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Atomic anapole moments in the electroweak theory
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The role of anapole moments (a) arising from the P-violating and T-invariant theory of electron-nucleon
interactions in the atom is examined. The standard model of the electroweak theory is used to compute

numbers for ~a
~

for alkali-metal atoms and muonic hydrogen. The physical implications of the results obtained
are discussed.

PACS number(s): 32.80.ys

In the standard model (SM) [1]of the electroweak inter-
action in the neutral current form, there is always a Zp chan-
nel accompanying the corresponding y channel. The ex-
change of massive Zp bosons between the electron and the
nucleus is responsible for the weak interaction and leads to a
zero-range effective Hamiltonian that must be added to the
usual Coulomb Hamiltonian. The Zp gauge boson can couple
like an axial vector either to the electronic current or to the
nucleonic current. The first one makes the major contribution
to atomic parity nonconservation (PNC) [2].The correspond-
ing nonrelativistic electron-nucleus potential V~, is given by
[3]

QwGF--
V„,= tp a, 8(r))+,

2 m

where m, —,o., p, and r are, respectively, the mass, spin,
momentum, and position of the electron. In the Weinberg-
Salam model [1] the effective weak charge

Qq, = —[(4sin 0~—1)z+N]

with 0~ the Weinberg angle. The quantities N and Z stand
for the neutron and proton number in the nucleus. The Fermi
constant GF= 10 m„(m„ is the mass of the proton). The
interaction in (1) causes mixing between even and odd parity
states. Considering s &&2 and p»2 orbitals, the electronic wave
function for the mixed state can be written as

[Ro(r) —i rIR, (r)o. r]y, (3)

where Ro(r) and Rt(r) are the appropriate radial wave func-
tions and y is the spin function. That the mixing coefficient
i g is purely imaginary is a result of the T invariance of the
weak interaction. The wave function in (3) can be rewritten
in the form

= 1 0 7" Rt(r)
Ro(r) 1 —i9(r) y, 0(r)=2r/

4~ 2 ' Rpr
(4)

to exhibit that the admixture is equivalent to a local rotation

of the spinor g around the direction r [4]. This spin preces-
sion (Fig. 1) is a source of current that gives rise to a third
family of multipole moments in addition to usual electric and
magnetic ones [5]. These are toroidal multipole moments.
The toroidal multipole moment of rank one [toroidal dipole
moment (TDM)] is often called an anapole moment (AM)
(Fig. 2). Regarded as a source of parity nonconserving inter-
action, studies in AM are an interesting curiosity.

In this work we shall be concerned with semileptonic ana-
poles which arise from the exchange of Zp gauge bosons
between the atomic electrons and hadrons in the nucleus. As
with semileptonic anapoles one can also talk about hadronic
and leptonic ones. A single free particle may also acquire
TDM from the radiative correction in the electroweak theory.
Recently, the scenario for the dynamical origin of different

FIG. 1. Precision of the spinor y resulting from s»2 and p»2
mixing due to the interaction V„, in (4).

FIG. 2. A toroidal solenoid with poloidal current C giving rise

to anapole moment (T).
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GFQ
(n, st/2~ Vp ~npl/2) = —3i R„(0)R„,F(0). (5)

8~m 2

Here prime denotes differentiation with respect to r. The
values of the radial wave function at the origin are deter-
mined by using the Fermi-Segre formula as given in Bou-
chiat, Bouchiat, and Pottier [9]. The mixing coefficient
(n;sl/q~ V„,~npl/2)/(E„p —E„l) can now be used to construct

parity mixed states for the valence electron of alkali atoms.
The anapole moment operator is given by [10]

a= —(r&& o) ——[/, r]
Pt 3 (6)

The first term in (6) represents the contribution to a by the
spin current while the second term arises due to the orbital

current. The matrix element of a between the parity mixed
states gives the following expression for the anapole moment

1 Bp(E Q)+ tl, (En, )]r(n, O,ni)
a = —CQZ

( n;P En 1)in Ry( Pn, Q+n1).
(7)

where

f' oo

r(n, O, n 1)= r R„pR„ldr,
p

tf
(8)

types of anapole moments has been expounded by Lewis [6]
in the context of leptonic TDM calculations for atoms.

The calculation of semileptonic AM for a general many-
electron atom is complicated by summations over infinite
classes of Brueckner-Goldstone perturbation theoretic dia-
grams [7]. In view of this we shall compute values of AM's
for the alkali and exotic atoms because we believe that, for
these systems, large atomic physics uncertainties can be
avoided to a fair degree of accuracy. For example, the struc-
ture and spectra of alkali atoms can be understood relatively
simply because they are made of closed shells with one va-
lence electron. The situation is similar to the hydrogen atom
except that the potential on the valence electron is not purely
Coulombic but is shielded by the core electrons resulting in
the removal of l degeneracy. The effect of inner screening is
well taken care of by the so-called quantum defect theory
(QDT) [8]

For alkali-metal atoms we proceed by assuming that the
core electrons merely screen the nuclear field and do not
participate in the weak interaction with the outer electron. In
other words we ignore the leptonic contribution to TDM.
This is justified since it has been found that the leptonic
TDMs are three orders of magnitude smaller than the univer-
sal scale GF/c=4. 55X 10 cm set for toroidal moments
[6]. The valence electrons of alkali atoms are s electrons.
Under the influence of parity-violating potential in (1), parity
mixing occurs between s and p orbitals. In the independent
particle model of the atom, the matrix elements of V„, reads

TABLE I. Values of anapole moments (a) from Li to Cs. The
numbers in brackets stand for powers of 10.

Atom /a/(cm')n;

Li
Na

K
Rb
Cs

6
7
8

10
10

1.49[—34]
6.53[—33]
5.79[—32]
4.ss[—3 1j
2.59[—30]

Q=0.08Z —N and C=Bap with B= Gm n .
9&2

(9)

Here ao is the Bohr radius and E„&=—1/p„, the binding
energy in Ry with l degeneracy removed. The quantity
8',(E„) is given in terms of the interpolated quantum defect
p,„ (E/„) = n —p„/ and average potential acting on the valence
electron [9,11].In writing (7) we have used

(a) =ea1 and sin old=0. 23. (10)

Equation (10) clearly shows that the anapole moment has the
direction of the total angular momentum J and its magnitude
is given in (7). Based on (7) we have computed values of

~a~ for alkali-metal atoms from Li to Cs. The energy lev-
els and quantum defects characterizing the expression have
been given by Ham [12].The first term in (7) gives the most
dominant contribution but is not infinite because of the re-
rnoval of l degeneracy by inner screening. In computing the
results in Table I we have restricted the sum in accordance
with the availability of values for energy levels and quantum
defects. Looking at this table we see that, beginning from

Li, as we go to higher alkalis the values for ~a~ tend to
increase approximately linearly in the logarithmic scale. The
result for Li falls below the universal scale for toroidal
moments by one order of magnitude and the numbers be-

come significant from "Na onward. More interestingly, ~a~

for "Na compares quite well with the free-electron anapole
moment 5X10 cm [6].Apenko and Lozovik [13] have
computed the anapole moment in deuterium for the 2s&&2

electron. Here the degeneracy between 2s &&2 and 2p &/2 states
is not removed by screening. Instead, the energy difference
F2, —F2 =4.34X 10 eV is due to the Lamb shift. This

is extremely small and the contribution to
~
a

~
may be thought

of as arising entirely due to the first term in the sum like that
in (7). The value obtained, a = 2 X 10 cm, is of the same
order of magnitude as our result for Cs.

We have begun by noting that the most dominant contri-
bution to atomic PNC comes from Zo exchange between the
electron and the nucleus and assume that the associated neu-
tral current interaction induces an electronic anapole mo-
ment. Therefore, one would like to see how the electronic
TDM compares with the well established nuclear AM, which
has been a subject of experimental interest [14].The atomic
anapole moment a —enGZ Qlv. Its energy of interaction
with a current density ej will be —n GZ Qlvj. The inter-
action of the same current with the nuclear AM [4]
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—GZ K~ with ~, a dimensionless constant which for heavy
nuclei with odd Z lies between 0.3 and 0.4. Thus the atomic
AM is suppressed compared to that of nuclear AM by a
factor n Q~lsc, . Ideally, the atomic TDM is expected to
interact magnetically with the nucleus and thus contribute to
the total P-odd electron-nucleon spin dependent effect lead-
ing to hyperfine dependence of the weak interaction. But
because of its extreme smallness this dependence will be
difficult to observe and for all practical purposes may not be
distinguishable from the internal nuclear AM. The calcula-
tion presented by us is nonrelativistic. For high Z atoms such
as Rb and Cs, one might attempt to incorporate the effect of
relativity and try to improve on the results presented by us.

It is believed that, as with conventional atoms, studies of
PNC effects in muonic atoms may also be interesting
[15,16].The bound states of these atoms are highly localized
owing to the large muon mass and the corresponding Bohr
radius is smaller than that of electronic atoms roughly by a
factor 1/207. Thus it will be instructive to compare the val-

ues for
~
a

~

for muonic hydrogen and deuterium for the muon
in the 2s, &z state with the result of Ref. [13].If we agree to
disregard the nuclear recoil and finite nucleon dimension
then the formula in (7) can be directly applied for our case

study provided the sum is restricted to n=2 only and the
quantum defect p, „& is set equal to zero. The mass of the
electron should be replaced by muonic mass and the Bohr
radius should also be appropriately changed. In the case of
ordinary hydrogen the energy difference between 2s&&2 and

2p»2 states is due to the Lamb shift. But for muonic hydro-
gen the main contribution to this energy difference is made
by the vacuum polarization. If we use the theoretical value
[17] Fz, —E2„=—2.0X10 eV then our estimate for

the muonic anapole moment is 3.26X 10 cm . This num-

ber is three orders of magnitude larger than the correspond-
ing value of Apenko and Lozovik. For muonic deuterium,
there would be a further enhancement in the value of TDM
due to an increase in the value of weak charge and we would
have, a=4.06&C 10 cm . In view of these augmented re-

sults for ~a
~

we hope that as with QED the muonic atom will

play a crucial role in the tests of the gauge theories of elec-
troweak interactions.
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