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Free-induction decay after a pulse saturation for systems with random telegraph frequency
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The free-induction decay (FID) after saturation by a laser radiation pulse of finite duration is studied for
systems with spectral diffusion. The exact solution of the FID signal shape has been obtained in the framework
of the telegraph noise model. This solution takes into account the finite duration of the saturating field and is
valid at arbitrary values of the spectral exchange rate and the amplitude of the coherent field. The exact
expression of the FID signal is derived in the weak-external-field limit. It is shown that the FID signal suddenly

disappears after a time equal to the pulse width. This confirms the validity of the theorem on coherent
transients, which has been proved for the Bloch equations [A. Schenzle, N. C. Wong, and R. G. Brewer, Phys.
Rev. A 22, 635 (1980)].

PACS number(s): 42.50.Md

I. INTRODUCTION

Recently, a number of experimental studies been pub-
lished dealing with the investigation of phenomena that con-
stitute the base of coherent nonlinear spectroscopy and satu-
ration spectroscopy of solids, i.e., nutations [1], free-
induction decay (FID) [2—4], rotary echo [5], hole burning
[6,7], etc. All the studies have demonstrated the inapplicabil-
ity of Bloch equations to the analysis of the effects men-
tioned above. This results from the fact that the Bloch equa-
tions incorrectly take into account the random modulation of
impurity ion frequencies in solids. The frequency modulation
of the transition excited by a laser radiation field is ac-
counted for by the random reorientation of spins of the crys-
tal lattice. The reorientation leads to a change in local fields
and correspondingly, in impurity ion frequencies. The ran-
dom frequency modulation connected with the dephasing
perturbations evokes a relaxation in a system. The coherent
field influences the dephasing processes. As a result, the re-
laxation coefficients depend on the amplitude and frequency
of the field in the master equation for the density matrix
averaged over the random perturbations. There is no such
dependence in the Bloch scheme.

In this paper we restrict our theoretical discussions to the
FID after saturation in random frequency modulation sys-
tems. To explain the experimental results obtained for the
FID [2], a considerable number of theoretical studies have
been offered in which the frequency modulation is simulated
using the Markovian random processes. The studies [8—14]
suggested different versions of the FID theory based on the
idea of a fast spectral exchange. Such a theory is often re-
ferred to as a Gaussian-Markovian theory. A diffusion model
for a frequency exchange (the Markovian correlated modu-
lation) based on the numerical solution of the Fokker-Planck
equation was described in [15].A model of noncorrelated
frequency modulation was presented in [16,17], followed by
several exact solutions for a FID signal shape within the
limits of suggested model [18].The telegraph noise model
(the Markovian anticorrelated modulation) was used to de-
scribe the FID in [19].Later, in [20], an exact solution for a
FID signal in the framework of the telegraph noise model

was obtained and applicability limitations for the theory de-
veloped in [19] were found. It is to be indicated that for a
FID signal the results obtained in a simplified telegraph noise
model coincide with the results of the Gaussian-Markovian
theory [8—14], this being a reason for the cases of their iden-
tification. A similar coincidence of results for these two mod-
els for the absorption as well as emission line shapes were
mentioned in [21], where the fast spectral exchange theory
(Gaussian-Markovian theory) was named the Born approxi-
mation.

A difference between the experimental studies [2] and [3]
consists in the exciting radiation impulse duration (T = 200
p, sec) being considerably shorter than the population relax-
ation time (T = 4200 p, sec). All the theories mentioned
above were developed for the FID signal after steady-state
saturation, i.e., they cannot be employed to describe the re-
sults of [3].

To analyze the experimental data [3], a fast spectral ex-
change theory was used that took into account the saturating
impulse duration. However, it did not allow an adequate de-
scription of the experimental dependence of the FID rate on
the saturating radiation field strength to be made. To describe
various transient coherent phenomena, in particular, the FID
after pulse saturation, the telegraph noise model was sug-
gested in [22]. The authors of that study [22] did not succeed
in obtaining an exact solution for a FID signal shape and the
analyses of experimental data were made on the basis of
approximate calculations, resulting in a conclusion about
slow spectral exchange in the system investigated. The pur-
pose of this study is to present a general theory of a FID
signal shape after saturation by a strong field impulse of
arbitrary duration as well as to analyze experimental data [3]
in the framework of an anticorrelated frequency modulation.

II. FID AFTER A PULSE SATURATION

Let us consider the ensemble of impurity ions that drives
by a monochromatic radiation field Z=Eoexp(itot) within
the time T and interacts with a perturber reservoir. After
immediately switching off the field a FID signal is observed.
The polarization is induced during the radiation impulse.
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Each impurity ion is to be modeled by a two-level system
(TLS) whose frequency

E~(t) Et(t):coo+ 8(t)

is a stationary random process: its mean value coo and equi-
librium distribution y(a) are conserved with respect to time

[E,z(t) are the energy levels of the TLS].
Since the value of coo is distributed along the inhomoge-

neous contour 4(coo), caused by the crystal field dispersion,
the FID signal shape is defined as

will be useful to note that the applicability range of Eq. (3)
must be examined in every concrete case.

The expressions (1) and (2) are exact and determine the
FID signal shape in a general case. It is not yet possible to
carry out the averaging procedure defined in Eq. (2) in a
generalized form. Therefore we concretize the random pro-
cess e(t) and will later consider the case when the TLS
frequency is modulated by the Markovian anticorrelated ran-
dom process. This concretization of the random process
e(t) allows the averaging in Eq. (2) to be performed and an
exact expression for the FID signal shape to be obtained.

R(T+t) =@plm deco 0 U(T+t, Act))

where Ace= coo —co is the detuning frequency, co is the satu-
rating field frequency, Co= 4&(coo= co) = const, and
o.tz(T+ t, Ace) is the off-diagonal element of a density ma-
trix, which determines the polarization at the time moment t
after switching off the field. The general expression for
o.,z(T+ t, Ace) has the form

fT+t
o )~(T+t, Ace) = q tq(T, he@)exp ib cot+i e(t')dt'

Jz

III.ANTICORRELATED MARKOVIAN FREQUENCY
MODULATION

If the frequency of the TLS interacting with a laser radia-
tion field is modulated by a purely discontinuous Markovian
process, then, in agreement with the sudden modulation
theory [23], the averaging in Eq. (2) can be represented as

f
rr, z(T+ t, Ace) = exp(iA cut —t/Tq) deK(s, t) a tq(a, T)

(6)

(2)

where the angular brackets denote the averaging over ran-
dom realizations of the process e(t), a, z(T, Aco). is the ini-
tial polarization induced by the saturating field, and Tz takes
into account the spontaneous decay of the excited level.

Usually when calculating R(t), the correlation of the TLS
frequency fluctuations before and after switching off the field
is neglected. This makes possible the decoupling procedure
in Eq. (2), averaging separately o tz(T, hen) and exponent.
As result, we obtain

where K(s, t) and rr, z(e, T) are marginal or conditional av-
erages, whose argument at switching off the field coincides
and is equal to e.

The subsequent consideration can be well performed in
the Laplace presentation. Applying the Laplace transforma-
tion to Eq. (6), we get

1~2(p~pl «~~) eK(e~pl)~12(~~p)~

where

a)q(T+ t., d co) = o.,q(T,

Aced)K(t)

exp(ib, o)t —t(Tq)
(3)

P oo

K(s,p&) = dt K(e, t)exp( —ptt+iAcot tlT~). (8)—
Jo

where

K(t) = exp i e(t')dt'
30

(4)

The frequency modulation function under anticorrelated
spectral exchange was thoroughly investigated in [23].Thus,
for K(e,p&) we immediately obtain the resulting expression

is the correlation function of a frequency modulation. In

[18,20] it was indicated that if for the average o.&z(T, Aced)

and K(t) exact expressions are used, then for the FID signal
shape results are obtained that are valid beyond the applica-
bility range of the perturbations theory (PT) in the random
detuning of a frequency. The condition for the PT to be ap-
plied, which corresponds to the fast frequency modulation
limit, is

q =e rz(&1

where e is the dispersion of the frequency distribution and
is the spectral exchange rate. It is in this framework of

the approximation that the majority of theoretical efforts
[8—14] to explain the experiments [3] were undertaken. It

where po=p, + UTz —iAco, and 7., is the correlation time,
which is connected to ~o by the expression 7.0=2~, for the
anticorrelated exchange [14].

To obtain a general solution for a FID signal, we have to
find o.,z(a, p) determining the polarization induced by a ra-
diation field as function a. For this purpose we will use
kinetic equations of the Markovian sudden modulation
theory [23]. Considering that under anticorrelated modula-
tion the random variable a may have only two values a and
—a and the probability density of the appearance of fre-
quency e after e t is f(e t, e) = 6„,, the equation for the
density matrix should be presented in the form
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1 1
X(a)= —Lo+ +iaL, X(a)+ X(—a)+Ay(a),

2~, 27.
Then Eq. (10) can be transformed into

X= —LpX —iaL1X~+ A,

1
X( —a) = —Lo+

2~,
1—iaLi X(—a)+ X(a)+Ay( —a),27. XA = —[Lo+ 1 r,]X„—i aL,X (12)

where

(10) Applying to these equations the Laplace transformation, we
obtain

X= ~21, Lp=

1
lA CO

T2

1—+ l 5 CO

T2

X
2

'x
2

X(p)= p+Lo+a Li
1

p+Lp+—
C

1 1

XA(p) = —ia p+I.,+
C

A
X(0)+—,

p

LiX(p). (13)

L1=

—1 0 ol
0 1 0

0 o 0)

o,2= o.2, = p, 2exp{icut), n = p22
—p» is the population differ-

ence, np is the equilibrium population difference, y=d12F p

is the Rabi frequency, T1 and T2 are the times of longitudinal
and transversal relaxation accounted for by a spontaneous
decay, and q(a) =0.58, ,+0.58, , is a static equilibrium
frequency distribution.

For further consideration it is reasonable to use the ex-
pressions

X= [X(a)+X( —a) ]/2,

X„=[X(a)—X( —a)]/2.

X(a,p) = 1 —is
1

L1

p+Lp+—
C

1
X p+Lp+a L1 L1

1
p+L +—0

A
x2q&(g) X(0)+-

p
(14)

Employing the expressions for Lo, Li i A in Eq. (14), we
obtain

Using Eqs. (13) and (11), we find the expression for the
marginal density matrix element

o.(a,p) = noXV(a) & —Ace +iAtu p+ —+Ace(a —a )+i' p+ —+is (p+t2)
T2/ T2

1p+-
T2+a b, co —ib, cu 2p+t2+—

T2i p+ t2
[Aco +BAco + C] (15)

where

1
p+

B=K —2a +l p+ —+y2 2
1'

2 T2

T2 1'p+-
T1

( 1 i,p+t2C= Kl P+ —+a
T2 1p+-

T1

1, 2
K K

K p+ —~+a +y
T2( p+ t2

2p+t2 1 1
K (p+ t2) +X t12 +

p+ ti 7c T12

Performing the integration by a defined by Eq. (7) and considering Eqs. (9) and (15), we have
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~12(p'P1'~~) K(P1)~12(p'~~)+K (P1)+12(p (16)

where

K(p, ) = deK(e, p 1)cp(e) =
p+

C

p]+ +apj
C

K'(P1) =-
p&+ —+aPt

C

noX
~12(P ~~) =

2p

—b, o)3+i(d, cu2+ ~ ) p+ ——Ace(~ —a )+ia (p+t2)
T2/

5 co +B5 Go + C

noX
H»(p, w~) =

2p

1

I' 1i P+T
—Ace +Am~ 2p+t2+ —+iK +ia

T2i p+ t2

Ace) +BALD + C

After performing an inverse Laplace transformation by
p& and integrating by Ace in accordance with the general
expression (1), the FID signal shape can be described by

m+onoX t
R(p, t) = exP ——{K(t)[R1(p)K1(p,t)2pD 2

+R2(p)K1(p t)]

+ K(t)[ R3( p) K1(p, t) + R4(p)K, (p, t)]), (17)

where

K(t) [Plexptp2t) P2exp(pltHI(P1 P2)

K, (p, t) = [5co 1exp( i5 cd 2t) —b, M2exp{ iA co1t)]/(6 rd1

—6 O)2),

1~3
P12=—,k= gl —4a r„

C

Equation (17) is exact and determines the FID signal shape
after saturation by a strong-field impulse under anticorrelated
frequency modulation. The expression obtained is valid for
the arbitrary strength of the saturating field and the arbitrary
transition frequency modulation rate. We mention that hav-
ing performed the boundary transition

R'(t) = limpR(p, t),
p —+0

we obtain the expression for the FID signal shape in the case
of steady-state saturation [20]. Naturally, there is the possi-
bility of comparing this result to the one we obtained within
the range of T&) T& and thus tracing the reaching of a steady-
state saturation.

If in the framework of this model the TLS frequency
modulation correlation before and after switching off the
field be neglected, as performed in [19] then, in accordance
with Eqs. (3) and (4), we get

JB~/B —4C, 8 ~4C
5 CO1 2=

, 2[~ g2+C —8+i $2~C 8+], B ~4C

vr+onoX t
R(p t) 2 D exp T K(t)[R1(P)K1(P t)2pD 2

+R2(P)K1(P t)]- (19)

R, = e (p+ 1/T2)+a (p+ t2)+ +C[p+1IT2 $2~C+8], —

R2= ~ —a —+C 8+ (p+ 1/T2) g2 +C+8,—

p+ 1/T2
R3=a + + —~c,p+t2

R4 = 2p + t2+ 1IT2 —g2 ~C+ 8, D = ~C/2 +C+8 .

It is evident from comparing Eqs. (19) and (17) that the
appearance of the second term proportional to K(t) in the
exact solution (17) is connected with taking into account the
correlation of the TLS frequency fIuctuations before and af-
ter switching off the field.

It should be emphasized that the expressions for the
density-matrix elements, averaged by the random process re-
alizations in the telegraph noise model [19,20], are identical
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FIG. 1. FID signals vs time obtained from the Bloch equation as

y —+0. Longitudinal and transversal relaxation times are equal to
4200 p, sec and 15 p, sec, respectively. The duration of the excita-
tion pulse is 1, T=2p, sec; 2, T=20 p, sec; 3, T=200 p, sec; 4,
steady-state regime.

to the results of the non-Markovian perturbations theory in
the random frequency detuning e(t) [11,14].As a result, the
expression for the FID signal shape within the range of a fast
spectral exchange [Eq. (5)] coincides with the expression

(19), where it is necessary to set K(t) = exp( —e r, t) [23].

IV. SHAPE OF THE FID SIGNAL AFTER SATURATION

The final expressions for the FID signal shape contain two
independent parameters a and ~, . To determine these values
by a theoretical explanation of experiments on the field de-
pendence of the FID rate, experimental data on the photon
echo are usually employed. In the anticorrelated frequency
modulation model the echo signal shape is determined by the
expression [24]:

0.001
0 10 15 20 25 30

t(@sec)

FIG. 2. FID signals vs time under fast frequency modulation as
y-+0. a 7,=0.1, T&=4200 psec, and y, '=15 psec. The duration
of the excitation pulse is 1, T=20 p, sec; 2, T=40 p, sec; 3, T=200
p, sec; 4, steady-state regime.

X= —LOX+ A, (22)

where

after steady-state excitation as y~O is obtained in the
framework of different spectral exchange models under con-
ditions indicated by Eq. (21). In this connection the analysis
of the FID signal shape as y —+0 under arbitrary value of
spectral exchange rate will be of interest. Before the analysis
of the FID signal in the telegraph noise model we examine
the results obtained from the Bloch equations.

The Bloch equations can be presented as

1111
V(t) = exp —

~
—+ t exp

( T2 2' j 27'

1+X tX
+ exp

Tc

—4a 7, (20)

It is seen, that the echo signal is exponential in the case of
a fast spectral exchange [Eq. (5)] as well as in the case of a
slow exchange (a r, &) 1). In these cases the echo signal rate
is equal to

1/T&+a r„a 7, (&1

1/T2+1/27„a 7, &) 1. (21)

Thus, if a echo signal is exponential we can determine either
a v, , presupposing a fast spectral exchange, or 1/27, , pre-
supposing a slow spectral exchange.

It should be noted that the field dependence of the FID
rate as y~0 is added by the experimental data on the decay
rate of the photon echo in studies dealing with the investiga-
tion of the FID. In C25] the expressions for the FID signal

0.001
0

I I I I I

5 10 15 20 25 30

t(psec)

FIG. 3. FID signals vs time under slow frequency modulation as

y —+0. a 7, =20, T, =4200 p, sec, and y, '= 15 psec. The duration
of the excitation pulse is 1, T=20 p,sec; 2, T=40 p, sec; 3, T=200
p, sec; 4, steady-state regime.
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Substituting this expression into Eqs. (1) and (2), we find the
expression for the Laplace image of the FID signal

I o

1

Eddic

2

1

+ + Ekco
T2

X
2

X
2

( n, /T,

n pX7r@u P+ 1IT2* G—(P)
R(p, t) = exp( —t!T~~ —tG(p)),

2p Gp
(24)

where

G(p) =((p+ IITf) +X (p+ IITg)/(p+ IIT, ))'t2.

x(p) = [X(O)+ Alp]
S +Lo

(23)

Using Eq. (23), the expression for the off-diagonal element
of the density matrix can easily be obtained

Tz is the time of the transversal relaxation, and Ti is the
lifetime of the excited state. Applying the Laplace transfor-
mation to these equations we have

The expression (24) indicates that the well-known result for
the FID signal after steady-state saturation can be derived
[26] in limit (18).The third-order contribution in X, obtained
from the formula (24), is

no ~4o
R(p, t) = —X' exp( —2tiTf pt)—

4p p+ IIT& p+ IITf
(25)

no iX(p+ IIT2 +i 3 cu)

2p Acg)2+ (p+ I/Tq ) +X (p+ I/T2~)/(p+ llT, )
Finally, performing an inverse Laplace transformation by p,
a simple expression can be found

no ~e oTi Tz t —T T,* t —T
exp( —2t/T2)~ 1 — exp + ~ exp ~, T&t~0

R(T, t) = & Tl —T,* Tt Tt —T2 T2 /

0, T~t.
(26)

From either Eq. (26) or Eq. (25), using the limit T~~ or
relation (18), for the FID signal shape after steady-state ex-
citation (at X~O) we find

3n o m4'o T) T
R (t)= X 4 exp] —2 t/ T2*) .

Figure 1 shows shape signals of the FID [Eq. (26)] in the
weak-external-held limit under different duration of coherent
pulse. The FID signal after steady-state excitation and the
FID signal after excitation by pulse of finite duration

T= T& are exponential with the decay rate 2ITz . But the FID
signal becomes nonexponential with decreasing pulse dura-
tion.

Using Eq. (17), for the FID signal under the frequency
modulation by the Markovian anticorrelated process in the
third-order contribution in y we obtain

no ~Co
R(p, t) = —X expj —(p+ 2IT2) t)F(p, t), (28)

where

1
F(p, t) = [(p+tz)(p+ ti)(2p+ t2+ I/Tz)+a (2p+ t, + 1/T, )]K (t)

p p+ t p+tt
2 (2p+ t2+ I/Tp)(p+ 1/T2)(p+ 1IT, )+ —(2p+ ti+ I/T~)K(t) K(t)+ 2p+ t t+ 1/Ti+ E'(t)
7C 0

D = (2p+ t2+ 1/T, ) I
a'+ (p+ t, )(p+ 1/T2)].
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FIG. 4. FID signals vs time under fast frequency modulation.
a r, = O. l, g/2m=50 kHz, T, =4200 p, sec, and y,

' = 15 p, sec. The
duration of the saturation pulse is 1, T=200 p, sec; 2, T=2000
p, sec, 3, steady-state saturation.

—0.2
0

I I I I I I I I ) I I I 1 I I I I I
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2 4 6 8
t(p, sec)

So we can present the FID signal shape as

,&o~e'o
exp( —2t/Tz) f( T t), T)—t ~ 0

R(T, t) = & 4

, 0, T&t,

where

1 t b+~
f(T t) = . — exptp(T —t))F(p, t)dp.

27TL ~ b —i~

6

X g B,(t)exp(p, (T—t)),j=l (29)

where p, are the roots defined by the characteristic equations

p(p+ 1/Tt)(p+ t&) (2p+ tz+ 1/Tz) [a + (p+ tz)(p+ 1/Tz)]

=0.

0.8—

0.6—

Q 04—

0.2—

0—

-0.2

t(@sec)

10 15

FIG. 5. FID signals vs time under slow frequency modulation.
a r, =20, g/2m=5 kHz, T, =4200 psec, and y, '=15 p, sec. The
duration of the saturation pulse is 1, T=200 p, sec; 2, T=2000
p, sec; 3, steady-state saturation.

Taking into account the form F(p, t), we can write the ex-
pression for the FID signal as y —&0 under T& t~ 0 as

npm@p
R(T, t) = —g exp( —(2/Tz+ 1/r, ) t)

FIG. 6. FID signals vs time under slow frequency modulation.
azr, =20, T, =4200 psec, y, '=15 /Lsec, and T=200 psec. The
Rabi frequencies are 1, g/2m=0. 5 kHz; 2, y/2m =5 kHz; 3,
g/2~=50 kHz; 4,y/2m=100 kHz.

The expression of the FID signal is unwieldy, so we do
not lead it. The FID signal shapes under different duration of
excitation pulse in the framework of the telegraph noise
model are shown in Figs. 2 and 3. Figure 2 presents the
results for fast frequency modulation and Fig. 3 presents the
results for slow modulation of TLS frequency. The behavior
of the FID signal is the same with the results obtained on the
basis of the Bloch equations. It is seen that the FID signal
suddenly disappears after a time equal to the pulse duration.
This type of behavior has been discussed theoretically [27—
29] and has been observed experimentally [30]. Qualita-
tively, the effect is connected to the fact that a pulse of du-
ration T excites a frequency band of —mlT. The dipoles
then dephase completely in a time T, which is the Fourier
transform of the bandwidth.

It should be emphasized that as y~O the theorem on
coherent transients [29] is valid for the Bloch representation
[Eq. (26)] as well as for the telegraph noise model [Eq. (29)].
In addition, taking into account that the FID decay rate in-
creases with increasing Rabi frequency, we can make the
conclusion that this theorem is valid at arbitrary Rabi fre-
quency.

To analyze the FID signal shape after saturation by a finite
duration impulse, we employed an algorithm for the Laplace
numerical inverse transformation, described in [31].This al-
gorithm has been tested when performing the inverse
Laplace transformations and has yielded good results. In ad-
dition, the correctness of performing the numerical transfor-
mation of R(p, t) will be tested by comparing the results in
the case of T&) T&, when the exact analytical solution for the
FID signal is known [20].

Figures 4 and 5 demonstrate the FID signal shape calcu-
lated for different saturation impulse durations. For compari-
son, a FID signal shape after a steady-state saturation is
shown. It is indicated that when the saturating impulse dura-
tion increases, i.e., with T~T&, the FID signal shape ap-
proaches the after-steady-state saturation shape. This fact has
been employed to test the accuracy of the calculations per-
formed. It is to be noted that the result is true for the case of
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geneous profile during the preparation. The more intensive
the field burns, the wider the hole, further, the FID rate in-
creases after switching off the field. However, the spectral
exchange leaves traces on the decay kinetics by means of a
modulation. The modulation is strongly marked when spec-
tral exchange is slow (Fig. 5 and 6). At the fast frequency
exchange the shape of the burned hole has a nearly Lorent-
zian profile and correspondingly the FID kinetics becomes
like the exponential kinetics in an initial stage (Fig. 4).

Figures 7(a) and 7(b) show the FID signal calculated ac-
cording to the exact equation (18) as well as the approximate
equation (20). It is seen that we have to take into consider-
ation the correlation of the TLS frequency fluctuations before
and after switching off the field. We should note that the
difference between exact and approximate solutions is re-
duced by increasing the Rabi frequency. This rejects the
power- broadened linewidth that was burned into the inho-
mogeneous profile during the preparation.

0.8 b) V. CONCLUSION

0.6

04

0.2

0.0
0 4 6 8

t(p, sec)

FIG. 7. FID signals vs time. a r, = 20, T& =4200 p,sec,

y, '= 15 p,sec, and T=200 p,sec. The equations are 1, the exact
solution [Eq. (17)]; 2, the approximate solution [Eq. (19)]. (a)
y/2' =0.5 kHz and (b) g/2m =20 kHz.

a fast exchange (Fig. 4) and for the case of a slow exchange
(Fig. 5). It should be emphasized that the condition T~) y,
with T& ~ T is far from being sufficient to employ the expres-
sions for an after-steady-state saturation FID signal shape, as
used in [4].

Figure 6 shows examples of the calculations obtained for
various Rabi frequencies. It demonstrates the inhuence of a
saturating field strength on the FID kinetics. As the Rabi
frequency increases the decay rate of the induced polariza-
tion is accelerated and the modulation caused by the spectral
exchange in the system is reduced. The increase of the FID
rate with increasing Rabi frequency is connected to the
power broadening of the hole width burned into the inhomo-

The exact solution of the FID signal shape after saturation
by a radiation pulse of finite duration under anticorrelated
spectral exchange is obtained. The analysis of the FID signal
at an arbitrary rate of the spectral exchange and at an arbi-
trary Rabi frequency is fulfilled. It is shown that the correla-
tion of the fluctuations before and after switching off the
field must be taken into consideration.

The FID signal shape has been calculated by implying the
conditions of [3]. It was performed to demonstrate the fact
that the exact solution for the FID signal in a telegraph noise
model produces a nonexponential decay, in contrast to the
experimental data and approximate calculations performed in
[22]. Thus an approximate solution providing an exponential
decay of induced polarization cannot claim to explain the
experiments [3]. In all probability, simplifications used in

[22] have lead to qualitative changes of the calculated FID
signal kinetics.

The exact analytic expression of the FID signal is derived
in the weak-external-field limit. This expression is valid at an
arbitrary rate of frequency modulation. It is shown that de-
creasing the saturation pulse duration leads to nonexponen-
tial decay of induced polarization actually at limits a~,.(&1
and a ~,)) 1 while, the FID signal after steady-state saturation
is exponential.
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