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Transverse modes above and below threshold in a single-frequency laser
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We present a study of the higher-order subthreshold transverse modes in a single-frequency laser resonator.

A theory is developed to describe the gain behavior when an input beam is reinjected into the laser, and tuned

around the resonances that correspond to each of the subthreshold transverse modes of the cavity. Some of the

predictions of the theory are confirmed by experiments with an argon-ion laser and these experiments also

illustrate the use of spatial filtering for optimization of the gain, as well as an associated increase in intensity-

fluctuation noise. Further experiments have been carried out to demonstrate the perturbation of the modes

caused by the insertion of intracavity obstructions; the data are compared with the results from theoretical

modeling of the perturbed resonator. In addition, the experimental techniques are used to track the behavior of
a transverse mode as it approaches, and finally exceeds, the lasing threshold.

PACS number(s): 42.60.Jf, 42.60.Lh, 42.60.Mi, 42.79.Qx

I. INTRODUCTION

In this paper we explore the resonator-mode properties of
open-sided, spherical-mirror laser cavities; we also investi-

gate the effect on the laser modes of placing various aper-
tures and obstructions between the mirrors. For many appli-
cations (for example, coherent laser radar) lasers are required
to run on a single frequency (a single transverse mode and a
single axial mode). Single-mode selection can be achieved in

many ways, often readily with a homogeneously broadened
active medium where only the mode with the highest gain-
to-loss ratio survives the processes of mode competition. The
successful single-frequency laser retains a complex spectrum
of subthreshold modes: potential modes of oscillation that
are for the moment suppressed. It is interesting, but has hith-

erto been difficult, to measure how well these other modes
are suppressed while the laser is running. Also, we may wish
to use these subthreshold modes for regenerative amplifica-
tion of rejected light, choosing convenient offset frequencies
and arranging the gains to be near (but not too near) thresh-
old.

%'e recently reported a technique that allows the detailed
study of subthreshold transverse modes including measure-
ments of their approach to threshold [I].The technique in-

volves the reinjection of frequency-shifted light and has been
used to study the modes of an argon-ion laser. In [I] we
stressed the need for further work on the gain and noise
behavior of reinjected light. Other recent work [2,3] has in-

vestigated laser amplification above and below threshold, in-

dicating the importance of population pulsations in determin-
ing the gain spectra, but the theory did not include transverse
field variations. These papers and their equations are identi-
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fied by the abbreviations I and II, respectively. In this paper,
we review and extend the reinjection technique, applying it
to higher-order modes in a cavity perturbed in several ways;
we report sensitive measurements of laser intensity-
fluctuation noise and noise cancellation; and we present im-
proved theoretical results for the form of the perturbed reso-
nator modes and for the transverse spatial effects in the rate-
equation model. The relationship of the work presented here
to that covered in I and II is illustrated in Table I.

The paper is arranged in eight sections as follows. Section
II reviews basic theory for the mode structure of open (pos-
sibly apertured) resonators. Section III develops the theory of
gain in laser amplifiers [2,3] to include transverse effects.
Section IU describes the techniques for experimental mea-
surements of gain in transverse laser modes. Section V con-
siders the transverse-mode contribution to laser intensity-
fjuctuation noise or "stochastic beam-position noise ' [4].
Section VI is a theoretical and experimental study of cavity
perturbation (which may appear as either friend or foe, de-
pending on the application), and Sec. VII studies the experi-
mental tracking of the approach to threshold under a particu-
lar mode-selecting perturbation (in this case, a thin wire).
Section VIII offers an overview and some conclusions, and
also reviews briefly some other related topics including
higher-order modes and wideband gain in reAection.

II. MODE STRUCTURE OF OPEN RESONATORS

We first briefly review some physics and nomenclature for
the stable open two-mirror resonator in Fig. 1(a) [5,6]. A
resonator mode is a field distribution which repeats itself in
shape and in phase after one round trip of the resonator. In
the absence of internal apertures or perturbations, and under
some simplifying paraxial assumptions, the free-space scalar
wave equation has solutions in the form of pure Gaussian
beams. These are the TEM transverse propagation modes,
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TABLE I. The work presented here is placed in context with the earlier papers I and II. The second column summarizes the scope of each

paper, and the third column lists our earlier short papers on related topics.

Paper

I (Ref. [2])

II (Ref. [3])

III (This work)

Summary

Gain and noise around the lasing mode. Below and above
threshold. Class-A and -B laser.

Gain and noise around subthreshold longitudinal modes.
Noise cancellation. Shift in spectra.

Study of higher-order subthreshold transverse modes.

Related papers

[9,14,19]

w&=LP /~
glÃ2( glg2)

(g i+ g2 2g lg2)
(2.1)

with transverse shape given by a simple Gaussian
exp( —r /w ) multiplied by Laguerre polynomials (in cylin-
drical coordinates) or Hermite polynomials (in Cartesian co-
ordinates). A particular set of beams can be found for given
mirror curvatures R1 and R2, separation L, and given wave-
length X, such that the beam wave fronts coincide with the
mirror surfaces and round-trip self-consistency is assured.
For this set, the beam waist radius ~0 is found from

g21(1 gt 2)L
Z1,2 g1+ g2 2g1g2

(2 2)

47' v L
++pq= 2',

C
(2.3)

where the resonator g parameters are defined as

g, = 1 —L(R1 and g2=1 —LIR2. For this set the condition
O~g, xg2~1 must be satisfied (otherwise the resonator is
not "stable" ). Each member of this set is then available as a
distinct transverse oscillation mode if we supply some net
round-trip gain. The cavity has a spectrum of resonant fre-
quencies defined by

Z2
I

I

Z2

I

and the mirrors lie at distances z1 and z2 from the waist: where j, p, and q define the mode number. The first term in
(2.3) is 47rL divided by the wavelength of the light for the
mode jpq, and the second term is the Guoy phase shift
4 which depends on the transverse mode integers p and q
pj

4pq=(p+q+ 1)cos Uglg2~ (2.4)

(b) h, =c/PL

1St,,

lasing mode
I

ICE transrnistsion

where the total round-trip phase shift is constrained to be an
integer j times 2~. Conventionally each value of the axial
mode number j is associated with its own set of transverse
modes TEM . Normally in laser studies, but not necessar-
ily, j is rather large (-10000—100 000) and p, q rather
small (—1 —10); the transverse-mode shapes do not depend
at all strongly on the exact value of j, and so the
longitudinal- (axial) and transverse-mode effects are decou-
pled.

Still referring to the ideal unperturbed open resonator, we
find for the mode frequencies

higher-order
trans. znodes
! !

FIG. 1. (a) Schematic showing nomenclature for two-mirror

open resonator. (b) Illustration of mode frequencies for the open
resonator of (a). The broad curve represents the transmission enve-

lope of a mode-selecting intracavity etalon (ICE), as for the argon-
ion laser used in the experimental sections.

cos gglg2
v, „q= c/2L j+ (p+ q+ 1)

7T
(2.5)

Here, where each transverse resonator mode is a pure Gauss-
ian beam, the extra (transverse) frequency shift is propor-
tional to transverse-mode number [7].This is a special prop-
erty of open stable resonators, not shared by other resonators
in general; for example, the phase shifts of pure transverse
modes in a hollow waveguide laser scale roughly as the
square of mode number. Figure 1(b) shows some of the array
of equally spaced resonant frequencies.

If we now introduce an aperture or other perturbation on
or between the mirrors, the resonator transverse modes will
no longer be pure single TEMpq instead they will be linear
combinations of TEMpq with the resonant frequencies un-

equally spaced. In matrix terms, if we describe the parts of
the resonator by matrices M1,M2, . . . ,M„ofTEMpq cou-
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pling or propagation coefficients, and obtain the transverse
resonator modes as the eigenvectors of the round-trip matrix
M= M &M2 M„,we now have a nondiagonal M P].Later
in the paper (Sec. VI) we present some results of matrix
modeling for apertured resonators. In general, we are inter-
ested in M's eigenvectors (which give the transverse shapes
of the resonator modes at a particular plane) and eigenvalues
(which give the round-trip losses and relative frequencies or
phase shifts). Equivalently, we may pose the resonator prob-
lem as a set of simultaneous equations, or a round-trip dif-
fraction integral. There is a very large literature of laser
resonator-transverse-mode theory, covering various numeri-
cal and analytical methods for a wide range of cavity de-
signs, perturbations, and intracavity active media (see, for
example, [6] for a review).

In the following two sections of this paper we report par-
allel theoretical and experimental investigations of the sub-
threshold mode structure of a double-ended argon laser: that
is, we probe the cavity to measure the behavior (in frequency
and space) of resonator modes that are potential modes of
oscillation but are for the moment suppressed by competition
from one lasing mode with higher gain-to-loss ratio. We re-
inject a portion of the laser output into one end of the laser,
with some offset frequency, and measure the signal gener-
ated when the output from the other end falls on a square-law
envelope detector. This latter output may be expressed as the
sum of (i) radiation in the lasing mode and (ii) radiation
which is offset in frequency, present in some linear combi-
nation of transverse modes, and regeneratively amplified af-
ter reinjection. The degree of amplification may be very sen-
sitive to the reinjected signal's frequency and spatial form,
but we will assume initially that this signal is very weak and
does not perturb the lasing process (we will examine later
some effects of coupling and transverse-mode interaction).
Hence the detector sees essentially a steady laser output at
fixed frequency acting as a local oscillator, plus an indepen-
dent weak signal at a single (tunable) frequency. The detector
output contains an ac component (i.e., a beat) at the differ-
ence frequency with amplitude proportional to

F. s(x y)F-Lo(x, y)dx 'dy, (2.6)

where the integral is carried out over the detector surface.
Now it is found that, to good approximation, the resonator
transverse modes of the cavities considered here are spatially
orthogonal: for any two different modes (each a linear com-
bination of TEM ) this integral across the complete trans-
verse plane is near to zero. In our experiments, however, the
area of integration may be artificially restricted by finite de-
tector size or by convenient apertures in order to enhance the
contribution from certain resonator-mode spatial components
of F.„gand hence yield a nonzero beat. In particular, if two
higher-order transverse modes have nearly equal resonant
frequencies, then their contributions to regenerative amplifi-
cation may be individually resolved by appropriately apertur-
ing the detector or the beam. We demonstrate here these
important orthogonality properties both for reinjected single-
frequency light and for the noise due to amplified spontane-
ous emission. It should be noted that there is a large sublit-
erature on the mathematical and experimental validity of

these properties; in particular, the zero integral is strictly true
only for two biorthogonal or adjoint modes [8], and there has
been considerable discussion of the breakdown of orthogo-
nality in more exotic and unstable resonators. In practice, at
a lesser level of rigor, we find that models based on the usual
approximations for TEM„basis modes produce accurate or-

thogonality, and that careful experiments produce very low
beat strengths for different modes.

In summary, a transverse mode of propagation must sat-
isfy the appropriate wave equation with transverse boundary
conditions. A transverse mode of oscillation additionally sat-
isfies the round-trip shape self-consistency condition for its
cavity. The term resonator mode usually implies an actual or
potential oscillation, described by transverse-mode numbers,
an axial-mode number, and a frequency v, „~.

Having presented these well-known principles of resona-
tor mode structure —the shapes, relative phase shifts, and
Gaussian-beam description of the potential oscillating modes
in Fig. 1 —we will return to them in Secs. VI, VII, and VIII
when describing the predicted and observed effects of cavity
perturbations. First, we extend our previous treatment of la-
ser amplification and reinjection by adding, at least to a
crude approximation, a transverse spatial term (Sec. III).

P;.= P , exp[ —i(~L+ ~).t] (3.1)

Here P;„is proportional to the F field of the input signal
expressed in units such that ~P;„~ is the input energy flux in

photons per second, coL is the frequency of the lasing mode,
assumed to be the lowest-order (TEMpp) transverse mode,
and the detuning co is chosen so that coL+co lies within the
frequency spread of the subthreshold higher-order transverse
mode centered on cpz (ter is used here as shorthand for
cp, „~=2 m vj „).The spatial distribution of the input signal
is assumed to be matched to that of the subthreshold trans-
verse mode under investigation. Note that this assumption is
not generally fulfilled in our experiments described in Sec.
IV. In that case, it is only the projection of the input field
onto the mode of interest that contributes to the measured
gain. The theory here assumes a matched input to allow cal-
culation of absolute values for the gain.

The required theory can be developed by extension and
modification of our previous work [2,3] on the gain at fre-
quencies within the lasing mode (I) and at frequencies close
to the subthreshold longitudinal modes on either side of the
laser mode (II). The present calculation resembles that of II,
with the introduction of the input signal (3.1) causing new
components in the system dynamics at the signal frequency
~L+ co and its "image" coL —~, in addition to the frequency
col of the free-running laser. However, in contrast to the
symmetrical disposition of adjacent longitudinal (TEMpp)
modes around the lasing mode, there is in general no mode

III. THEORY OF TRANSVERSE-MODE GAIN

A. Laser amplifier equations of motion

We need to calculate the gain experienced by an input
signal of the form
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of the cavity at the image frequency 2cpz —cpT [see Fig.
1(b)]. Thus any tendency of the atoms to generate light at
this frequency is heavily inhibited, and to first order in the
signal amplitude P, the field n in the laser cavity has the
two-component form

n= nz exp( —tpzt)+ nT exp[ —i(tpz+ tp)t] . (3.2)

for which only the third component of the population inver-
sion given by (3.4) survives, and its form is the same as that
of II (2.4).

The laser equations of motion are similar to I (2.6)—(2.8),
the conventional Maxwell-Bloch equations. The separated
equations of motion for the two components of the cavity
field (3.2) are

Here o.L is the intracavity E field of the free-running laser,
expressed in units such that ~nz~ is the mean number of
laser photons in the cavity, and o.T is the corresponding field
amplitude appropriate to the subthreshold transverse mode
with injected input. The presence of simultaneous signal and
image contributions to the gains studied in I and II led to
striking cancellation effects which are absent in the present
problem.

The atomic medium that drives the laser is described by
two variables, the mean collective atomic dipole moment d
and the mean population inversion D. The dipole moment
has the three-component form

d=dz exp( —icpzt)+dT exp[ —i(tpz+ t0)t]

+ d, exp[ —i( cpz —tp) t], (3.3)

D =Dp+ D i exp( —i tot) + D*, exp(icpt). (3.4)

Two special cases of the mode fractions occur when both
modes interact with all inverted atoms,

fz=fT= 1, (3.5)

or the modes interact with completely distinct sets of in-
verted atoms,

where the final component, at the image frequency, is unable
to generate a corresponding cavity field as described above.
In modeling the dynamics of the population inversion, it is
important to take account of the different distributions of
intensity in the TEM00 lasing mode and the subthreshold
higher-order transverse mode in the planes perpendicular to
the cavity axis. These different distributions cause the two
modes to interact with sets of atoms that are to some extent
shared but are to some extent distinct. In a rough approxima-
tion to the complicated variation of mode intensity and over-
lap in the perpendicular planes, we assume that the pumped
population D„ofinverted atoms in interaction with the cav-
ity field (3.2) has a fraction fz that is coupled to the lasing
mode and a fraction fT that is coupled to the transverse mode
(O~fz, fT~l). There are thus three distinct values of the
atomic population inversion D, as follows: (i) for the frac-
tion 1 fT interacting — solely with the lasing mode,
D = Dz, (ii) for the fraction 1 fz interacting s—olely with the
transverse mode, D = DT, and (iii) for the fraction
fz+ fT 1 interacting w—ith both modes, where the relevant
population inversion is driven to pulsate at the difference of
their frequencies and we put

nz+ ( Yz+ '~z) nz, = gdz

nT+ ( YT+ i~T) nT gdT+ 7 Pl'

(3.7)

(3.8)

where yL and yT are the damping rates for the two modes
and y;„represents the cavity mirror intensity transmission
coefficient for the input signal. Generally the condition
yTuT&gdT ensures that the transverse mode remains below
threshold.

For the atomic variables, the decay rate y~ associated
with the atomic dipole moment is assumed to give rise to a
high degree of homogeneous broadening, sufficient to permit
the neglect of inhomogeneous effects such as Doppler broad-
ening (see Sec. I of II). In addition, yi is sufficiently large
for class-A and class-B lasers that an adiabatic approxima-
tion can be made in the equation of motion for d, resulting in
the form given in I (2.15),

(3.9)

The validity of this approximation is fully discussed in I and
II, and the separation of (3.9) into components that oscillate
at the three frequencies occurring in (3.3) gives the relations

dI gnz(Dp+DL)i YJ

dT= g(nzDi+ nr(Dp+ DT) tl yi,

(3.1O)

(3.11)

d, = g n,D*, ly, . (3.12)

The variables nT and D, are proportional to the signal am-
plitude P;„and results are given correct to first order in P;„
here and subsequently, so that the final expression for the
gain is restricted to the regime of linear amplification.

The equation of motion for the atomic population inver-
sion is identical to I (2.7) in the form

+ yllD= yllDp g(n~d+ nd (3.13)

where the population of the lower atomic level of the laser
transition is assumed to be negligible compared to that of the
upper level. Here y~~ is the atomic longitudinal decay rate and

D„is the total population of inverted atoms in the absence of
any cavity field, proportional to the laser pumping rate. The
separation of (3.13) into its different frequency components
is accompanied by the division of the atomic population into
the fractions that interact with the different cavity modes.
The resulting equations of motion are

fz+fr= 1 (3.6)
I—T

rllDL= vll(I fT)D g(nf—dz+ nzdz)
L

(3.14)

We note that the subthreshold longitudinal- (TEMpp) mode
problem treated in II corresponds to the special case (3.5), VllDT= Vll(I fz)Dt ~—(3.15)
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, fL+fT 1—

yllD0 yll(fI. +fT 1—)D, g—(~L dL+ ~LdL )
L

(3.16)

fL+fT 1—
Di+ y11D1 g(C1LdT+ ALdl )

fT

,fL+fT 1—
g cITdL

JI.
(3.17)

again correct to first order in P;„.Note that the divisions by

fL or fT in three of these equations are needed to convert
forces that drive all of the atoms illuminated by a given
mode into the three subsets of these atoms defined earlier.

With the dipole-moment components removed by the use
of (3.10)—(3.12), the set of six equations (3.7), (3.8), and

(3.14)—(3.17) provides solutions for the six variables uL,
uT, DI, DT Do ~ and D& ~

Two components of the population inversion are obtained
from (3.18)—(3.20) as

yLyi 1 fT—

fL
(3.24)

yLyL fL+fT 1—
0 2 (3.25)

yLyJ 1 L
DT= (I fL)D—„=C (3.26)

In contrast to the other two, this component is proportional to
the pumping rate, a consequence of the below-threshold
character of the transverse mode [compare I (3.4)].

independent of the laser pumping rate. A third component of
the population inversion is obtained from (3.15) as

yL~L g ~L(D0+ DL)l yi (3.18)

where (3.10) has been used, while the population inversion
equations (3.14) and (3.15) similarly become

yllDL {y11fLD„—(g'le)2I ~LI'(Do+ DL))(1 fL)lfL—
(3.19)

y11D0=(y11fLD„(g'ly )2I~LI (Do+D—L))

B. Free-running laser

In the absence of an input signal, P;„=0,the variables

uT and D& .vanish, and the Maxwell-Bloch equations sim-

plify considerably. Thus the field equation (3.7) becomes

C. Transverse gain

An expression for the transverse gain is obtained by solu-
tion for nT of the so-far unused Maxwell-Bloch equations
(3.8) and (3.17). The procedure is to remove the dipole-
moment components with the use of (3.10)—(3.12), to re-
move the laser-field amplitude with the use of (3.21), and to
remove three components of the population inversion with
the use of (3.24) —(3.26). The two remaining equations now
involve only the variables uT and D&. Elimination of the
latter provides the desired expression for nT. The calcula-
tion is algebraically very tedious but essentially straightfor-
ward and we present only its final result. The intensity gain
for transmission through the laser amplifier cavity at signal
detunings co close to

&& (fL+fT 1)lfL. — (3.20)
BT= GOT COL (3.27)

The above-threshold solutions of these three equations are
obtained straightforwardly. Thus the laser field amplitude is
given by

is defined to be

(3.28)

where the cooperation parameter is defined to be

(3.21) where y,„,represents the laser cavity mirror transmission
coefficient for the amplified output signal. The gain profile
can be written in Lorentzian form as

~ = g'fI.D„l yLyJ

and the saturation photon number is

n, = y~yll/2g .

(3.22)
Fin Pout" '=( -a,-S,) +(r,l2)

(3.23) where the shift and width are given by

(3.29)

bryLy„(c—1)[(c—1)(1 f,)+2fT)(fL+fT—1)l2fLfT-
~T+ ( y11 lfT) 'I:(&—I )(fL+fT I)+fT]'— (3.30)

yLy11 (&—I)[(c—1)(fI+fT 1)+fT][(& 1)(1 —fL)+ 2fT](fL—+fT
—1)lfLfT-

~T+ ( y(1 lfT) '[(~ I )(fL+fT I ) +fT]—'—
+2yT 2(y, lfL)[(C 1)(1—f,)+fT]. — — (3.31)
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FIG. 5. Typical gain profiles for the TEMp& and TEMPO modes
of the argon-ion laser sharing the same longitudinal-mode number
as the lasing (TEMpp) mode. The cavity uses a plane-concave mir-

ror pair [case (i)]. The detuning is always positive. The spatial fil-

tering of the output laser beam appropriate to each measurement is
also indicated.

longitudinal mode [3].Further details of the laser parameters

may be found in [2] and [3].In our experiments (Fig. 4), the
output beam from one end of the laser passes through a pair
of acousto-optic rnodulators. In double pass, this allows a
precise shift 6' of the beam's frequency anywhere in
the range 0—~ 350 MHz. The shifted beam is then reinjected
into the laser cavity; the output from the other end of the
laser displays a beat at the difference frequency 6 and the
strength of this beat is taken (as in I and II) to be a measure
of the gain experienced by the reinjected beam. This gain, as
expressed in (3.28), shows a marked resonance peak when
tuned around the vicinity of a subthreshold transverse mode.
The input is normally heavily attenuated to avoid disturbing
the laser; with only 10 of the power returned to the cavity,
the gain measurements typically have a signal-to-noise ratio
of & 10 . Some of the nonlinear and injection-locking phe-
nomena that occur when the input signal exceeds the small-
signal limit are discussed brielly in [11],which studies these
effects in a CO@ waveguide laser. Because of the orthogonal-
ity of transverse modes, the beat signal may be greatly in-
creased by appropriate spatial filtering of both the input and
output beams. As discussed earlier, such filtering also acts as
a discriminant between nearly degenerate modes.

As an example, Fig. 5 presents gain data for the first-order
Hermite Gaussian TEMpt and TEMtp modes (with mirror
M 1 plane, mirror M2 concave). These modes have their
frequency degeneracy split by the astigmatism that compo-
nents such as Brewster windows introduce into the cavity
[7,12]. The Brewster windows are oriented so as to polarize
the laser with its F vector vertical; under this condition, the
lobes of the transverse modes are aligned along vertical and
horizontal axes for TEMpi and TEMip, respectively. Initially
we will assume symmetrical, unperturbed modes (that is,
strictly pure TEM„);the effects of perturbation will be in-

vestigated in Secs. VI and VII. The beat signal power (taken

'We use this labeling throughout with the caveat that the modes
are not necessarily always of pure Hermite Gaussian form.

FIG. 6. Signal strength at the peak of the gain curve for
TEMpt and TEM, p modes as the knife-edge blade (B in Fig. 4) is
translated into the laser output beam. Also plotted is the laser power
incident on the detector versus blade position. The laser power is
fixed throughout at 15 mW. There is some distortion to the curves
due to minor inhomogeneities in the detection system: these are
more evident when the detector is exposed to the majority of the
beam (right-hand side of the plot).

to be proportional to gain) is measured by spectral analysis
of the output current from the detector, and its strength for
these modes is maximized by blocking precisely half of the
laser beam power at both the input and output (Fig. 4). This
destroys the symmetry that, for transverse modes orthogonal
to the lasing TEMpp mode, leads to cancellation of the con-
tributions to the gain from the two halves of the beam.
Blocking half the beam with vertical knife-edge blades maxi-
mizes the signal from the TEMip mode; horizonta1 blades
select the TEMpi mode. Figure 6 shows the variation of the
signal at the peak of the gain curve for these two modes, as
the blade is translated so as to block a progressively larger
fraction of the detected laser beam. The maximum signal is
seen to occur when exactly half the power of the laser beam
is passed by the blade. A further fourfold increase in signal
power could be achieved by employing a split-detector ar-
rangement [4] in which the two halves of the beam are sepa-
rately detected, and their respective photocurrents added in
antiphase. In comparison to this filtering of the output, the
signal power is less sensitive to the spatial filtering of the
input: there is no need for accurate mode matching of the
signal beam with the desired transverse mode because the
predetection filtering ensures that only this mode contributes
to the signal. Any other transverse modes of the laser that
may become excited by the input do not contribute because
of orthogonality.

The two gain profiles for the reinjected light plotted in
Fig. 5 clearly show the frequency splitting due to astigma-
tism to be about 2 MHz. The detunings 8' in the measure-
ments of Fig. 5 are always positive, confirming that the
transverse modes have a higher frequency than the TEMpp
mode with identical axial-mode number. Enhanced gain can
also be observed for negative 6' at frequencies around
8= —(5—27) MHz, as this probes the TEMp, and TEM, p

modes with their longitudinal (axial) mode number reduced
by one (see Fig. 1). Similarly, other axial orders may be
probed by adding or subtracting multiples of b, (= 156
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FIG. 10. An example of noise and gain profiles for the TEM&0

mode, both measured at a laser power of 4.0 mW. These have been
superimposed to show the close agreement demonstrating a funda-

mental property of amplifiers.

no attempt here to derive the corresponding theory for the
subthreshold transverse modes, it nevertheless still holds true
that the gain and noise remain intimately linked. This is il-

lustrated in Fig. 10, where the noise spectrum is displayed
superimposed on the gain profile, both measured under iden-
tical conditions. The close relationship between gain and
noise was verified for both TEMp& and TEMio states over a
wide range of laser power; the noise spectra display the same
shifts with changes of laser power as do the gain profiles and
they also show a similar response to cavity perturbations.

Noise spectra very similar to those shown here are re-
ported in [4] for a single-frequency krypton-ion laser. A split
detector was used to optimize the noise power, by changing
by m the relative phase of the contributions from the two
lobes of the transverse mode under investigation. In this way,
the contributions can be made to add, rather than cancel. In
[4], the noise was interpreted as being caused by Iluctuations
in laser beam position due to the beating between the lasing
mode and emission into the transverse modes, and the effect
was given the name "stochastic position noise. "However, it
should be borne in mind that these fluctuations are small,
representing a beam displacement of only a tiny fraction of
its diameter. This reflects the fact that only a very small
fraction of the total laser output is emitted into the subthresh-
old modes. For example, in the argon-ion laser studied here,
this fraction is of order 10 at twice threshold pumping rate
(C=2).

In our work, it was not possible to measure accurately the
noise profiles at values of laser power higher than about 15
mW. This is because as the power is increased the laser out-
put must be attenuated to avoid detector nonlinearity and
damage. This reduces the signal-to-noise level of the noise
spectra, until measurements become impossible without la-
borious averaging. On the other hand, the measurements of
gain by reinjection described in Sec. IV do not suffer this
constraint, demonstrating the versatility of this technique and
its potential for laser diagnostics.

Finally, following this discussion of an increase in noise
level after spatial filtering of the laser output, it is interesting
to note that a similar phenomenon occurs after spectrally
filtering the output [14].The noise cancellation in this latter

case has quite different origins: contributions due to sponta-
neous emission from opposite sides of the laser line are
coupled by four-wave mixing.

VI. THEORETICAL AND EXPERIMENTAL STUDY
OF CAVITY PERTURBATION

This section describes an investigation of the effects of
cavity perturbation on the behavior of the subthreshold trans-
verse modes. An experiment was performed to study the shift
in transverse-mode frequency in the argon-ion laser induced
by translating a straight knife edge across the cavity, posi-
tioned close to mirror Ml (see Fig. 1). The knife edge was
aligned vertically and mounted on a micrometer stage to al-
low precise horizontal translation into the intracavity laser
beam. This situation was also theoretically investigated by
cavity modeling methods.

The experiment was carried out using the same reinjection
technique described in detail in Sec. IV. Gain profiles were
obtained as the offset frequency was tuned around the
transverse-mode resonances, and the peak positions for these
curves were then evaluated for different knife-edge positions.
The TEMO& mode is relatively unaffected by this cavity per-
turbation: its lobes are aligned vertically, and so the mode
can adapt relatively easily to the intrusion of the knife blade.
However, for the TEMio mode, its symmetry becomes sig-
nificantly disturbed as soon as the knife edge begins to cut
into its edge. The resulting shift in the peak gain frequency
for the TEMio mode is plotted in Fig. 11. This data set was
obtained at an unperturbed laser power of 11.5 mW The
power level drops as the knife edge translates further into the
cavity, until the laser is eventually extinguished.

To model the perturbed cavity we construct a complex
round-trip propagation matrix for the Laguerre-Gaussian
modes Wpq and numerically diagonalize it to extract the
eigenvectors (transverse modes) and eigenvalues (losses and
phase shifts). The computer model is derived from wave-
guide resonator studies [7,15]. In this earlier work the effect
of a hollow dielectric waveguide was described by a matrix
for coupling input Gaussian beams through the waveguide
into a new basis of output Gaussian beams. The resonator
problem was solved by setting up the round-trip matrix in
terms of free-space basis modes (Laguerre-Gaussian or
Hermite-Gaussian), or in terms of waveguide basis modes
(LP„orEH „[7]),with the choice of basis (that is, of
reference plane within the cavity) made for convenience but
having no formal importance. Here, there is no waveguide
(or a waveguide of zero length, i.e., a circular aperture), and

by adjusting the limits of the overlap integrals we can find
the coefficients in the nondiagonal coupling matrix which
describes the effect of the combined mirror and knife edge.

This matrix approach [15,16] is equivalent to solving a set
of simultaneous equations for the Laguerre-Gaussian mode
amplitudes [17,18] and has often been described in the lit-
erature. We treat a passive resonator: the model is fully mul-
timode, and predicts the relative frequencies of the funda-
mental and higher-order transverse modes of the
(mechanically) perturbed cavity, but it does not solve rate
equations or include microscopic effects of the active me-
dium. We should also remark that the knife edge represents a
severe perturbation, which strongly affects the transverse-
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mode shapes as well as their phase shifts, so that it would be
unwise to assume constant values of the fractions fI and

fr (Sec. III). Nonetheless, the results in Fig. 11 provide fur-
ther interesting evidence that the autodyne techniques can be
applied to real perturbed lasers and give reasonable agree-
ment between theory and experiment.

Note that one possible source of discrepancy between the
data and theoretical predictions of Fig. 11 is the apparent
shift in mode frequency that results from the inhuence of
population pulsations, as calculated and measured in Secs.
III and IV, respectively (see Figs. 2, 7, and 8). This shift is, of
course, dependent on laser power and so its value will vary
as the cavity is perturbed and the laser power drops. For the
mode considered here (with the same axial-mode number j
as the lasing mode), the shift will be positive (adding to the
offset), and its contribution will decrease as the laser power
diminishes. A full quantitative correction of this effect is
therefore likely to improve the agreement between theory
and experiment in Fig. 11.

VII. EXPERIMENTAL TRACKING OF THE APPROACH
TO THRESHOLD

In this section, we use the reinjection technique to moni-
tor the gain behavior under a type of perturbation which
favors a particular transverse mode compared to the lasing
mode. The data obtained demonstrate our ability to monitor

FIG. 11. Measurements on a perturbed laser cavity for the plane-
concave mirror arrangement [case (i)]. The upper plot shows ex-
perimental data for the peak gain of the TEM, O mode: the frequency
shifts as the knife blade translates into the cavity. The results of the
model calculation are also plotted. The lower plot shows the reduc-
tion in laser output power as the knife blade obstructs the lasing
mode.

FIG. 12. Approach to threshold of TEMp& mode. As the hori-
zontal wire penetrates further into the cavity, the laser power drops;
this is indicated on each profile. Note also the slight shift that re-
sults from perturbing and distorting the modes of the cavity.

the approach of a subthreshold mode towards the lasing
threshold. Figure 12 shows the effect on the gain curve for
the TEMo, mode as a thin ( —100 p, m diameter) horizontal
wire is progressively inserted further into the laser beam
within the cavity. The wire is perpendicular to the laser axis,
and is also accurately centered (see inset of Fig. 12). This
configuration tends to favor the TEMp& mode, in comparison
to the lasing TEMpp mode, because the wire lies along a null
of the TEMp& field. Hence the losses incurred by the
TEMpp mode are much greater than for TEMp&, and the laser
output drops accordingly. This drop in laser power is accom-
panied by an increase in the population inversion, and the
TEMp& mode is able to exploit this. As the wire penetrates
further, the TEMp& mode acquires higher and higher gain
with reduced bandwidth, eventually reaching threshold just
beyond the setting for the narrowest curve in Fig. 12.

After the TEMp& mode has exceeded the threshold, it
needs only a small extra translation of the wire to cause the
TEMpp mode to be extinguished. However, there does exist a
limited region where both TEMpp and TEMp& modes coexist.
This may be contrasted with the behavior as the argon-ion
laser hops between different longitudinal modes t 19]. In that
case, coexistence of two modes is not observed, as they share
the same distribution of gain, and are in competition for ex-
actly the same atoms: there can only be one winner.

VIII. CONCLUSIONS

We have presented laser amplifier equations of motion,
including a first attempt at the inclusion of higher-order
transverse modes, and solved these equations for some spe-
cial cases. The results are in reasonable agreement with mea-
surements of the mode spectrum of an argon-ion laser, both
when the laser cavity is mechanically perturbed and when
the pumping rate is varied. In particular, we have used a
reinjection technique to probe the mode behavior and to
track the mode eigenvalue (gain and phase shift) as threshold
is approached and exceeded. We have compared the mea-
sured relative frequency shifts of higher-order subthreshold
modes, when we apply the gross perturbation of a straight-
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edge aperture at one mirror, with the results of a multimode
matrix computer model.

The studies reported here can easily be extended to inves-
tigate some of the yet higher-order transverse modes. For
example, the detection of a quadrant of the output laser beam
enhances the beat gain for the four-lobe TEM» mode. A
resonance confirming the presence of this mode was clearly
detected at approximately twice the frequency offset of the

TEMoi and TEMio modes. We have also carried out a brief
investigation of the gain experienced by the beam reflected
from the cavity. These gain profiles display the same reso-
nant features as those in transmission, with the important
difference that at large detunings from resonance the gain
becomes unity, rather than tending to zero as in transmission
measurements. A full evaluation of this technique is neces-
sary to assess the potential of the reinjection methods re-
ported here for investigation of single-ended lasers.

The reinjection method (related to the self-aligning "au-
todyne" technique in coherent laser radar referred to in I)
shows promise for optimizing laser performance via mea-
surements that have previously been rather difficult. The ap-
pearance and development of significant subthreshold modes
can be studied, and combined in principle with real-time ad-
justments, so that spurious laser frequencies (that might im-
peril coherent lidar operation) can be identified and avoided.
There is also increasing interest in the use of autodyning
directly in lidar systems, where the light scattered from a
target is reinjected and amplified within the laser source.
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