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Polarization dynamics of a J= —,'~J= —,
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A theoretical treatment is given of the dynamical and steady-state behavior of an anisotropic laser. The
model is based on a homogeneously broadened, pumped J= 2~J= z atomic transition, and is solved to all

orders of the electric field, in contrast to previous studies of anisotropic lasers. A survey of the system behavior
is presented, and complementary analytic descriptions developed to describe the small- and large-field evolu-
tions are given. The small-field polarization behavior is shown to be oscillatory in general, and dominated by
the properties of the cavity. The large-field description allows the polarization stability of the final output states
to be analyzed, and shows that stable steady states in this regime must be linearly polarized along either one or
the other of the two anisotropy axes. The possible range of cavity lengths which allows bistable output between
these two polarizations is characterized analytically, and a regime identified where the polarization undergoes
sustained oscillation.

PACS number(s): 42.60.Gd, 42.50.Ne

I. INTRODUCTION

Laser dynamics is a subject of enduring interest. Most of
the attention has been directed to the so-called scalar case,
where an internal element such as a Brewster window en-
forces a single linear polarization on the laser field. Within
this context, a rich variety of phenomena has been investi-
gated, including spontaneous pulsation [1],nonlinear dynam-
ics and chaos (e.g. , see [2] and references therein), and more
recently transverse spatial effects, e.g. , [3].However, the role
that the field polarization can play in laser behavior has been
known from the earliest experimental investigations of lasers
(e.g. , [4,5]) and important fundamental theoretical papers
[6—8] followed soon after, to build the framework for the
treatment of anisotropic lasers. Interest continues to the
present day: recent theoretical work has distinguished the
fundamental topology of the vectorial laser from the scalar
case [9], and shown the influence that different polarization
geometries can exert on the dynamical behavior [10].

In this paper, we consider a particular model of the aniso-
tropic laser, in which an isotropic medium couples orthogo-
nal polarizations, and the cavity has a small asymmetry (in
phase and absorption) between orthogonal linear polarized
modes. Models of this general type, but using a perturbative
approximation to the atomic response function, were de-
scribed in the papers of van Haeringen [6,11] and Tomlinson
and Fork [8,12]. Le Floch and co-workers have made an
intensive experimental and theoretical study of many aspects
of anisotropic lasers [13—16], and have pointed out the ad-
vantage that a vectorial laser, with its two distinct modes and
easily manipulated coupling, may have over a scalar laser in
the study of dynamics. The theoretical part of their work,
which has included descriptions of phase transition analogies
[14], nonlinear dynamics [15], and vectorial bistability and
instabilities [17,18,16] has been based on the equations of
the earlier formulations (e.g. , see Eqs. (1)—(3), Ref. [12]).
Grossmann and Yao [19]have also used similar equations to

analyze the output states and stability of a laser with a cavity
phase anisotropy.

All of these works have used a perturbative (third-order)
atomic response function. However, previous work in differ-
ent areas of nonlinear optics has shown that a full nonpertur-
bative treatment for the response function of a Zeeman de-
generate transition can give rise to surprisingly distinctive
phenomena. For example, in passive optical bistability, the
stable output states of a J= —,'~J= —,

' transition driven by lin-
early polarized light are circularly polarized [20], while for a
J~= 1~J,=O transition the output polarization is identical
to the input [21,22]. In nonlinear beam propagation, a J= —,

'

~J= —, transition may cause an elliptically polarized Gauss-
ian beam to develop into concentric rings of alternate circu-
lar polarization [23—25], while a J~= I~J„=O transition
preserves the initial polarization across the spatial profile
[26].The effect that such nonperturbative response functions
might have on laser dynamics is thus not easily predicted.
Recently a saturating response has been used by Eschmann
and Gardiner [27] in the somewhat different context of mod-
eling the stability properties of two adjacent whispering gal-
lery lasers.

In the present paper we wish to revisit the treatment of
anisotropic lasers, to explore the effect that a fully nonper-
turbative treatment of a homogeneously broadened J= —,

'

+-+J= —,
' transition will have on the laser dynamics. The re-

sponse function we find for this transition is intrinsically
isotropic, but incorporates absorptive and dispersive satura-
tion and mediates a competitive nonlinear coupling between
left and right circular polarizations, driven by optical- pump-
ing in the lower level. The anisotropy of the laser arises
entirely from the cavity, which we assume to be a ring sup-
porting two orthogonal linearly polarized modes with
slightly differing frequencies and decay rates. The basic
equations for the two modes are derived in Sec. II by em-
ploying an adiabiatic elimination of the atomic medium. A
survey of the type of system behavior this model laser can
exhibit over a wide range of parameter space is given in Sec.
III, and we then develop two complementary approximate
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energy fico,
&

and are isotropically pumped from the reservoir
state at rates X„and P ~, respectively, while decaying isotro-
pically at rates y, and y~. Population transfers spontane-
ously from the upper to lower level at rate y and is trans-
ferred collisionally between the lower states at rate ~~ and
between the upper states at rate ~„.The atoms interact with
a coherent classical electric field which propagates in the z
direction and can be written

E(r, t) =E„tc (r, t)e'("' "'l+c.c.,

where co is a conveniently chosen center frequency which we
describe further at the end of Sec. II B. The saturation elec-
tric field E„,is

1 1FIG. 1. The atomic system, consisting of a J= 2~J= 2 transi-

tion plus a reservoir state (s).

E t=
uF

6I y

p
(2)

descriptions to explain the dynamical behavior. The first of
these (Sec. IV A) applies during the initial period while the
laser intensity is small, and describes the evolution of the
polarization ellipse. The second (Secs. IV B and V) describes
the rate of precession of the polarization ellipse, once the
field has become large, and allows us to identify quantita-
tively the possible output polarizations and their stability. We
find and characterize one parameter regime where the output
polarization undergoes oscillation, and we also characterize
the parameter regime where a previously noted polarization
IIipping [6] and bistability [17] of the two linear polariza-
tions can occur.

II. BACKGROUND

where d,~ is the reduced matrix element for the transition
and I is the relaxation rate of the electric dipole. The quan-
tity p, (defined below) is a measure of the change in satura-
tion due to the pumping from, and decay to, the reservoir
state. Writing the vector amplitude H'(r, t) as

P(r, t) = Ã+(r, t)e~, + F (r, t)e~+, , (3)

where e*, are standard spherical basis vectors (e.g. , see p. 28
of [30]), then cF+ and F represent the slowly varying com-
plex amplitude of the a+ (left circular polarized [31)) and
cr (right circular polarized) components, respectively.

We write [20] the macroscopic polarization in terms of
irreducible tensor components [32] of the atomic density ma-
trix

Our model is formulated under the assumption that the
atomic medium can be adiabatically eliminated from the full
system equations, allowing the steady-state quantum-
mechanical expectation value of the atomic dipole to be used
in the electric field equations. In this section, we begin by
presenting our atomic model and its steady-state solutions,
and then proceed to obtain our basic laser equations by using
appropriate vectorial boundary conditions in Maxwell's
equations. Although adiabatic elimination is a common tech-
nique in treatments of laser dynamics (e.g. , see Refs. [2,28]),
some discussion of its implications is required in the present
case, since our atomic model is rather more complex than the
familiar two-state model. For convenience, we give this dis-
cussion at the end of this section once all the properties and
parameters of the full system have been introduced.

d„yNP= g e*t( —1)~p' (Yu;r, t)+[p'(Yu;r, t)]*),
3V e

where N/V is the atomic density, and find steady-state solu-
tions for p' (Yu;r, t) by solving the density matrix master
equation presented in Appendix A. Writing

p ~~ i(kz —cot)+

the steady-state positive frequency macroscopic polarization
has the form

N 2y
M~= —i —d„g no[rl+Ã+e*, + g F e+, ], (6)

A. Atomic model

The response function of a homogeneously broadened
J= —,'+ J= —,

' transition with isotropic relaxation has previ-
ously been solved for an isolated system (i.e., without pump-
ing) by Hamilton et al. [20,29] (and see [23]).Their solution
gives the circular components of the macroscopic polariza-
tion expressed as closed functions of the or+ and o. electric
field amplitudes and detunings. In this paper we modify the
J= —,'~J= —,

' model to introduce gain to the system by incor-
porating pumping from a fifth (reservoir) state, as shown in
Fig. 1. The upper (u) and lower (l) levels are separated by

where the zero electric field inversion no is given by

and the circular response functions y are

1+id
l7

with

(7)

(8)
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electric field is plane wave, constrained to travel in one di-
rection only, and is polarized in the plane perpendicular to
that direction. In the slowly varying envelope approximation
(SVEA), and with adiabatic elimination of the atoms, Max-
well's equations become

85 8
+c

Bt Bz

l (0

2 &p
(16)

FIG. 2. The anisotropic ring laser. The field is constrained to
propagate in one direction only and the output mirror has different
(and complex) reflectivities for x and y polarizations. The other
mirrors are perfect reflectors.

where W is given by Eq. (6). The cavity, which has round
trip length A, enters the problem through the boundary con-
ditions imposed on Eq. (16): after exiting the medium the
field reflects off the output mirror and then propagates
through empty space a distance A —L before reentering the
medium (the other mirrors serve only to redirect the beam).
We shall assume the cavity has linear anisotropy, with am-
plitude reflection coefficients r and r~ and empty cavity
resonant frequencies co and co, respectively, for x and y
polarized fields. In an empty cavity, a round trip phase dif-
ference of 20 develops between x and y polarizations with
8 given by

1 +4PI
1+(2P+4)(I++I )+32PI+I (9) A file co&0=-

c 2
(17)

The generalized intensities, defined as

g2 (10)

include the effect of the detunings A~ of the o.—fields from
resonance,

We remark that a choice of circular anisotropy for the
cavity leads to dynamics that are essentially those of the well
known two-state laser model, and will not be pursued further
here. The range of dynamic behavior that we shall see later
in this paper results from the coupling between the modes of
the cavity which are linear polarized, and the natural modes
of the medium, which are circular.

In Appendix 8 we derive the following boundary condi-
tions for the slowly varying o.—amplitudes,

where we have defined

(12)

(a.(o,r) ~

=Rcirc
i F (Or)(

( Lf'„Lt,
L, t—

(18)

We note that Eq. (11) accommodates any frequency pulling
that might occur. The response functions z/ in Eq. (8) have
the same form as the expression obtained by Hamilton et al.
[29], but the parameter P now incorporates the effect of all
the transfer rates,

where R„„is a 2 X 2 matrix given by Eq. (B19) and depend-
ing only on the cavity parameters r, , r~ and 0. We note that
in deriving Eq. (18) we have chosen the slowly varying fre-
quency co to be (co + to~)/2.

P=P. // (13) C. Field equations

with

and

y (y„+2'.„+yp+21~g —y/3),
ru+ +u/I r/+

(14)

The boundary condition, Eq. (18), can be made isochro-
nous and periodic in z by applying a vectorial generalization
of the transformation of Lugiato [33]:

( S,(z, r) l (~.'(z, r )~
= exp[ —(z/L) ln R„„]. . . (19)

~F zr
/

where ln R„„is the matrix logarithm of R„„and
y[2(l .+ &~)+r.+ r~- r]

2[r~r. + lt.(r~+ y)+ lt~r. ] (15) ~ —Lzt'=t+
c L (20)

B.Anisotropic ring cavity

In our ring laser (see Fig. 2) we will assume that the
Since we expect the gain per passage through the medium

to be small, we make a uniform field approximation [34]:
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8" (z, t ') = F' (0,t ') =—8' (t'), (21)

iw,'~ g,L, I „. 0 ) iw.'l
dt' A '"' lg'I 2 Ai 0

(22)

where we have substituted for M~ from Eq. (6) and

which allows for a spatial exponential growth of the field
F in the medium, to balance the loss at the mirrors. Now
substituting for 8'in the Maxwell-Bloch equation, Eq. (16),
we obtain

0
CUb =

ln gr, r, ~'
(31)

where e (which is positive when r,)r ) is a measure of the
cavity absorption anisotropy and cob (half the frequency
separation of the empty cavity x and y polarized modes in
units of Ic) is a measure of the "phase anisotropy. " In terms
of these quantities, the empty cavity resonant frequencies are
at co Kalb (x polarization) and co+I~co„(y), with corre-
sponding decay rates being Ic(1 —e) for x and ~(1+e) for
y. We note that the detunings 6+ and 5 can be expressed
in terms of the new variables as

un pNyc 2

g'= r~'v (23) ~dP
=—5+—

d7
(32)

(A (t') '4'+(~ ))
8" (t')=

L, A (t')e
(24)

where A and P are real and

~(t )=0+(t ) 4'-(t )

and making the scale change ~t' = ~, where

(25)

c~ln gr, r,
~

A
(26)

is the generalized form of the cavity decay rate of scalar laser
theory (Chap. 7 of Ref. [34]), we obtain the fundamental
equations of our laser model by taking the real and imagi-
nary parts of Eq. (22), to give

Cq.
1 —

~ A~(r)1+a.i

+(—

ecosoc~

cubsin8')A-(7) (27)

and

cA. ~. A —(r)
2 + (cob cos8~ e sin8) . (28)

1 + T

In these equations we have introduced the following param-
eters:

gpL

2/In Qr, r
/

which is the cooperativity (e.g, see Chap. 7 of Ref. [34]), and

ln pry Ir,
ln gr. r,

' (30)

is the small-field gain.
Although it is possible to proceed in terms of either x and

y polarized components of the fields (the natural basis for the

cavity) or o.+ and rr fields (natural for the medium), the
complexity of the response functions in an e, e~ basis makes
the spherical basis the better choice. Setting

which shows that Eqs. (27) and (28) are implicit equations
for d P+ Id r and d P Id 7. However, P+ and P only ap-
pear on the right-hand side (RHS) of these equations in terms
of 8 (= @+—P ), which means the laser is not sensitive to
the individual phases of or+ and o. , but only to their phase
separation and frequencies. We note that a general elliptical
polarization state of the field can be described in terms of
8' and the quantity p, where

p=A+ /A (33)

d8 5+ r/~ 5 ig= —C 2
—

2 '+ cob(1/p —p) cos8dr [1+6, 1+6
+e(1/p+ p) sink

D. Adiabatic elimination

The basic condition for adiabatic elimination of a group
of variables is that their relaxation rates are much larger than
those for the variables that remain. Given the large number
of rates that occur in the J= —,'~J= —,

' model, it is worthwhile
to identify the parameter regime for which the adiabatic
elimination can be expected to be valid. In so doing we are
guided by the systematic procedure for adiabatic elimination
provided by Lugiato et al. [28].We begin by considering the

When 6= 0, the ratio of y to x axes of the ellipse is
' (p+ I)/(p —1), and a nonzero 8' causes the ellipse to be

rotated in the positive direction by an amount 6/2. Further-
more, if p) 1, the polarization is left circular and if p& 1 it is
right circular.

Equations (27) and (28) form the basis of the rest of this
work, and we can identify in them the separate mechanisms
which drive the evolution of the fields. The o.+ amplitude,
for example, suffers loss from the cavity (at rate 1 in our
scaled units) and gain from the medium at rate CRe(r/+)
[together making up the first term in Eq. (27)]. Correspond-
ingly the phase P+ is modified by the medium dispersion
[the 5+ i7+ term of (Eq. (28)]. In addition, both equations
have terms in sin6 and cos8' which represent the conver-
sion of o.+ into o. by the x and y cavity anisotropies.

For later convenience we present the equation for the
phase difference 8 [obtained from the difference of the two
equations, Eq. (28)]:
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case where all the atomic relaxation rates are of the same
order, and we represent a typical atomic rate by 1, . The
atomic variables are to be considered the "fast" variables,
and the smallness parameter of the adiabatic elimination is
then e= ~/I, . By scaling the time variable for the density
matrix equations, Eqs. (Al) —(A8), in terms of r= vt, and
dividing each equation through by I, , it is clear that in the
limit e—+0 all the constants on the RHS of those equations
remain finite, and that the temporal derivatives can be ne-
glected. The atomic parameters that remain in the field evo-
lution equations (27) and (28) are C, 5, and P and all
remain finite in the limit e—+0: the first two parameters are
defined analogously to the corresponding quantities in Lu-
giato et al. [28], while P is defined in terms of ratios of
atomic transfer rates, and hence is independent of scaling.
Similarly, our saturation field Eq. (2) is defined as in Lugiato
et al. [apart from the quantity p, which is also invariant to
scaling; see Eq. (15)] and thus we may conclude, using their
argument, that the fluctuations do not diverge as e~O and
our semiclassical equations are valid. We note that the cavity
anisotropy parameters e and cob are already defined in units
of ~ and thus are well behaved in the adiabatic limit.

The key atomic rates are y and y&, and we will assume in
all that follows that y,)y since Eq. (7) shows this is neces-
sary in order that our system has gain. Hence for all cases of
interest P„~1 (since y,)y) and in the most typical case,
when y„+2~,= y, we have P„=l. Without significant loss
of generality we can set X~=0 and y„= y, so that the value
of p, is controlled by k, , such that p, —+1/2 when X, (& y and

p, ~y/y~ when X,~ yI. We see therefore that in the case
where all atomic decay rates are to be of the same order, we
should have P(10. Accordingly for most of the results we
present in this paper, we set P=4. However, interesting and
qualitatively different dynamics also occur for larger values
of P. It is clear that these can only be achieved if y~)& y, but
providing that the smallest atomic rate is much larger than
sc, Lugiato et al. have shown that it is possible to proceed
with the adiabatic elimination by dividing the variables into
three groups, and eliminating first the variables associated
with the largest decay rates (in this case including at least

y~ and I ), and next the variables with the intermediate de-
cay rates (all other atomic variables).

III. RESULTS

I

0.2-

+ 0.1 .

(b)

—6
0 50 100 l50

batic elimination, small anisotropy (e(&1, cob(&1), and for a
range of initial conditions (A+, A, and 8). We have found
that there is an overwhelming probability that the system
behavior falls into one of three main catergories, which relate
to the possible final output states of the laser: (i) cw and
linearly polarized along x; (ii) cw and linearly polarized
along y; (iii) oscillatory behavior; and we illustrate these
behaviors below in Figs. 3—7. In each figure we have set
e)0 (i.e., the x polarized mode has the lowest loss), but the
results given are representative of many different simula-
tions, and their character is insensitive to seed intensity (pro-
vided the seed is small) although in some (bistable) cases,
critically dependent on the seed polarization.

2. (a)

0

(b)

FIG. 3. Laser field evolution for the case 5=0.1, a=0.07,
rub=0. 3, C= 1.2, P=4, and ~/I'=0. 01. (a) A+ (solid line) and
A (=A+ in this case); (b) k The initial field is A+ ——A =10
and 6'= n/14.

The electric field amplitude and phase equations, Eqs.
(27) and (28), are a set of first-order ODE's for the variables
A+, A, P+, and P, with implicit coefficients (since
dP /dr appears in r/ ).They are integrated numerically by
first using a rootfinder to generate, for given A+, A, and
8, solutions to the implicit equations, Eq. (28), for
d P+ /dr and d@ Id r The values .of d P+ Id r and
dtt /dr are then used in Eq. (27) to provide the derivatives
dA+ /d7. and dA /d~ for an ODE solving routine. Thus we
see that, although the system as written in Eqs. (27) and (28)
is a set of four equations in four variables, in fact only three
variables are needed for the solution. Physically the reason
for this is clear: only the relative phase between o.+ and o. is
required to specify the polarization.

We have investigated this system extensively for a wide
range of parameters consistent with the assumptions of adia-

2.

0
0 50 100 150 200

FIG. 4. Laser field evolution for the case 5=0.02, a=0.05,
cob=0.2, C=20, P=4, and z/I =0.01. (a) A+ (solid line) and
A (dashed); (b) A (solid) and A (dashed); (c) 8. The initial field
is A+ =A =10 and 6= m/100.
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(a)

(a)
0.1

~gag
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(b)

0
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2

0
0 200 400 600 800 |000

FIG. 5. Laser fieeld evolution for the case 6 = —0.25, a =0.
cu1, =0.1, C=100, P=4, and ~/I =0.01. a A=o.o. (), (o') dW,

6= 0.95~.
The initial field is A =A = 10 and

0.2-
(a)

(b)

—2
0 50 100 150 200

FIG. 6. Laser field evolution for the same are same parameters as Fig. 5
an initial field A =A = 1+ = = v and 6= —m/10.
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ing all other parameters in Fig. 6 unchanged) allows the so-
lution to end in an x-polarized state. The oscillatory solutions
occur only for a narrow parameter range and display most
sensitivity to the values of p and C.

We have been unable to find completely general solutions
to analytically verify the dominance of the three classes of
behavior discussed above. It is easy to see from Eq. (34),
however, that any solution with a constant linear polarization
(A+=A and dBldr=O) must be polarized along either the
x or y axis (8=0 or ~ m, respectively). On the other hand,
steady-state elliptically polarized solutions with constant am-
plitudes A+ and A cannot be ruled out. We have thus been
led to an alternative and approximate analytic treatment in
order to understand the types of behavior the system exhib-
its. A detailed discussion of this treatment is given in the
remaining sections of this paper, and we find we are able to
quantify the parameter regimes for which the three types of
behavior given above may occur.

10
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IV. ANALYTIC DESCRIPTION OF DYNAMICS

The evolution of the laser field can be well described by
two complementary analytic approximations. The first,
which we shall call the small-field approximation, describes
the behavior from initial turn on, until the intensities of the
or+ and o. fields are no longer small. The second, which we
shall call the large-field approximation, describes the evolu-
tion of the phase difference once the field amplitudes have
become sufficiently large. This latter approximation will al-
low us to predict the stability properties of the output states
in the large-field regime and, together with the small-field
approximation, allow the origin of the behavior types dis-
cussed in Sec. III to be understood.

FIG. 8. Example trajectories (dotted lines) in the p
(—=A+ /A ) and 8 plane for the small field equations (42) and (43).
Parameters are exactly as in Fig. 3, and the trajectory corresponding
to Fig. 3 is shown as the solid curve.

then it is clear from Eq. (32) and (38) that

1+5~=1+5 . (40)

Strictly, Eq. (40) has been derived only for small fields lin-
early polarized along x and y, but a similar (although alge-
braically more tedious) argument can be used to validate Eq.
(40) for an arbitrarily polarized small field. We are now able
to write an approximate form of the equation for d8/d~.
Applying Eq. (35) and Eq. (40) to the equation for db/Idr,
we find the first term in Eq. (34) reduces to

to

A. Initial behavior

When the fields are small the response functions simplify
~C d6'

I (I+5') d7

(35) which is a negligible correction to the derivative on the left-
hand side of the equation, and thus we obtain

provided

(2P+4)I (&I if I &)I (36)
dc' (1 I'1

——p cob cos6'+ —+p 'a sin8,dr (P l
"

(P l
(42)

or

8J (&1 if I+ = I (37)

For the cases of small fields polarized along either the x or y
axes, then Eq. (28) becomes

d4+
d7

cA
1+&+, 2 ~Cub, (38)

C
I (1+6 )

(39)

where the upper sign refers to y polarization, the lower to x
polarization, and a similar equation holds for dP /dr. If
s&/I'(& 1 (as it must if the adiabatic elimination is to be valid)
and also

which is valid for a general polarization in the small-field
regime. Similarly, beginning with p=A+ /A and Eq. (27),
and using the same approximations that lead to Eq. (42), we
obtain the following equation for d pld z:

dp
=[(p —1)a cos8+(p +1)o)b sin8].

dv (43)

Equations (42) and (43) constitute a closed set of equa-
tions [35], which describe the evolution of 8 and p while the
electric field remains small. We interpret these equations
physically by noting that in the low-field regime the medium
contributes symmetrically to the individual phases and am-
plitudes, and thus p and 8 are driven only by the cavity
anisotropy. The critical points for the equations (where
dp/dr=0 and d8/de. =O) occur at p= 1 and 8=0, ~ 7r, and
a linear stability analysis about these points shows that for
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dA = —(1—C r/~ —e)A„d7 (44)
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small fields, linear y polarization (6=0,p= 1) is unstable,
while linear x polarization (8= ~ vr, p= 1) is stable. Physi-
cally, this could be expected, as A experiences less loss at
the mirrors than A~.

In Figs. 8 and 9 we plot as dotted lines in 6-p space
example trajectories obtained by solving Eqs. (42) and (43)
for a variety of seed fields. These trajectories are double
spirals that flow outwards from linear polarized y, and even-
tually flow into linearly polarized x . We also show the actual
trajectories (solid lines) corresponding to the full solutions in
Figs. 3 and 6, and see that in the former case (Fig. 8) the full
solution follows the small-field trajectory very closely. How-
ever, for the latter case (Fig. 9) the exact trajectory follows
the small-field trajectory initially but at the point marked"X" (where A+ ——0.0685, A =0.0378, and 6=1.25) the
small-field approximation begins to fail, and the full trajec-
tory departs from the small-field trajectory and returns to
linear y, which has been stabilized by the high intensity.

The small-field spirals result from the oscillation of both
8' and p about their critical points. The oscillation of 6 oc-
curs at frequency =2cob, and either grows or decays expo-
nentially at rate s depending on whether it is centered about
6=0 (the y axis) or 8= ~ vr (the x axis). If the initial seed is
near the y axis, with a value 6= 6;, the small-field trajectory
will circle the y critical point until 8' reaches = ~ ~/2, at
r=(a) ln (~/(28;)) at which point it switches to the de-
creasing spiral centered at 6= ~ vr. The pitch of each spiral
(i.e., the number of revolutions about each critical point) is
therefore of order cob/a.

The time that the system remains on the small-field tra-
jectory is determined by conditions (36) and (37), and can be
estimated by considering the amplitude growth of small x- or
y-polarized fields. For an x-polarized field (A+ =A
8'= ~ vr) the amplitude equations [Eq. (27)] reduce to a
single equation,

which, in the small-field regime where Eqs. (35) and (40)
apply, can be written

dA„ =G,A, (A «1), (45)

where we have defined

I'

G —= 2+@—1(1+6 (46)

Similarly for a y-polarized field in the small-field limit, the
amplitude equations become

dA

d7
=G Ay, (47)

where

(48)

The net small-field gains G and G~ provide the characteris-
tic times (G, ', G ') over which the fields remain small and
remain on the spiral trajectories discussed above. Of course
if G and G (0, the losses always outweigh the gains, and
no lasing can occur regardless of initial field value.

1I,I (49)

so that ig+ (& 1, we set the left-hand side (LHS) of Eq. (27) to
zero giving

77+ 1
C 2 =1+—(e cosB—cot, sin6)1+5+ p

(50)

and

B. Large-field behavior

When the initial gain is large the field may grow rapidly
and independently of the value of 8', to values of A that are
close to their final values. However, the polarization can con-
tinue to evolve (e.g. , Fig. 4), and the small-field analysis of
the preceding section is unable to describe this evolution. In
this section we incorporate the effect of the medium into the
equation for d8'/d7, in order to describe the features of the
system behavior that occur once the fields become large, and
also to allow us to predict the stability of the output state.
Our approach is based on the observation that when the gain
becomes saturated (g+« I), the first term in Eq. (27) be-
comes a nearly constant damping term allowing the ampli-
tudes to adiabatically follow 6, which is evolving according
to Eq. (34). Thus when

FIG. 9. Example trajectories (dotted lines) for the small field
equations, for the same parameters as Fig. 6. The actual trajectory
corresponding to Fig. 6 is shown as the solid curve, and at the point"X " where it departs from the small field trajectory,
I+ ——4.4X 10 and I = 1.4X 10

C 2 =1+p(e cos6+Mb sln8).1+6 (51)

For given 8, equations (50), (51), and (28) can be solved (for
example, numerically) to find A+, A, d P+ /d r, and
d@ /dr (and hence dB!dr). This approach is similar to the
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0.2

0.1

0(

(a)

(l= cobcos6 ——p + a sin6 —+ p
kp p

( l1 (l
+5 ecosoc p

——+ cobsln6 —+ p
pt

(53)

—0.1

-0.2
It is possible to eliminate p by making what we call the
"equal or saturated" approximation (ESA),

0.2

0=
O. i

oQ

a

g+I+= g I

which will be valid when either

(54)

(55)

-0.1
or

-0.2 I+ or I &)1/4P. (56)

Equation (54) can be rewritten as

FIG. 10. d6/d7 as a function of 8', for parameters corresponding
to (a) Fig. 4 and (b) Fig. 5. The dashed line is the adiabatic approxi-
mation and the solid line is the full solution corresponding to each
case.

y (1+5',)
p 8+(1+~' )

(57)

and then the RHS of the latter equation can be evaluated
using Eqs. (50) and (51) to give

"semi-adiabatic" approximation of van Haeringen and De
Lang [11](also discussed in [12])but differs in that the total
intensity is not assumed to be constant, but is slaved to the
value of 6. Using the method just outlined, we have plotted
d8/dr versus 8 in Fig. 10(a) for the same parameter values
as in Fig. 4, and in Fig. 10(b) for the same parameters as in

Fig. 5. For comparison we also plot the d6'/d~ versus 8'

obtained from the full solutions, and it is clear that the cor-
responding two curves are almost identical. An analytic form
for the equation for d6/dr can be found by using Eqs. (50)
and (51) to substitute for r/ in Eq. (34), giving

p(~hsing+ s cosa)+ 1

p
( —cubsin8+ e cos8)/p+ 1' (58)

which is equivalent to

p=cobsin8'+ pl+ cobsin 8, (59)

where the square root must be positive as A+ and A and
hence p are non-negative. Notice that Eq. (59) shows that for
large fields, if 6=0 or ~ vr, the polarization must be linear

(p = 1), while if 8 is not a multiple of vr the polarization is
elliptical (p4 1).

Finally we can use Eq. (59) in Eq. (53) to give

db~ Icl (1 ~ ~1
1+ —=cobcos6 ——p +csin'' —+ p

ip

( 1 l I'1
+ 5 e cos6 p ——+ cobsin6 —+ p ~

j, p

~ dP+ 1—(s cos8—cubsin8)I dv p

K
+ — [p(s cos8+ cobsin8)],

d7

where we have used the definition of 5 [Eq. (32)]. Noting
that Ic/I (&1 and that p- 1, we can ignore the d@ /dr terms
on the RHS of the equation, and the K/I correction on the
LHS, giving

86 2 ' 2 2=2a sin8' 1+ cob sin 8'—cub sin26
d7

+rube[2 sin8$1+ cob sin 8+a sin28], (60)

which is an approximate form valid whenever the ESA va-
lidity condition holds along the large-field trajectory. We
note that a plot of d 8/dr obtained from expression Eq. (60)
using the set of parameters in Fig. 4 or Fig. 5 is virtually
indistinguishable from the (dashed) numerically evaluated
curves shown in Fig. 10. Equation (60) is analogous to the
one developed by Van Haeringen [Eq. (94) of Ref. [6]], al-
though his equation does not include the square roots, nor the
term involving 5 sin 28'. The main difference [36], however,
is that in our equation the only quantity involving the atoms
is the cavity-gain center offset 5, while van Haeringen s

equation includes an atomic dispersion function, and a quan-
tity related to the value he assumes for a (constant) total
intensity.
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0.2 .
(a)

-0.2 .

0.2 .
(b)

—0.2 .

0.2 .
(c)

-0.2 .

FIG. 11. Plot of the adiabatic equation for dB/dr [Eq. (60)j,
showing the effect of absorption and phase anisotropies. (a)
a =0.05, cob=0; (b) a =0, cub=0. 3, 5=0; (c) a =0.05, (mb=0. 3,
6=0.

V. SOLUTION FEATURES OF THE LARGE-FIELD
EQUATION

A. Overview

Equation (60) is a relatively simple equation that can be
used to explain many of the features of the evolution of the
laser polarization to its final state. For example, in the most
trivial case, where the cavity has no polarization asymmetry
(a=0, nib=O), d8/Idr=O as expected, and there is no pre-

C. Role of P
The quantity p contains all the details of the atomic trans-

fer and relaxation processes. When the fields are small, or
conversely when the fields are large [see Eq. (49)] and the
ESA approximation is satisfied, all such details become irrel-
evant to the polarization dynamics. The system is sensitive to
the value of p only at the intermediate values of the field, but

p itself helps determine the boundaries of these regimes [see
Eqs. (36) and (56)]. For example, in Fig. 3, where the inten-
sities at r= 40 (at the end of the polarization oscillation) are
of order 10 ", the polarization development is determined
entirely by the small-field behavior. Since these intensities
are so small, p would need to increase by many orders of
magnitude before it could effect the solution. In Fig. 4, most
of the polarization development occurs once the field inten-
sities have become large, and in this case too there is no
sensitivity to p. Of course, if C is decreased so that the fields
may never become large enough to allow the large-field
analysis to apply, then P can play a role, as discussed at the
end of Sec. III. Finally we note that when p((1, the ESA
approximation may fail, even for quite large fields, and the
polarization may end up along the axis closest to the initial
seed (as remarked in regard to Fig. 6 at the end of Sec. III).

CO
—8b

2 2
COb+ 8

(61)

When co~)e, 6, is real, and the phase anisotropy remains
strong enough to overcome the absorption disadvantage, thus
allowing y to be a stable steady state (as shown). Conversely,
if e) cob, then 6, is not physical and the absorption asym-
metry completely determines the output so that only the x
polarization is stable. We note that for the case of Fig. 4,
where e —cob=0.01, the d6/d~ versus 8' curve is fIat and
almost zero in the region near 8=0 [see Fig. 10(a)], which
enhances the metastability of the initial phase. More gener-
ally, however, metastability occurs whenever the seed field is
near the unstable polarization axis, and the initial gain is
large enough to allow the field amplitudes to develop on a
much shorter time scale than 6'.

In the most general case, where 5 40 e 40, and cob@0,
the difference in medium dispersion between x and y may, if
6 is sufficiently negative, invert the basic sin6 shape of the
d6(d7. curve. We illustrate the effect of varying 5 in Figs.
12(a)—12(c), where b, takes the values 0.2, —0.12, —0.3, re-
spectively. The most general d8/d~ versus 6 curve always
has zero crossing points at 8=0 and ~ ~, and, in addition,
will have unstable crossing points at

cub(Ae —cub) —(~+4 n~b)

cub(b, c —
nlrb) +(a+Anib) (62)

The additional crossing points 8'd will be physical provided

(63)

ferred polarization state. More generally, the curve of
d 6/d~ versus 6' has zero crossings representing steady-state
solutions, which are stable if the slope is negative and un-

stable if the slope is positive.
For the case where the cavity has only absorption asym-

metry (e 4 0, cob = 0), then Eq. (60) reduces to
d6/dr= 2@ sin 8, which is illustrated in Fig. 11(a). It is clear
that regardless of the value of 6, the only stable state is
6= ~ ~, which corresponds to linear x polarization in agree-
ment with de Lang and Bouwhuis [37].The y mode is sup-
pressed by the asymmetry in the mirror refIectivity.

When cob40, i.e., the cavity has linear birefringence and
thus different resonant frequencies for the x and y modes,
second-harmonic terms (sin2 6) are introduced into the
d6/dw equation with a sign and strength determined by the
relative values of ~b, A, and e. We begin by considering the
case a=5=0 and cobWO, which corresponds to the cavity
resonances being symmetrically placed about the atomic
resonance and with x and y modes having equal losses.
Equation (60) becomes d 8/dr= —cub sin 28, as illustrated in

Fig. 11(b), and the stable final state may be either 8=0 or
~ ~, whichever is closest to the value of 6 at the outset of
the large-field trajectory. If the initial value of 6 is randomly
chosen, then each polarization mode is equally likely. Figure
11(c) shows the effect of introducing absorption anisotropy
in addition to birefringence (i.e., F40 and rob40) for the
case 6=0. The relative magnitude of the sin26 terms is
reduced, and the unstable crossing points move inwards to
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FIG. 12. Plot of the adiabatic equation for d8'/dv, showing the
effect of varying A. (a) b =0.2, (b) 5 = —0.12, (c) 5 = —0.3. For
each case a =0.01 and ~b=0.1.

where

(to~+ e)
cot, (1 —e) (64)

(65)

By evaluating the sign of the derivative d6/d~ at 6=0 and
+ vr, we find that if 5~ A2, only the x polarization is stable
[Fig. 12(a)], while if b, ~ b, &, only the y polarization is stable
[Fig. 12(c)]. For the case b, t~h~b, 2, both x and y polar-
izations are stable [Fig. 12(b)]. Notice that in the limit of
small co&, 5& and A2 diverge to —~, so that only the x
stable case lies within the realizable gain region [38].We can
interpret these results physically by noting that for cu&)0,
then when 5~0 the y mode is closer to the atomic reso-
nance, which may give it sufficient advantage to become the
stable lasing state, even though it has higher loss than the x
mode.

B. Steady-state behavior

In general (see Sec. III) any steady-state linear polariza-
tion must be along either the x or y axis. In addition, we have
found, in the large-field approximation, that the only stable
steady states are linearly polarized along x or y. Conse-
quently, it is worth calculating the steady-state amplitude and
frequency for these polarizations. Beginning from Eqs.
(27) and (28), setting A+ =A, dA /dr= 0, and

d@+ /dr=de /dr a constant, we can easily eliminate r/
to obtain the frequency of the x-polarized steady state
(8= ~ m),

FIG. 13. Stability character of steady state solutions
(d8/dr=0) for the case c0„=0.2, e=0.03, and C=1.4. Stab1e
solutions are shown as solid lines, and unstable solutions as dashed
lines. The dotted vertical lines separate regions discussed in the
text.

CO~= CO+ K
d7

lr(1 —e) co,p+ I (to —Ice)t, )

Ir(1 —e) + I' (66)

Equation (66) is recognizable as the standard mode pulling
formula for a single mode homogeneously broadened laser
[see, e.g. , Eq. (5.53) of Ref. [39]], when we recall that

K( 1 8 ) and t0 K ctlI are, respectively, the decay rate and
resonant frequency for the x polarization of the empty cavity.

The steady-state value of the electric field, A, = +2A+,
can now be found using the fact that for linear polarization,

= (1+8I ) ', giving

(67)

where 5,= ( co —co„,)/I'. Similarly for the y -polarized
steady state,

Ic( 1 + e ) co„p+ I'( to+ lr cub)

Ir(1+ e ) + I' (68)

and

1 C
(69)

C. Bistable and oscillatory solutions

The stability information contained in Eq. (60) can be
compactly summarized, for given mz and e, by plotting the
location of the steady-state solutions on the 6-8' plane, as
shown in Fig. 13. Stable solutions are indicated by solid
lines, and unstable solutions by dashed lines. The horizontal
lines at 6=0 and ~ m are always present, but the curved
dashed line in region C, which represents the unstable solu-
tion 6z, moves out of the range of the plot as ~& becomes
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small. Lasing can occur only when the small-field gain
G [see Eq. (46)] is positive [40], which requires

l
S l(SG whe. e

Ao—= gC/(1 —e) —1 (70)

2(tdb+e )

to (1 —e )' (71)

and we indicate these bounds by the outer (dotted) vertical
lines at 5G . Similarly the dotted vertical lines at
5 = ~ v C/(1+ e) —1 bound the area where G~ is positive.

We can now see that for systems in regions D and F, the
output will always eventually become x polarized, regardless
of the initial seed, and that systems in region 8 will always
eventually have y-polarized output. However, in region C,
which is bounded by 5 i and A2, the final output polarization
depends on the value of 6 the field achieves by the time the
field has become sufficiently large to satisfy our large-field
approximation. If the system is to the right of the Bd curve it
will evolve to x polarization, while if it is to the left it will
evolve to y polarization. This behavior gives the potential for
bistable switching in region C, controlled by scanning 5
(e.g. , the cavity length). The switching points are at 6

&
and

52, and the width of the hysteresis is

tions than an analogous equation of van Haeringen and has a
simpler form. We have used this equation to analyze the final
output polarization states, and conclude that in this regime
the only stable output states are linearly polarized along the
cavity axes, in agreement with van Haeringen s prediction
made on the basis of a third-order perturbative calculation
for a 1= —,'~J= —,

' medium, e.g. , [41].We have also been able
to characterize analytically the regime where the polarization
output is bistable, and may Hip from one linear polarization
to the other as the control parameter 5 is scanned. Addition-
ally, we have identified a regime where the output field un-
dergoes a sustained oscillation, and have given a physical
explanation of the mechanisms involved.

In the large-field case, the only atomic parameter to which
the solutions are sensitive is the cavity atom detuning A.
This simple result can be attributed to gain saturation and to
the "ESA" approximation Eq. (54), which suppresses the
details of the atomic coupling scheme. The latter approxima-
tion has a simple interpretation, namely that both the o.+ and
o. modes dissipate spontaneous photons at the same rate. If
the approximation proved applicable to other atomic transi-
tions, we would expect them to exhibit the same large-field
polarization dynamics. Of course, at smaller output field in-
tensities we expect the dynamic behavior to carry the signa-
ture of the particular active transition.

We note that in agreement with van Haeringen [6], this re-
gion of hysteresis is due to the phase anisotropy (since when
tub~0, 5& and A2 both go to infinity).

Finally we consider the behavior in region A. Initially,
only the x component can grow (since GY(0), but when the
intensity becomes sufficiently large the system changes to
the large-field regime described by Eq. (60), and evolves
towards y polarization. Before it becomes pure y-polarized
linear, however, the field will be damped (as G~(0) and
evolve towards x polarization. An infinite oscillation is set up
as seen in Fig. 7, and in some cases may be aperiodic. For
this oscillation to occur, there must be both a phase anisot-
ropy, to allow large-field evolution towards y polarization,
and an absorption anisotropy, to give a region where
6 &0(6 . Note that for e(& I, the range of 5 values for
which G (0(G, is approximately eC/v'C —1.

APPENDIX A: DENSITY MATRIX EQUATIONS
FOR THE ATOMIC MEDIUM

V2po(u)+ v2po(1)+P(s) =1. (A 1)

The general form for the density matrix equations for a
two level transition with arbitrary j values driven by a laser
field has been given in irreducible tensor components by
Omont [32]. In this appendix we specialize the results to a
J=-,'~J=-,' transition driven by the superposition of o.+

and o. components represented by Eq. (3). In addition we
have incorporated a third level labeled s (of unspecified j
value) to act as a reservoir for the lasing transition, providing
gain via incoherent population transfer. We shall represent
the population of this level by p(s), and note that overall
population is conserved according to

VI. CONCLUSION

Our model for an anisotropic laser incorporating a full
nonperturbative response function for a J= —,'~J= —,

' me-
dium, and a cavity with linear phase and absorption anisotro-
pies, develops further the theory first presented in the classic
papers of van Haeringen and Tornlinson and Fork. The pa-
rameter regime in which the adiabatic elimination of the
atomic medium can be applied is given, and an extensive
numerical investigation of the full equations (27) and (28)
carried out. The system behavior falls overwhelmingly into
three categories, and we have developed simple analytic
treatments to characterize and understand this behavior in the
small- and large-field regimes. In the case of small fields, we
have shown that development of the polarization is deter-
mined by the cavity, not the medium. For large fields we
have derived an equation for the precession rate of the po-
larization ellipse which is valid under less restrictive condi-

The full density matrix equations are

Otpo(u)

Bt
= —r,po(u) + p(s)

—21m(iv[8' PI(lu)+ F+p', (lu)]), (A2)

Bpo(l) o o

Bt
= —rtpo(l)+ rpo(u)+ p(s)

+21m(v[K PI(lu)+8'~p, (lu)]), (A3)

Bp(s)
(~ + ~/) p(s) + Q2( r„—r) po(u) + P~r~po(l),

(A4)
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~po(') = —I i(i)po(t) —
3 po(u)

+21m(v[F p, (lu) —g+p, (lu)]j, (A5)

Bpo(u) = —I,(u) p(')(u)

+2im{v[K' p', (lu) —8+p', (lu)]), (A6)

Bp', (lu) = —(I —i(o„,) p,'(l u) +i(v P )*[p (u) —p (l)

without a net phase shift if there is no medium present. Thus
we are assuming that A is a resonant frequency of the empty
cavity.

2. Vector field

In the present work we wish to incorporate a (two-
dimensional) vector field with a cavity that has different re-
Aectivities and different resonant frequencies for two perpen-
dicular linear polarizations, i.e., we require

E(z, t) =[e,E„,F,(z, t)e' ' "')+e E „,5(z,'t)e'

—p'(u) —po'(i)1.

+ C.C. ,

(A7) h, [42)

(B5)

Bp', (lu) = —(I —i co, /) p' i(lu) + i(v 5'+) *[po(u) —po(l)
and

8;(O,t) = r F,(L, t (A L)—lc)— (B6)

+ po(u)+ po(i)]. (As)
6 (O, t) = r 8' (L, t (A —L)—l c) (B7)

%e note that the density matrix components are real, apart
from p', ( Iu) and p ', ( l u), and that

I y -te E(z, t) = 8'(z, t)E„„e' ' "')+c.c., (as)

with r, and r real, O~r, r ~1, and ~ Wco . Comparing
Eq. (B5) with Eq. (1), i.e., factoring out the same rapidly
varying frequency from the two components, we have

The orientation decay rate I i(u) of the upper level is related
to the collision rate ~„by

where

cT=4 e +a~ e, (a9)

I,(u) = 2/~„+ 7/„,

and a similar equation holds for I,(l).

(A 10) i (cox- o))(zlc —t)
X X

~c- i(co,,
—cu)(zlc —t)

(B10)

(B1 1)

APPENDIX 8: ANISOTROPIC CAVITY BOUNDARY
CONDITIONS

1. Scalar field

The boundary condition for a scalar field propagating
around an (isotropic) ring cavity is [34]

and hence Eqs. (B6) and (B7) become

(
P (0 t)

—i(cu, —ru)(A/c) g* L

and

C
(B12)

E(z= 0,t) = re '~E(L, t (A —L)lc), — (a 1)
(813)

where rexp( —iP), with r and P real, is the retlectivity of the
output mirror.

Converting (Bl) into an equation for the slowly varying
held component F defined by

co is still arbitrary (within the constraints of the SVEA) and
so for symmetry we choose

E(z, t) = F(z, t)e'~' "' (B2)
COy+ Ct)X

CO=
2

(B14)

gives and combine Eqs. (B12) and (813) to give

K(z =0 t) = r F(L t (A —L)lc)e'—

which reduces to

F(z = O, t) = r 8'(L, t (A L)lc), — —

(83)

(B4)
where

(w, (o,t) l

), 8;(o,t) r

c-. L, ~—

(
c~'

~ L, I;—
(B15)

when we note that K=0/c and assume that
KA —$=2vrM (M is an integer). KA —$=27rM is exactly
the condition for a wave to travel once around the cavity

Jl i8

Xy

o

r, e '
)

(B16)
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and we have set

A COy CO~0=-
c 2

(B17)
&~.(ot)~

(F (O,t)

&+ L, t—

Lt —, (B18)

Thus the frequency of the rapidly oscillating part of the elec-
tric field, co, lies midway between the two empty cavity reso-
nances. Representing Eq. (B15) in terms of F allows us to
obtain the boundary condition in terms of circular compo-
nents, namely

where
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