(r—r')?

Xexp( ——iEs-i———z—s———), ImE<O. (14)
We explicitly assume that quasienergies for quasibound
states are complex with negative imaginary parts. With such
a choice of the Green function all integrals that appear fur-
ther are well defined and convergent. Hence our conclusions
are not affected by the fact that quasienergies are analytically
continued into the lower half of the complex plane. Let us
define further

Fn,k:j dlrSys (1) g (x), (15)

where the first index n belongs to Z,, whereas the second
index k runs over the whole set of integers. One can easily
prove that the system of integral equations (13) is now re-
duced to the system of algebraic equations

dirdr' S¥, (r)Gy (v, v E+now)

Fo=—\ 2 2

n'ely k'el

XSn+k!(r’)Fnr’kr, neZO, kel. (16)

The space integration is carried out using the well-known
expressions for the Gauss integrals, and finally we end up
with the finite for any k system of algebraic equations, which
we write as (k plays the role of a parameter, which can only
happen for the circularly polarized field)

2 Mﬁl’;),F,,,’kzo, nely, kel, (17)
n'eZ,

where

oo
Mi’il),:)\—l5"n,+il+n+k+d/2(2ﬂ_)—d/2fo dS(SJrio.z)*d/z

2

20)
Xt {3567

2

. )
exp(——1(E+nw)s 1s+i0'2) (18)
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in which J,, is the Bessel function and ay=—e&,/w?. Let
us note that the second term of M ;1;), is independent of n',
which again can only take place for the circularly polarized
field.

We can now make the zero-range limit c— 0. In this limit
the integral is divergent for small s only for d=3, whereas
the convergence for large s is guaranteed by a supposed
negative imaginary part of E. In order to calculate the exact
form of the divergent term we split the integral into two
parts, from O to £ and from & to %, where & is such that
e>0? and e<< a(z). In the second part we can put 0=0 in the
intergand, whereas in the first part we expand the Bessel
function in the asymptotic series and perform the remaining
integrations term by term. Finally, we obtain the following
expression for the matrix M,fj;), s

®) 1 .
Mnn,=—;_r—ln¢76,,n,+.%, d=2 (19)
and
1 1
M(k)I:_ _‘—__‘Snnl_" D
" ToN2TT 2mta

Inoc+.7, d=3, (20)
0

in which .¥ means ‘“finite terms in the limit o—0.” It is

- clear that the determinants of these matrices cannot be equal

to zero for any finite and physically accepted (i.e., for in-
stance with the negative imaginary part) quasienergy E; let
us remind the reader that M El];), are the matrices of a finite
rank and in the strict high-frequency approximation they are
just complex numbers. This means that the truncated system
(12) does not possess quasibound states of finite quasiener-
gies, hence one cannot expect the stabilization for this sys-
tem. On the other hand, one can show that the infinite system
(10) does support the quasibound state of the quasienergy
that fulfill the well-known transcendental equation, and
which leads to the lack of stabilization for asymptotically
large intensities of radiation. Hence, both the high-frequency
approximation and the exact solution of the zero-range mod-
els predict the same behavior of quantum systems irradiated
by intense laser fields, and there is no reason to claim that the
high-frequency approximation incorrectly describes the sta-
bilization effect for more complicated systems such as the
hydrogen atom.

To recapitulate, we have proved that there are two- and
three-dimensional systems for which the stabilization does
not occur; this fact does not contradict the high-frequency
mechanism of this phenomenon. Moreover, as the one-
dimensional model shows [9], the excited states are not nec-
essarily indispensable for the stabilization, although they
may be helpful.
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