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We present a study of the higher-order subthreshold transverse modes in a single-frequency laser resonator.
A theory is developed to describe the gain behavior when an input beam is reinjected into the laser, and tuned
around the resonances that correspond to each of the subthreshold transverse modes of the cavity. Some of the
predictions of the theory are confirmed by experiments with an argon-ion laser and these experiments also
illustrate the use of spatial filtering for optimization of the gain, as well as an associated increase in intensity-
fluctuation noise. Further experiments have been carried out to demonstrate the perturbation of the modes
caused by the insertion of intracavity obstructions; the data are compared with the results from theoretical
modeling of the perturbed resonator. In addition, the experimental techniques are used to track the behavior of
a transverse mode as it approaches, and finally exceeds, the lasing threshold.

PACS number(s): 42.60.Jf, 42.60.Lh, 42.60.Mi, 42.79.Qx

I. INTRODUCTION

In this paper we explore the resonator-mode properties of
open-sided, spherical-mirror laser cavities; we also investi-
gate the effect on the laser modes of placing various aper-
tures and obstructions between the mirrors. For many appli-
cations (for example, coherent laser radar) lasers are required
to run on a single frequency (a single transverse mode and a
single axial mode). Single-mode selection can be achieved in
many ways, often readily with a homogeneously broadened
active medium where only the mode with the highest gain-
to-loss ratio survives the processes of mode competition. The
successful single-frequency laser retains a complex spectrum
of subthreshold modes: potential modes of oscillation that
are for the moment suppressed. It is interesting, but has hith-
erto been difficult, to measure how well these other modes
are suppressed while the laser is running. Also, we may wish
to use these subthreshold modes for regenerative amplifica-
tion of reflected light, choosing convenient offset frequencies
and arranging the gains to be near (but not too near) thresh-
old.

We recently reported a technique that allows the detailed
study of subthreshold transverse modes including measure-
ments of their approach to threshold [1]. The technique in-
volves the reinjection of frequency-shifted light and has been
used to study the modes of an argon-ion laser. In [1] we
stressed the need for further work on the gain and noise
behavior of reinjected light. Other recent work [2,3] has in-
vestigated laser amplification above and below threshold, in-
dicating the importance of population pulsations in determin-
ing the gain spectra, but the theory did not include transverse
field variations. These papers and their equations are identi-
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fied by the abbreviations I and II, respectively. In this paper,
we review and extend the reinjection technique, applying it
to higher-order modes in a cavity perturbed in several ways;
we report sensitive measurements of laser intensity-
fluctuation noise and noise cancellation; and we present im-
proved theoretical results for the form of the perturbed reso-
nator modes and for the transverse spatial effects in the rate-
equation model. The relationship of the work presented here
to that covered in I and II is illustrated in Table I.

The paper is arranged in eight sections as follows. Section
1I reviews basic theory for the mode structure of open (pos-
sibly apertured) resonators. Section III develops the theory of
gain in laser amplifiers [2,3] to include transverse effects.
Section IV describes the techniques for experimental mea-
surements of gain in transverse laser modes. Section V con-
siders the transverse-mode contribution to laser intensity-
fluctuation noise or ‘“‘stochastic beam-position noise” [4].
Section VI is a theoretical and experimental study of cavity
perturbation (which may appear as either friend or foe, de-
pending on the application), and Sec. VII studies the experi-
mental tracking of the approach to threshold under a particu-
lar mode-selecting perturbation (in this case, a thin wire).
Section VIII offers an overview and some conclusions, and
also reviews briefly some other related topics including
higher-order modes and wideband gain in reflection.

II. MODE STRUCTURE OF OPEN RESONATORS

We first briefly review some physics and nomenclature for
the stable open two-mirror resonator in Fig. 1(a) [5,6]. A
resonator mode is a field distribution which repeats itself in
shape and in phase after one round trip of the resonator. In
the absence of internal apertures or perturbations, and under
some simplifying paraxial assumptions, the free-space scalar
wave equation has solutions in the form of pure Gaussian
beams. These are the TEM,,, transverse propagation modes,
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TABLE I. The work presented here is placed in context with the earlier papers I and II. The second column summarizes the scope of each
paper, and the third column lists our earlier short papers on related topics.

Paper Summary Related papers
I (Ref. [2]) Gain and noise around the lasing mode. Below and above [10]
threshold. Class-A and -B laser.

II (Ref. [3]) Gain and noise around subthreshold longitudinal modes. [9,14,19]
Noise cancellation. Shift in spectra.

III (This work) Study of higher-order subthreshold transverse modes. [1,11]

with transverse shape given by a simple Gaussian g21(1—g )L

exp(—r*/w?) multiplied by Laguerre polynomials (in cylin- E e P (2.2)

drical coordinates) or Hermite polynomials (in Cartesian co- §17 82728182

ordinates). A particular set of beams can be found for given where the resonator g parameters are defined as

mirror curvatures R, and R,, separation L, and given wave-
length N\, such that the beam wave fronts coincide with the
mirror surfaces and round-trip self-consistency is assured.
For this set, the beam waist radius w is found from

1__.
w§=L)\/7r\/ 8181( 2182) 2.1)

(g1+82—28182)" "

and the mirrors lie at distances z; and z, from the waist:
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FIG. 1. (a) Schematic showing nomenclature for two-mirror
open resonator. (b) Ilustration of mode frequencies for the open
resonator of (a). The broad curve represents the transmission enve-
lope of a mode-selecting intracavity etalon (ICE), as for the argon-
ion laser used in the experimental sections.

g1=1—L/R, and g,=1-—L/R,. For this set the condition
0<g,Xg,=<1 must be satisfied (otherwise the resonator is
not “‘stable”’). Each member of this set is then available as a
distinct transverse oscillation mode if we supply some net
round-trip gain. The cavity has a spectrum of resonant fre-
quencies defined by

4mv; ,,L

(2.3)
¢

+®,, =277,
where j, p, and g define the mode number. The first term in
(2.3) is 47rL divided by the wavelength of the light for the
mode jpg, and the second term is the Guoy phase shift
® ,, which depends on the transverse mode integers p and g

[5]:
®,,=(p+g+1)cos ' =g gs, 2.4)

where the total round-trip phase shift is constrained to be an
integer j times 2. Conventionally each value of the axial
mode number j is associated with its own set of transverse
modes TEM; ,, . Normally in laser studies, but not necessar-
ily, j is rather large (~10000-100 000) and p,q rather
small (~1-10); the transverse-mode shapes do not depend
at all strongly on the exact value of j, and so the
longitudinal- (axial) and transverse-mode effects are decou-
pled.

Still referring to the ideal unperturbed open resonator, we
find for the mode frequencies

-1
cos ' * g
Vjpg= 2L j+ (pHq+1) ————— 81821 (25)

Here, where each transverse resonator mode is a pure Gauss-
ian beam, the extra (transverse) frequency shift is propor-
tional to transverse-mode number [7]. This is a special prop-
erty of open stable resonators, not shared by other resonators
in general; for example, the phase shifts of pure transverse
modes in a hollow waveguide laser scale roughly as the
square of mode number. Figure 1(b) shows some of the array
of equally spaced resonant frequencies.

If we now introduce an aperture or other perturbation on
or between the mirrors, the resonator transverse modes will
no longer be pure single TEM,,, ; instead they will be linear
combinations of TEM,,,, with the resonant frequencies un-
equally spaced. In matrix terms, if we describe the parts of
the resonator by matrices M| ,M,, ... ,M, of TEM,, cou-
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pling or propagation coefficients, and obtain the transverse
resonator modes as the eigenvectors of the round-trip matrix
M=M M,---M,, we now have a nondiagonal M [7]. Later
in the paper (Sec. VI) we present some results of matrix
modeling for apertured resonators. In general, we are inter-
ested in M’s eigenvectors (which give the transverse shapes
of the resonator modes at a particular plane) and eigenvalues
(which give the round-trip losses and relative frequencies or
phase shifts). Equivalently, we may pose the resonator prob-
lem as a set of simultaneous equations, or a round-trip dif-
fraction integral. There is a very large literature of laser
resonator-transverse-mode theory, covering various numeri-
cal and analytical methods for a wide range of cavity de-
signs, perturbations, and intracavity active media (see, for
example, [6] for a review).

In the following two sections of this paper we report par-
allel theoretical and experimental investigations of the sub-
threshold mode structure of a double-ended argon laser: that
is, we probe the cavity to measure the behavior (in frequency
and space) of resonator modes that are potential modes of
oscillation but are for the moment suppressed by competition
from one lasing mode with higher gain-to-loss ratio. We re-
inject a portion of the laser output into one end of the laser,
with some offset frequency, and measure the signal gener-
ated when the output from the other end falls on a square-law
envelope detector. This latter output may be expressed as the
sum of (i) radiation in the lasing mode and (ii) radiation
which is offset in frequency, present in some linear combi-
nation of transverse modes, and regeneratively amplified af-
ter reinjection. The degree of amplification may be very sen-
sitive to the reinjected signal’s frequency and spatial form,
but we will assume initially that this signal is very weak and
does not perturb the lasing process (we will examine later
some effects of coupling and transverse-mode interaction).
Hence the detector sees essentially a steady laser output at
fixed frequency acting as a local oscillator, plus an indepen-
dent weak signal at a single (tunable) frequency. The detector
output contains an ac component (i.e., a beat) at the differ-
ence frequency with amplitude proportional to

j f Esig(xay)ELO(x’y)dx dy’ (26)

where the integral is carried out over the detector surface.
Now it is found that, to good approximation, the resonator
transverse modes of the cavities considered here are spatially
orthogonal: for any two different modes (each a linear com-
bination of TEM,,;) this integral across the complete trans-
verse plane is near to zero. In our experiments, however, the
area of integration may be artificially restricted by finite de-
tector size or by convenient apertures in order to enhance the
contribution from certain resonator-mode spatial components
of Eg, and hence yield a nonzero beat. In particular, if two
higher-order transverse modes have nearly equal resonant
frequencies, then their contributions to regenerative amplifi-
cation may be individually resolved by appropriately apertur-
ing the detector or the beam. We demonstrate here these
important orthogonality properties both for reinjected single-
frequency light and for the noise due to amplified spontane-
ous emission. It should be noted that there is a large sublit-
erature on the mathematical and experimental validity of
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these properties; in particular, the zero integral is strictly true
only for two biorthogonal or adjoint modes [8], and there has
been considerable discussion of the breakdown of orthogo-
nality in more exotic and unstable resonators. In practice, at
a lesser level of rigor, we find that models based on the usual
approximations for TEM,,, basis modes produce accurate or-
thogonality, and that careful experiments produce very low
beat strengths for different modes.

In summary, a transverse mode of propagation must sat-
isfy the appropriate wave equation with transverse boundary
conditions. A transverse mode of oscillation additionally sat-
isfies the round-trip shape self-consistency condition for its
cavity. The term resonator mode usually implies an actual or
potential oscillation, described by transverse-mode numbers,
an axial-mode number, and a frequency v; ,, .

Having presented these well-known principles of resona-
tor mode structure — the shapes, relative phase shifts, and
Gaussian-beam description of the potential oscillating modes
in Fig. 1 — we will return to them in Secs. VI, VII, and VIII
when describing the predicted and observed effects of cavity
perturbations. First, we extend our previous treatment of la-
ser amplification and reinjection by adding, at least to a
crude approximation, a transverse spatial term (Sec. III).

III. THEORY OF TRANSVERSE-MODE GAIN
A. Laser amplifier equations of motion

We need to calculate the gain experienced by an input
signal of the form

Bin=B; exp[ —i(w,+ w)z]. 3.1

Here f3;, is proportional to the E field of the input signal
expressed in units such that |8;,]? is the input energy flux in
photons per second, w; is the frequency of the lasing mode,
assumed to be the lowest-order (TEMy,) transverse mode,
and the detuning w is chosen so that w; + w lies within the
frequency spread of the subthreshold higher-order transverse
mode centered on wz; (w7 is used here as shorthand for
W ,q=27V; ). The spatial distribution of the input signal
is assumed to be matched to that of the subthreshold trans-
verse mode under investigation. Note that this assumption is
not generally fulfilled in our experiments described in Sec.
IV. In that case, it is only the projection of the input field
onto the mode of interest that contributes to the measured
gain. The theory here assumes a matched input to allow cal-
culation of absolute values for the gain.

The required theory can be developed by extension and
modification of our previous work [2,3] on the gain at fre-
quencies within the lasing mode (I) and at frequencies close
to the subthreshold longitudinal modes on either side of the
laser mode (II). The present calculation resembles that of II,
with the introduction of the input signal (3.1) causing new
components in the system dynamics at the signal frequency
w; + w and its “image” w; — w, in addition to the frequency
w; of the free-running laser. However, in contrast to the
symmetrical disposition of adjacent longitudinal (TEM,)
modes around the lasing mode, there is in general no mode
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of the cavity at the image frequency 2w;— wy [see Fig.
1(b)]. Thus any tendency of the atoms to generate light at
this frequency is heavily inhibited, and to first order in the
signal amplitude B, the field a in the laser cavity has the
two-component form

a=a; exp(—w )+ arexp[—i(w,+w)t]. (3.2)
Here «; is the intracavity E field of the free-running laser,
expressed in units such that |@;|? is the mean number of
laser photons in the cavity, and a7 is the corresponding field
amplitude appropriate to the subthreshold transverse mode
with injected input. The presence of simultaneous signal and
image contributions to the gains studied in I and II led to
striking cancellation effects which are absent in the present
problem.

The atomic medium that drives the laser is described by
two variables, the mean collective atomic dipole moment d
and the mean population inversion D. The dipole moment
has the three-component form

d=d; exp(—iwpt)+dyexp[ —i(w;+ w)t]

+d; exp[ —i(w;,— w)t], (3.3)
where the final component, at the image frequency, is unable
to generate a corresponding cavity field as described above.
In modeling the dynamics of the population inversion, it is
important to take account of the different distributions of
intensity in the TEM,, lasing mode and the subthreshold
higher-order transverse mode in the planes perpendicular to
the cavity axis. These different distributions cause the two
modes to interact with sets of atoms that are to some extent
shared but are to some extent distinct. In a rough approxima-
tion to the complicated variation of mode intensity and over-
lap in the perpendicular planes, we assume that the pumped
population D, of inverted atoms in interaction with the cav-
ity field (3.2) has a fraction f; that is coupled to the lasing
mode and a fraction f7 that is coupled to the transverse mode
(O=<f,.fr=1). There are thus three distinct values of the
atomic population inversion D, as follows: (i) for the frac-
tion 1—fr interacting solely with the lasing mode,
D=D,, (ii) for the fraction 1 — f, interacting solely with the
transverse mode, D=D;,, and (iii) for the fraction
fr+fr—1 interacting with both modes, where the relevant
population inversion is driven to pulsate at the difference of
their frequencies and we put
D=Dy+D, exp(—iwt)+DF exp(iwt). 3.4)
Two special cases of the mode fractions occur when both
modes interact with all inverted atoms,
fi=fr=1, (3.5)
or the modes interact with completely distinct sets of in-
verted atoms,
fo+fr=1 (3.6)
We note that the subthreshold longitudinal- (TEM,) mode
problem treated in II corresponds to the special case (3.5),

for which only the third component of the population inver-
sion given by (3.4) survives, and its form is the same as that
of II (2.4).

The laser equations of motion are similar to I (2.6)—(2.8),
the conventional Maxwell-Bloch equations. The separated
equations of motion for the two components of the cavity
field (3.2) are

dL+('yL+iwL)aL=gdL, (37)

ar+(yrtiopar=gdr+ v B, (3.8)
where y; and vy; are the damping rates for the two modes
and v;, represents the cavity mirror intensity transmission
coefficient for the input signal. Generally the condition
yrar>gdr ensures that the transverse mode remains below
threshold.

For the atomic variables, the decay rate 7y, associated
with the atomic dipole moment is assumed to give rise to a
high degree of homogeneous broadening, sufficient to permit
the neglect of inhomogeneous effects such as Doppler broad-
ening (see Sec. I of II). In addition, y, is sufficiently large
for class-A and class-B lasers that an adiabatic approxima-
tion can be made in the equation of motion for d, resulting in
the form given in I (2.15),

vy, d=gaD. (3.9)
The validity of this approximation is fully discussed in I and
II, and the separation of (3.9) into components that oscillate
at the three frequencies occurring in (3.3) gives the relations

dp=ga; (Dy+Dp)ly,, (3.10)
dr=g{la;D,+ar(Dy+Dp)}/y, . (3.11)
di=ga/Dfly, . (3.12)

The variables ay and D, are proportional to the signal am-
plitude B;, and results are given correct to first order in S8y,
here and subsequently, so that the final expression for the
gain is restricted to the regime of linear amplification.

The equation of motion for the atomic population inver-
sion is identical to I (2.7) in the form

D+ vy D=vyD,—g(a*d+ad*), (3.13)

where the population of the lower atomic level of the laser
transition is assumed to be negligible compared to that of the
upper level. Here vy, is the atomic longitudinal decay rate and
D, is the total population of inverted atoms in the absence of
any cavity field, proportional to the laser pumping rate. The
separation of (3.13) into its different frequency components
is accompanied by the division of the atomic population into
the fractions that interact with the different cavity modes.
The resulting equations of motion are

L=fr
fr’

wDr=vy(1—fr)D,—g(afd + a;d}) (3.14)

vwDr=y(1—=f)D,, (3.15)
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Srtfr—1
YnDoz7\1(fL+fT‘1)Dp—g(ade+aLdf)—7L—,
(3.16)
Sitfr—1
D1+'y”D1:—g(a}de+aLd}")—f——
T
+f—1
—gardff——————L Jr , (3.17)
SfL

again correct to first order in B;,. Note that the divisions by
f1 or fr in three of these equations are needed to convert
forces that drive all of the atoms illuminated by a given
mode into the three subsets of these atoms defined earlier.

With the dipole-moment components removed by the use
of (3.10)—(3.12), the set of six equations (3.7), (3.8), and
(3.14)—(3.17) provides solutions for the six variables «a; ,
ar, Dy, Dy, Dy, and D.

B. Free-running laser

In the absence of an input signal, 3;,=0, the variables
ay and D, vanish, and the Maxwell-Bloch equations sim-
plify considerably. Thus the field equation (3.7) becomes

7LaL=g2aL(DO+DL)/7_L > (3.18)

where (3.10) has been used, while the population inversion
equations (3.14) and (3.15) similarly become

D L={nfiD,—(g* v, )2lar|*(Do+D )1~ fL)IfL,
(3.19)

nDo={vfiD,~(8*/v.)2|ar|*(Do+D.)}

X(fr+fr—D/fL. (3.20)

Two components of the population inversion are obtained
from (3.18)—(3.20) as

YyL 1=fr
= s 3.24
L g2 fL ( )
Yovy fotfr—1
Dy=—5———7—, 3.25)
0="g2 7. (

independent of the laser pumping rate. A third component of
the population inversion is obtained from (3.15) as

YeyL 1=fL
82 gL

Dy=(1=f1)D,=C (3.26)
In contrast to the other two, this component is proportional to
the pumping rate, a consequence of the below-threshold
character of the transverse mode [compare I (3.4)].

C. Transverse gain

An expression for the transverse gain is obtained by solu-
tion for ay of the so-far unused Maxwell-Bloch equations
(3.8) and (3.17). The procedure is to remove the dipole-
moment components with the use of (3.10)-(3.12), to re-
move the laser-field amplitude with the use of (3.21), and to
remove three components of the population inversion with
the use of (3.24)—(3.26). The two remaining equations now
involve only the variables a; and D;. Elimination of the
latter provides the desired expression for ay. The calcula-
tion is algebraically very tedious but essentially straightfor-
ward and we present only its final result. The intensity gain
for transmission through the laser amplifier cavity at signal
detunings w close to

57‘: wWr— Wy, (327)
The above-threshold solutions of these three equations are s defined to b
obtained straightforwardly. Thus the laser field amplitude is 1s defined to be
given by GT: 70ut| aT/Bin 2’ (328)
2 —
lag[*=(C=D)n,, (3:21) where 7y, represents the laser cavity mirror transmission
where the cooperation parameter is defined to be coefﬁc1ent. for Fhe ampllﬁed output signal. The gain profile
can be written in Lorentzian form as
C=g’f1Dy/yL71 (322) |
Gow)= YinYout (3.29)
and the saturation photon number is T (0— 67— S)2+ (T 7/2)% :
ny=7y, v/28>. (3.23) where the shift and width are given by
]
Oryyi(C—DI(C=1)(1 = f)+2f7)(fL+ fr—1)12fLfr
Sp= (3.30)

and

S+ (W /fD(C—D)(fr+fr— 1) +fr)?

(€= DUC= Dt fr= 1) +fIIC= D =)+ 2F 2+ Fr= DIfufT

Lr

2+ (i /f ) L(C—D(f+fr— D) +fr]?
+2yr=2(y /f)I(C—1)(1—=f)+fr].

(3.31)
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These somewhat complicated expressions simplify con-
siderably for the special cases defined in (3.5) and (3.6).
Thus, in the case where the lasing mode and the transverse
mode both interact with the complete population of inverted
atoms, (3.30) and (3.31) reduce to

_Oryn(€—1)

=— (3.32)
T 5%-1— Cz'yf

(fr=fr=1)

and

2y.%(C—1)C

F =
TR

+2yr—=2y, (fr=fr=1). (3.33)

These expressions are similar to the shift and the width
found in II (2.30) and (2.31) for the gain associated with
adjacent subthreshold longitudinal modes that share the same
atomic population with the lasing mode. In the opposite ex-
treme, where the lasing mode and the transverse mode inter-
act with totally distinct sets of atoms, the complete gain pro-
file (3.29) reduces to

YinYout
Gplw)= +fr=1), 3.34
Ho)= sy Uit 339
where

Cr=8*frD,/vrv. (3.35)

is the same as the cooperation parameter (3.22) but with the
lasing-mode parameters replaced by transverse-mode param-
eters. The gain profile (3.34) is similar to that derived in I
(4.6) for a single subthreshold (TEM,) longitudinal mode.
However, it should be emphasized that the theory developed
in the present section applies to a laser in which only the
single TEMq, mode is above threshold. Thus the gain expres-
sion (3.34) is valid only when the transverse cooperation
parameter (3.35) is less than unity, and this condition is eas-
ily violated for very reasonable values of the various laser
parameters, as is demonstrated by some of the numerical
results for the more general gain expression (3.29) discussed
below. Furthermore, it will be demonstrated in the next sec-
tion that the observed gain around a subthreshold transverse
mode is only fully measured when the laser input and output
are correctly spatially filtered. Without filtering, the beat sig-
nal in the output is highly suppressed due to orthogonality
between the lasing mode and the threshold transverse mode.

Some examples of the variation of transverse shift with
cooperation parameter C obtained from (3.30) are shown in
Fig. 2, where the units are converted from angular frequency
to MHz and the values of 7y, and 7; are those measured in
earlier work on the same laser (papers I and II). The three
parts of the figure refer to the transverse modes that were
experimentally investigated in detail for an argon-ion laser,
to be discussed in Sec. IV. For the want of any precise
knowledge of the transverse distributions of optical intensity
in these modes, it is assumed that the fractions f; and fr of
pumped atoms with which they interact are equal. It is seen
that the shifts tend to increase with the detuning of the
higher-order transverse mode from its TEM, counterpart.
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FIG. 2. Frequency shift of transverse modes away from the las-
ing (TEMy,) mode, computed from Eq. (3.30) as a function of the
cooperation parameter C. The laser parameter values are chosen as
appropriate to the argon-ion system of Sec. IV: y;=4.0X 108 571,
v, =8.7X10°% s™!. The laser power is proportional to C—1, and
C =2 corresponds to an output of 5.5 mW. The top graph represents
the modes TEM,, and TEM,, with the same longitudinal-mode
number (j) as the lasing mode, and detuned from it by approxi-
mately 35 MHz. The other two graphs represent the same transverse
modes, but with longitudinal numbers j— 1 and j+ 1. These modes
have approximate detunings of —121 MHz and 191 MHz, respec-
tively (see Fig. 1). For each mode, curves are plotted for atomic
fractions f=f; ,fy running from 0.6 to 1.

For a given transverse mode, the magnitudes of the shifts at
low powers (C<<2) are larger for larger values of the atomic
fractions f; =fr. The shift increases quite rapidly as C in-
creases from unity but levels off or even diminishes for the
larger values of C. Note that the shift tends to zero as the
fractions f; and f; tend to the value 0.5, indicating no spatial
overlap between the lasing mode and the transverse mode
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FIG. 3. Relative width I'y—2 v+ 2y, of the transverse modes,
computed from Eq. (3.31) as a function of C. All parameters take
the same values as in Fig. 2. Note that a negative relative width
simply implies a reduction in mode width from the initial passive-
cavity value. If this reduction exceeds the initial value, the implica-
tion is that the mode has passed its lasing threshold.

under consideration. Such conditions result in independent
operation of the two modes with no interaction. A direct
comparison between theory and the experimental results of
the next section gives poor agreement. However, agreement
between the two can be restored by adding to the theoretical
curves a monotonically increasing positive shift that reaches
a value in the range 0.5-0.8 MHz at C=5. Such a shift may
be accounted for by the distortion of transverse-intensity pro-
files with increasing laser power as the modes forage for the
most abundant provision of inverted atoms.

The corresponding variations of transverse linewidth ob-
tained from (3.31) are shown in Fig. 3, where the quantity
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FIG. 4. Experimental arrangement for the study of subthreshold
transverse modes. One output beam from the double-ended argon-
ion laser is shifted by tunable acousto-optic modulators (AOM) and
reinjected into the laser cavity. The output from the other end is
incident on a detector (DET). A and B are knife-edge blades for
spatial filtering of input and output, respectively. Their orientation
determines which transverse mode is probed.

plotted is I'y—2y7+27,, again in MHz. The linewidths
decrease with decreasing atomic fractions f;=fr, as the
transverse modes increasingly interact with their own exclu-
sive atoms and thereby acquire the ability to approach lasing
threshold. The thresholds occur when I';=0, but the corre-
sponding values of C cannot be obtained directly from Fig. 3
since yr>7; and the values of y; are not known for the
transverse modes observed in our experiments. Nevertheless,
it is seen from Fig. 3 that the oscillation threshold is reached
for smaller values of C as the transverse-mode detuning in-
creases and as the atomic fractions decrease.

IV. EXPERIMENTAL MEASUREMENTS OF GAIN
IN TRANSVERSE LASER MODES

In this section, we describe a straightforward and gener-
ally applicable technique that allows the accurate and de-
tailed study of subthreshold spatial modes of a cw single-
frequency laser. Some preliminary results were described
previously in a short Letter [1]. The technique is based on
measurements of the amplification of frequency-shifted light
that has been injected into the laser cavity [1,3,9—11]. In the
simplest terms, an enhanced gain at a particular frequency is
taken to indicate the presence of a subthreshold mode. How-
ever, we will show later that there are some complications to
the analysis of the data; the theory for the gain described in
Sec. III revealed that the peak gain does not necessarily co-
incide precisely. with the mode centre. Nevertheless, it will
be demonstrated that the technique allows information to be
obtained straightforwardly on the mode resonance frequen-
cies, as well as on proximity to threshold.

The data reported here have been obtained with a double-
ended single-frequency argon-ion laser, running on the
TEM, mode. The laser cavity mirrors (M1 and M2) are set
approximately 1.0 m apart, giving a longitudinal-mode spac-
ing A=156.02 MHz. Two resonator arrangements have been
examined, consisting firstly of one plane mirror and one con-
cave, and secondly of two concave mirrors. The mirror trans-
missivities are each of order 5%, and all values of laser
power here refer to the emission from one end only. The
laser has an intracavity etalon to ensure operation on a single
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FIG. 5. Typical gain profiles for the TEM,; and TEM;, modes
of the argon-ion laser sharing the same longitudinal-mode number
as the lasing (TEM,,) mode. The cavity uses a plane-concave mir-
ror pair [case (i)]. The detuning is always positive. The spatial fil-
tering of the output laser beam appropriate to each measurement is
also indicated.

longitudinal mode [3]. Further details of the laser parameters
may be found in [2] and [3]. In our experiments (Fig. 4), the
output beam from one end of the laser passes through a pair
of acousto-optic modulators. In double pass, this allows a
precise shift & of the beam’s frequency anywhere in
the range 0—=350 MHz. The shifted beam is then reinjected
into the laser cavity; the output from the other end of the
laser displays a beat at the difference frequency & and the
strength of this beat is taken (as in I and II) to be a measure
of the gain experienced by the reinjected beam. This gain, as
expressed in (3.28), shows a marked resonance peak when
tuned around the vicinity of a subthreshold transverse mode.
The input is normally heavily attenuated to avoid disturbing
the laser; with only 107 of the power returned to the cavity,
the gain measurements typically have a signal-to-noise ratio
of >10°. Some of the nonlinear and injection-locking phe-
nomena that occur when the input signal exceeds the small-
signal limit are discussed briefly in [11], which studies these
effects in a CO, waveguide laser. Because of the orthogonal-
ity of transverse modes, the beat signal may be greatly in-
creased by appropriate spatial filtering of both the input and
output beams. As discussed earlier, such filtering also acts as
a discriminant between nearly degenerate modes.

As an example, Fig. 5 presents gain data for the first-order
Hermite Gaussian TEM,, and TEM,, modes' (with mirror
M1 plane, mirror M2 concave). These modes have their
frequency degeneracy split by the astigmatism that compo-
nents such as Brewster windows introduce into the cavity
[7,12]. The Brewster windows are oriented so as to polarize
the laser with its E vector vertical; under this condition, the
lobes of the transverse modes are aligned along vertical and
horizontal axes for TEMy; and TEM;,, respectively. Initially
we will assume symmetrical, unperturbed modes (that is,
strictly pure TEM,,,); the effects of perturbation will be in-
vestigated in Secs. VI and VII. The beat signal power (taken

'We use this labeling throughout with the caveat that the modes
are not necessarily always of pure Hermite Gaussian form.
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FIG. 6. Signal strength at the peak of the gain curve for
TEM,,; and TEM,, modes as the knife-edge blade (B in Fig. 4) is
translated into the laser output beam. Also plotted is the laser power
incident on the detector versus blade position. The laser power is
fixed throughout at 15 mW. There is some distortion to the curves
due to minor inhomogeneities in the detection system: these are
more evident when the detector is exposed to the majority of the
beam (right-hand side of the plot).

to be proportional to gain) is measured by spectral analysis
of the output current from the detector, and its strength for
these modes is maximized by blocking precisely half of the
laser beam power at both the input and output (Fig. 4). This
destroys the symmetry that, for transverse modes orthogonal
to the lasing TEM,, mode, leads to cancellation of the con-
tributions to the gain from the two halves of the beam.
Blocking half the beam with vertical knife-edge blades maxi-
mizes the signal from the TEM;, mode; horizontal blades
select the TEM,;; mode. Figure 6 shows the variation of the
signal at the peak of the gain curve for these two modes, as
the blade is translated so as to block a progressively larger
fraction of the detected laser beam. The maximum signal is
seen to occur when exactly half the power of the laser beam
is passed by the blade. A further fourfold increase in signal
power could be achieved by employing a split-detector ar-
rangement [4] in which the two halves of the beam are sepa-
rately detected, and their respective photocurrents added in
antiphase. In comparison to this filtering of the output, the
signal power is less sensitive to the spatial filtering of the
input: there is no need for accurate mode matching of the
signal beam with the desired transverse mode because the
predetection filtering ensures that only this mode contributes
to the signal. Any other transverse modes of the laser that
may become excited by the input do not contribute because
of orthogonality.

The two gain profiles for the reinjected light plotted in
Fig. 5 clearly show the frequency splitting due to astigma-
tism to be about 2 MHz. The detunings & in the measure-
ments of Fig. 5 are always positive, confirming that the
transverse modes have a higher frequency than the TEMy,
mode with identical axial-mode number. Enhanced gain can
also be observed for negative & at frequencies around
6= —(A—27) MHz, as this probes the TEM,; and TEM,,
modes with their longitudinal (axial) mode number reduced
by one (see Fig. 1). Similarly, other axial orders may be
probed by adding or subtracting multiples of A (=~156
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MHz) to the detuning. We now present a more systematic
study of the properties of the two lowest-order transverse
modes, TEMy; and TEM,,. More specifically, the mode fre-
quencies and the gain spectra have been examined here as
functions of mirror curvature, laser power, and longitudinal-
mode number.

A comparison between the mode frequencies for mirror
sets of different curvature allows a simple check of correct
transverse-mode behavior. An increase in the degree of cur-
vature encourages the laser modes to have a narrower waist
and greater divergence. This leads, in general, to an in-
creased spacing between the fundamental (TEM,) mode and
the higher-order transverse modes, as may be seen from
(2.5). We have made measurements of this splitting for the
two cavity configurations mentioned earlier; the laser was set
up (i) with a plane mirror M1 and concave mirror M2 (ra-
dius r=4.1 m), and (ii) with concave M1 (r=5.1 m) and
concave M2 (r=4.1 m). The frequency separation of the
TEM,,; and TEM,, modes from the fundamental may be es-
timated from (2.5). This ignores any perturbations such as
might result from an inhomogeneous gain medium, Brewster
windows, and edge effects at the mirrors and the discharge
bore. Equation (2.5) predicts splittings of 25.4 and 33.6 MHz
for cases (i) and (ii), respectively. This is in good agreement
with observation; the data of Fig. 5 [case (i)] show the aver-
age splitting for the TEM;; and TEM; modes to be about 27
MHz and the corresponding splitting for case (ii) was found
to be about 35 MHz. These measured values are thus slightly
higher than the theoretical ones, and it is likely that this is a
result of the various distortions and perturbations to the cav-
ity mode just mentioned. For the more detailed studies pre-
sented in the remainder of this section, the laser had two
concave mirrors [case (ii)].

It has been assumed throughout the above analysis that
the mode frequency may be accurately identified from the
peak of the mode’s gain curve. However, the theoretical re-
sults of the previous section indicate that there is generally a
frequency shift given by (3.30) which leads to a small dis-
crepancy between these two values. We next demonstrate
experimental measurements of frequency shift. The fre-
quency of peak gain will be shown to vary with laser power,
and two distinct contributions to this shift will be identified.
First, as shown in Sec. III, the gain curve becomes “‘pulled”
to higher frequency by the influence of oscillations of the
inversion (‘“‘population pulsations” [2,3,13]) at the beat fre-
quency. Secondly, the gain medium usually acquires a non-
uniform distribution, and this inhomogeneity varies with
power because of changing discharge conditions and/or spa-
tially selective gain saturation. This results in the distortion
of the transverse resonator modes, and their frequencies are
shifted accordingly. This effect was neglected in the theoreti-
cal treatment of gain in Sec. III. It is, however, possible to
decouple these two contributions by observing gain profiles
for different longitudinal values of the same transverse mode
(see Fig. 1). For modes on the high-frequency side of the
lasing mode, the two effects mentioned above act in the same
direction, whereas on the low-frequency side they oppose
each other.

In Fig. 7 we plot the experimental measurements of the
frequency shifts of the peak gains for the TEM,, and
TEM,, modes as functions of laser power. The reinjection
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FIG. 7. Plot of position of the peak of the gain curve versus
laser power for the TEM,; and TEM;, modes at three values of
longitudinal mode number (i.e., j— 1, j, and j+ 1, where j is that
for the lasing mode). Squares: TEM;,. Circles: TEM,. In this
case, the cavity uses a concave-concave mirror pair [case (ii)].

technique permits such data to be gathered quickly and eas-
ily. Note the significant differences in behavior for the dif-
ferent values of longitudinal-mode number, particularly for
modes on opposite sides of the lasing mode. Not surpris-
ingly, in each case the TEMy; and TEM;, modes show very
similar responses.

In order to make a direct quantitative comparison between
the data of Fig. 7 and the theoretical predictions for the shift
in Sec. I (Fig. 2) it is necessary to eliminate the contribu-
tion from the mode distortion, as this contribution was ig-
nored by the theory. This is most conveniently done by com-
paring the differences in the values of shift for transverse
modes that differ only by their value of longitudinal-mode
number j. The mode distortion is assumed to be independent
of longitudinal-mode number, since the effect only involves
transverse variations of the gain medium. This results from
the “decoupling” of axial and transverse effects mentioned
in Sec. II, giving rise to the repeating comb of mode frequen-
cies in Fig. 1(b). Hence the contributions to the shift from
mode distortion cancel in the values of differential shift.
These values therefore only contain the shifts due to popula-
tion pulsation, and are plotted in Fig. 8, together with the
corresponding theoretical values, making the same assump-
tions about the parameter values that were used in Sec. III.
While three possible sets of values of the differential shift
exist for the data in Fig. 7, only two of these sets contain
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FIG. 8. Comparison between theory and experiment for differ-
ences in frequency offset. Differential shift D1 is defined as
S7(j)—S7(j—1), and D2 is defined as Sp(j+1)—S(—1),
where j denotes the longitudinal-mode number of the lasing mode.
The results are the mean values for the TEM,; and TEM,, modes,
and it is assumed that f; =f;=f.

independent information; accordingly just two have been se-
lected for display in Fig. 8.

Considering the simplistic approximations that have been
made in the theory of Sec. III, the agreement is remarkably
good. The value of the atomic fractions (f;.fr) are most
likely to lie in the range 0.7—-0.9, and it is possible that they
could alter with laser power. Therefore these theoretical
curves should be considered roughly to define an envelope of
possible values for the experimental data. It must be stressed
that the theory contains no additional floating parameters, all
other values having been determined by the previous experi-
ments reported in I and II. The widths of the gain curves
were also found to be consistent with the predictions shown
in Fig. 3, but no detailed measurements were made to allow
a quantitative comparison.

V. TRANSVERSE-MODE CONTRIBUTION
TO LASER INTENSITY-FLUCTUATION NOISE

In I and II, much emphasis was placed on the intensity-
fluctuation noise properties of the laser resulting from spon-
taneous emission into the lasing mode (I) and the adjacent
subthreshold longitudinal modes (II). Spontaneous emission
into the subthreshold transverse modes considered here also
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FIG. 9. Intensity-fluctuation noise spectrum of the complete out-
put beam in the region of the subthreshold TEM,, and TEM,q
modes (curve A). Curves B and C show the corresponding noise
spectra when the output is spatially filtered by blocking half of the
laser power with a knife-edge blade. Note the reduction by 3 dB
(i.e., a factor of 2) in the shot-noise level. Vertical and horizontal
filtering reveals the TEM,, and TEM,, noise spectra, respectively.
The difference between the peak noise levels in the two cases is not
fully understood. It appears sensitive to the cavity mirror alignment:
compare and contrast with the peak heights of Fig. 5.

has implications for the laser intensity noise, but in this case
the noise is only revealed after spatial filtering of the output.
In this section, we briefly review the noise phenomena asso-
ciated with the transverse modes and present data which con-
firm the close relationship between gain and noise.

Figure 9 shows different intensity-fluctuation noise spec-
tra, all acquired under the same laser operating conditions.
The spectra were obtained from analysis of the output cur-
rent of the detector (Fig. 4) with no input present, over a
range of frequencies around 35 MHz (the separation of the
transverse modes from the fundamental lasing mode). With
no spatial filtering of the output, the noise spectrum appears
flat, being dominated by the shot noise from the lasing mode.
The origin of the noise was confirmed by checking that the
noise power density varied linearly as the laser power was
attenuated with neutral density filters. The other spectra in
Fig. 9 reveal the effect of spatial filtering on the noise; in
these cases half of the laser power is blocked by a blade
aligned either vertically or horizontally. In Sec. IV (see Fig.
6) this was shown to satisfy the condition for optimizing the
gain for a reinjected signal; the noise level is similarly maxi-
mized by this arrangement.

The data of Fig. 9 clearly reveal the noise cancellation
that results from the orthogonality of the modes involved.
For the two-lobe TEM,; and TEM,, modes discussed here,
this implies that the spontaneous emission into one lobe is
matched by an identical contribution into the other lobe, but
that these two contributions are always 7 out of phase. Care
must be taken in order to achieve the flat noise curve of Fig.
9; there must be no bias towards one or other of the two
lobes in the detection process, as this will upset the delicate
balance between the two halves and lead to incomplete can-
cellation. In our earlier publications I and II, we developed a
theory for the intensity-fluctuation noise spectra, and it was
shown both experimentally and theoretically that the gain
and noise spectra were very closely related. While we make
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FIG. 10. An example of noise and gain profiles for the TEM,,
mode, both measured at a laser power of 4.0 mW. These have been
superimposed to show the close agreement demonstrating a funda-
mental property of amplifiers.

no attempt here to derive the corresponding theory for the
subthreshold transverse modes, it nevertheless still holds true
that the gain and noise remain intimately linked. This is il-
lustrated in Fig. 10, where the noise spectrum is displayed
superimposed on the gain profile, both measured under iden-
tical conditions. The close relationship between gain and
noise was verified for both TEMy; and TEM,, states over a
wide range of laser power; the noise spectra display the same
shifts with changes of laser power as do the gain profiles and
they also show a similar response to cavity perturbations.

Noise spectra very similar to those shown here are re-
ported in [4] for a single-frequency krypton-ion laser. A split
detector was used to optimize the noise power, by changing
by 7 the relative phase of the contributions from the two
lobes of the transverse mode under investigation. In this way,
the contributions can be made to add, rather than cancel. In
[4], the noise was interpreted as being caused by fluctuations
in laser beam position due to the beating between the lasing
mode and emission into the transverse modes, and the effect
was given the name ‘‘stochastic position noise.” However, it
should be borne in mind that these fluctuations are small,
representing a beam displacement of only a tiny fraction of
its diameter. This reflects the fact that only a very small
fraction of the total laser output is emitted into the subthresh-
old modes. For example, in the argon-ion laser studied here,
this fraction is of order 10~7 at twice threshold pumping rate
(C=2).

In our work, it was not possible to measure accurately the
noise profiles at values of laser power higher than about 15
mW. This is because as the power is increased the laser out-
put must be attenuated to avoid detector nonlinearity and
damage. This reduces the signal-to-noise level of the noise
spectra, until measurements become impossible without la-
borious averaging. On the other hand, the measurements of
gain by reinjection described in Sec. IV do not suffer this
constraint, demonstrating the versatility of this technique and
its potential for laser diagnostics.

Finally, following this discussion of an increase in noise
level after spatial filtering of the laser output, it is interesting
to note that a similar phenomenon occurs after spectrally
filtering the output [14]. The noise cancellation in this latter
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case has quite different origins: contributions due to sponta-
neous emission from opposite sides of the laser line are
coupled by four-wave mixing.

VI. THEORETICAL AND EXPERIMENTAL STUDY
OF CAVITY PERTURBATION

This section describes an investigation of the effects of
cavity perturbation on the behavior of the subthreshold trans-
verse modes. An experiment was performed to study the shift
in transverse-mode frequency in the argon-ion laser induced
by translating a straight knife edge across the cavity, posi-
tioned close to mirror M1 (see Fig. 1). The knife edge was
aligned vertically and mounted on a micrometer stage to al-
low precise horizontal translation into the intracavity laser
beam. This situation was also theoretically investigated by
cavity modeling methods.

The experiment was carried out using the same reinjection
technique described in detail in Sec. IV. Gain profiles were
obtained as the offset frequency was tuned around the
transverse-mode resonances, and the peak positions for these
curves were then evaluated for different knife-edge positions.
The TEMj; mode is relatively unaffected by this cavity per-
turbation: its lobes are aligned vertically, and so the mode
can adapt relatively easily to the intrusion of the knife blade.
However, for the TEM,;, mode, its symmetry becomes sig-
nificantly disturbed as soon as the knife edge begins to cut
into its edge. The resulting shift in the peak gain frequency
for the TEM,;, mode is plotted in Fig. 11. This data set was
obtained at an unperturbed laser power of 11.5 mW. The
power level drops as the knife edge translates further into the
cavity, until the laser is eventually extinguished.

To model the perturbed cavity we construct a complex
round-trip propagation matrix for the Laguerre-Gaussian
modes ¥,,, and numerically diagonalize it to extract the
eigenvectors (transverse modes) and eigenvalues (losses and
phase shifts). The computer model is derived from wave-
guide resonator studies [7,15]. In this earlier work the effect
of a hollow dielectric waveguide was described by a matrix
for coupling input Gaussian beams through the waveguide
into a new basis of output Gaussian beams. The resonator
problem was solved by setting up the round-trip matrix in
terms of free-space basis modes (Laguerre-Gaussian or
Hermite-Gaussian), or in terms of waveguide basis modes
(LP,,, or EH,,, [7]), with the choice of basis (that is, of
reference plane within the cavity) made for convenience but
having no formal importance. Here, there is no waveguide
(or a waveguide of zero length, i.e., a circular aperture), and
by adjusting the limits of the overlap integrals we can find
the coefficients in the nondiagonal coupling matrix which
describes the effect of the combined mirror and knife edge.

This matrix approach [15,16] is equivalent to solving a set
of simultaneous equations for the Laguerre-Gaussian mode
amplitudes [17,18] and has often been described in the lit-
erature. We treat a passive resonator: the model is fully mul-
timode, and predicts the relative frequencies of the funda-
mental and higher-order transverse modes of the
(mechanically) perturbed cavity, but it does nor solve rate
equations or include microscopic effects of the active me-
dium. We should also remark that the knife edge represents a
severe perturbation, which strongly affects the transverse-
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FIG. 11. Measurements on a perturbed laser cavity for the plane-
concave mirror arrangement [case (i)]. The upper plot shows ex-
perimental data for the peak gain of the TEM,, mode: the frequency
shifts as the knife blade translates into the cavity. The results of the
model calculation are also plotted. The lower plot shows the reduc-
tion in laser output power as the knife blade obstructs the lasing
mode.

mode shapes as well as their phase shifts, so that it would be
unwise to assume constant values of the fractions f; and
fr (Sec. III). Nonetheless, the results in Fig. 11 provide fur-
ther interesting evidence that the autodyne techniques can be
applied to real perturbed lasers and give reasonable agree-
ment between theory and experiment.

Note that one possible source of discrepancy between the
data and theoretical predictions of Fig. 11 is the apparent
shift in mode frequency that results from the influence of
population pulsations, as calculated and measured in Secs.
III and IV, respectively (see Figs. 2, 7, and 8). This shift is, of
course, dependent on laser power and so its value will vary
as the cavity is perturbed and the laser power drops. For the
mode considered here (with the same axial-mode number j
as the lasing mode), the shift will be positive (adding to the
offset), and its contribution will decrease as the laser power
diminishes. A full quantitative correction of this effect is
therefore likely to improve the agreement between theory
and experiment in Fig. 11.

VII. EXPERIMENTAL TRACKING OF THE APPROACH
TO THRESHOLD

In this section, we use the reinjection technique to moni-
tor the gain behavior under a type of perturbation which
favors a particular transverse mode compared to the lasing
mode. The data obtained demonstrate our ability to monitor
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FIG. 12. Approach to threshold of TEM,, mode. As the hori-
zontal wire penetrates further into the cavity, the laser power drops;
this is indicated on each profile. Note also the slight shift that re-
sults from perturbing and distorting the modes of the cavity.

the approach of a subthreshold mode towards the lasing
threshold. Figure 12 shows the effect on the gain curve for
the TEM,, mode as a thin (~100 wm diameter) horizontal
wire is progressively inserted further into the laser beam
within the cavity. The wire is perpendicular to the laser axis,
and is also accurately centered (see inset of Fig. 12). This
configuration tends to favor the TEM,; mode, in comparison
to the lasing TEM,, mode, because the wire lies along a null
of the TEM,, field. Hence the losses incurred by the
TEM, mode are much greater than for TEMy, , and the laser
output drops accordingly. This drop in laser power is accom-
panied by an increase in the population inversion, and the
TEM,, mode is able to exploit this. As the wire penetrates
further, the TEM,; mode acquires higher and higher gain
with reduced bandwidth, eventually reaching threshold just
beyond the setting for the narrowest curve in Fig. 12.

After the TEM,, mode has exceeded the threshold, it
needs only a small extra translation of the wire to cause the
TEMy, mode to be extinguished. However, there does exist a
limited region where both TEM,, and TEM,;; modes coexist.
This may be contrasted with the behavior as the argon-ion
laser hops between different longitudinal modes [19]. In that
case, coexistence of two modes is not observed, as they share
the same distribution of gain, and are in competition for ex-
actly the same atoms: there can only be one winner.

VIII. CONCLUSIONS

We have presented laser amplifier equations of motion,
including a first attempt at the inclusion of higher-order
transverse modes, and solved these equations for some spe-
cial cases. The results are in reasonable agreement with mea-
surements of the mode spectrum of an argon-ion laser, both
when the laser cavity is mechanically perturbed and when
the pumping rate is varied. In particular, we have used a
reinjection technique to probe the mode behavior and to
track the mode eigenvalue (gain and phase shift) as threshold
is approached and exceeded. We have compared the mea-
sured relative frequency shifts of higher-order subthreshold
modes, when we apply the gross perturbation of a straight-
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edge aperture at one mirror, with the results of a multimode
matrix computer model.

The studies reported here can easily be extended to inves-
tigate some of the yet higher-order transverse modes. For
example, the detection of a quadrant of the output laser beam
enhances the beat gain for the four-lobe TEM;; mode. A
resonance confirming the presence of this mode was clearly
detected at approximately twice the frequency offset of the
TEM,, and TEM,, modes. We have also carried out a brief
investigation of the gain experienced by the beam reflected
from the cavity. These gain profiles display the same reso-
nant features as those in transmission, with the important
difference that at large detunings from resonance the gain
becomes unity, rather than tending to zero as in transmission
measurements. A full evaluation of this technique is neces-
sary to assess the potential of the reinjection methods re-
ported here for investigation of single-ended lasers.
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The reinjection method (related to the self-aligning “‘au-
todyne” technique in coherent laser radar referred to in I)
shows promise for optimizing laser performance via mea-
surements that have previously been rather difficult. The ap-
pearance and development of significant subthreshold modes
can be studied, and combined in principle with real-time ad-
justments, so that spurious laser frequencies (that might im-
peril coherent lidar operation) can be identified and avoided.
There is also increasing interest in the use of autodyning
directly in lidar systems, where the light scattered from a
target is reinjected and amplified within the laser source.
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