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Quantum spatial correlations in the optical parametric oscillator with spherical mirrors
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We consider a quantum model for a degenerate optical parametric oscillator below threshold in a cavity with

spherical mirrors. The spatial correlation function of a generic quadrature component of the signal field is

calculated analytically in terms of an expansion over the Gauss-Laguerre modes. The critical behavior and the

quantum image phenomenon, which emerge when threshold is approached, are described in detail. We calcu-

late also the spatial correlation function of the intensity fluctuations, which can be more easily measured by

direct detection and exhibits the same qualitative features.

PACS number(s): 42.50.Dv, 42.65.—k, 42.50.Ne

I. INTRODUCTION

It is well known that the radiation field, interacting with

nonlinear media, can give rise to phenomena of spontaneous
spatial pattern formation in the planes orthogonal to the di-

rection of propagation [I].A distinguished feature of optics,
with respect to other disciplines (e.g. , hydrodynamics or non-
linear chemical reactions) that are more traditional in the

study of pattern formation, is the presence of noteworthy
quantum aspects [2—5]. The. analysis of the quantum effects
is also related to the description of the spatial aspects of
nonclassical (squeezed) states of the radiation field [5—9]. In
particular, the analysis of [5] focused on the spatial correla-
tion function of a generic quadrature component of the elec-
tric field, showing in general its useful connection with the
measurement of the spectrum of squeezing. Considering the
especially simple model of the optical parametric oscillator
(OPO) below threshold, the spatial correlation function of
the quantum-noise-generated signal field has been calculated
analytically in Ref. [5] for the case of cavity with plane
mirrors. It has been shown that, approaching threshold, one
finds a critical behavior with divergence of the correlation
length, which provides a necessary completion of the classic
analogy with second-order phase transitions in equilibrium
systems [10,11]. Furthermore, the analysis of [5] showed
that, under appropriate conditions, the correlation function
exhibits a spatial modulation identical to that which charac-
terizes the stripe (roll) pattern that appears above threshold
[12]. The interest of this phenomenon lies in the fact that
below threshold the signal field has a spatial intensity distri-
bution that is uniform on average; hence this field configu-
ration corresponds to an "image" that exhibits a spatial
structure only in the correlation function. For this phenom-
enon we use the name "quantum image"; an extensive dis-
cussion of this concept can be found in [4]. The purpose of
this paper is twofold and both aspects described below are
intended to produce a theory that can provide a realistic
guideline for a future experimental observation of these ef-
fects.

First, because the model of cavity with plane mirrors is
idealized, we consider here the standard case of a cavity with
spherical mirrors and calculate analytically the spatial corre-
lation function of the signal field emitted by the OPO below

threshold. Second, we consider here not only the correlation
function of a generic quadrature component but also evaluate
the spatial correlation function of the intensity, which can be
easily measured by direct detection, avoiding the use of a
local oscillator.

In Sec. II we recall the definition of the spatial correlation
function of the quadrature phase operators and its connection
with the spectrum of squeezing. Section III introduces the
quantum model that describes a degenerate optical paramet-
ric oscillator below threshold with spherical mirrors. The
equal time spatial correlation function of a generic quadra-
ture component is calculated in Sec. IV and some numerical
examples are discussed in Sec. V. The same correlation func-
tion is analyzed in the frequency domain in Sec. VI. Section
VII contains the calculation and the discussion of the equal
time spatial intensity correlation function, while in Sec. VIII
the same correlation function is analyzed in the frequency
domain. Finally, Sec. IX contains conclusions.

II. SPATIAL CORRELATION FUNCTION
OF QUADRATURE PHASE OPERATORS

In this section we briefly review the notions of balanced
homodyne detection [8,13], spectrum of squeezing, and spa-
tial correlation function [5,8]. These topics and the connec-
tion between the spectrum of squeezing and the space-time
correlation function have been covered in [5];even though in

[5] the analysis was limited to the special case of plane
waves, the main results can be generalized to different ortho-
normal sets, e.g. , Gauss-Laguerre modes. On the basis of the
expression of the spectrum of squeezing given in [8], we
calculate the relevant spatial correlation function, which de-
scribes the degree of spatial order in the field generated by
quantum noise.

The signal field A,„,(x, t) at the output of the OPO and the
local oscillator field (LOF), which lies in a classical station-
ary coherent state nz(x), are combined by a beam splitter,
with reflection and transmission coefficients r=t= I/Q2
(Fig. 1). The vector x= (x,y) lies in a plane perpendicular to
the direction of propagation of the beam. The fields emerging
from the beam splitter are
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IL express the outgoing field A,„,(x, t) in terms of the intracav-
ity field A(x, t) and of the incident field A;„(x,t) as

iK

B, A „,(x, t) = $2yA(x, t) —A;„(x,t) (9)

out 2

= D-
I'll

where y= ct,]2M is the cavity linewidth, with M being the
cavity round-trip length. It can be proved [15] that when the
input field is in a coherent state the spectrum of A,„,(x, t) is
proportional to that of the intracavity field since the contri-
bution of A;„(x,t) vanishes:

FIG. 1. Balanced homodyne detection scheme.

1
B,(x, t) = [A,„,(x, t)+ uL(x)],

2

1
B2(x,t) = [A,„,(x, t) —nL(K)];

2

S(co) =2y dt e '"'(:b'EH(t) BEH(0):), (10)
J —~

(1)
where

1
EH(t) =

il2 d x[nL(x)A (x,t)+ nL*(x)A(x, t)]N
(2)

By writing the LOF in the form

their intensities are measured by two photodetectors and then
subtracted in such a way that the homodyne signal is propor-
tional to the quadrature operator [5,8, 13]:

1
EH"'(t) =,l2 d x[nL(x)A, „,(x,t)+ uL(x)A«, (x, t)]N

(3)

ui(x) = pi(x) e' "*' PL(x) = arg[ut(x)](mode)
(12)

1
EH(t) =

»z d x PL(x) 8'H(x, t)N (13)

with pt (x) real but not necessarily positive, the field EH can
be written as

N= d xiut(x)i (4) 8'H(x, t)=A (x, t)e' LI"l+A(x, t)e (14)

V(a)) = dt e '"'(b'E'"'(t) BE'"'(0))
J —~

(5)

where

The fluctuations around a stationary state are described by
the spectrum

The measured quadrature depends on the LOF phase
Pt(x), which, in general, is not constant over the transverse
plane.

Let us suppose that the quantum field A(x, t) can be ex-
panded on a complete orthonormal basis of functions fl(x),
where I stands for a certain set of indices:

b'E'„"'(t)=E'"'(t) —(E'„"') (6)
A(x, t) = g fl(x) at(t) (15)

and (EH') is the stationary mean value. By inserting Eqs. (3)
and (4) into Eq. (5) and taking into account the commutation
rule [A,„,(x, t),A,„,(x', t')] = B(x—x') b'(t —t'), one obtains

with

d x fl*(x)fl (x) = b', ii (16)

with

S(co)=

V(co) = 1+S(cu)

dt e '"'(:BEH"'(t) b'EH"'(0):)

(7)

(8)

[al(t), al, (t)]= B, ,

In this case the spectrum of squeezing takes on the form

S(~) 2 PlPl'Sl, l'( ~) (18)
where:: means normal and time ordering. The constant part
of Eq. (7) represents the shot-noise level, while the second
term S(co) is responsible for possible excess noise and non-
classical effects: in particular, for S(cu) = —1 one has com-
plete suppression of quantum noise at the corresponding fre-
quency co in the observable EH"'(t). In the following we will
consider a single-ended cavity containing a nonlinear me-
dium; the coupling mirror has the reflection coefficient
r,= 1 and the transmission coefficient t, =(1—r, )" . Ac-
cording to the input-output formulation [14] it is possible to

where we have defined

and

1
2pie ' '=,l2 d x nt*(x)fl(x)

N
(19)

Sl li(co) =2y dt e ' '(:bAl(t)BAli(0):), (20)
J —oo
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Al(t) = e'~'a, (t) + e '~&a l(t)

When the operators a, (t) are uncorrelated for different l, one
finds

pump pump

Sl, l'(to) Sl(to~ O'I) ~l, l' (22) out

where S,(co, p, ) is the single-mode spectrum of squeezing
for the quadrature operator A, (t) corresponding to the par-
ticular choice of the phase pl .

We are interested in the space-time correlation function of
the homodyne field 8'~(x, t) defined in Eq. (14):

FIG. 2. Schematic view of the cavity containing a y( ) medium;
the injected field Ep p

is completely transmitted by the mirrors.

A,„,corresponds to the signal field.

I'(x, t;x', 0) =2y(: 84H(x, t) 68'H(x', 0):) (23) III. QUANTUM MODEL FOR A DEGENERATE OPTICAL
PARAMETRIC OSCILLATOR BELOW THRESHOLD

I'(x, t;x', 0) =2yg fl(x)f, ~(x')(: BAl(x, t) BA, ~(x',0):)
(24)

where

Al(x, t) =e'~l. * alt(t)+e '~L "al(t) (25)

The general expression for the correlation function simplifies
under the following assumptions: (i) the phase Pr of the
LOF is constant over the transverse plane, so that we can
write Al(t) instead of Al(x, t) in Eqs. (24) and (25), and (ii)
the single-mode operators al(t) are uncorrelated. Thus Eq.
(24) reduces to

I'(x, t;x', 0) = 2 yg fl(x)fl(x')(: 8Al(t) BAl(0):)
I

(26)

It is convenient to relate the space-time correlation function
to the single-mode spectrum of squeezing: this can be done
by inverting Eq. (20)

1
I (x, t;x',0) = g fl(x)fl(x')

2 7T
d~ e' 'S,(~, y, ) .

(27)

This formula will be applied to the case of an OPO below
threshold when the functions fl(x) correspond to Gauss-
Laguerre modes. We must remark that in such a case the
correlation function is no longer the spatiotemporal Fourier
transform of the spectrum of squeezing as when the field is
expanded on plane waves [5]. It is straightforward to write
down a similar expression for the Fourier transform

By making use of the expansion of the quantum field over
the set f, as in Eq. (15) and assuming that these functions are
real, the correlation function becomes

A medium with a y nonlinearity is contained in a
single-ended cavity with spherical mirrors (Fig. 2). The driv-

ing pump field of frequency 2', is converted into a signal
field of frequency co, . We make the following assumptions:
(i) the Rayleigh range of the cavity is much larger than the
cavity length and (ii) the mirrors transmit completely the
pump field, which is assumed to have a plane-wave configu-
ration. Moreover, we restrict ourselves to the case in which
the paraxial and the slowly varying envelope approximation
and the mean-field limit are valid so that the two fields,
pump and signal, are uniform along the sample in the longi-
tudinal direction z. The cylindrical symmetry of the system
around the axis of the system allows one to expand the
slowly varying envelope of the signal field in terms of a set
of resonator eigenmodes. In our case the suitable complete
orthonormal basis is provided by the Gauss-Laguerre modes:

I/2l 2 ) ll2 2 f

(2 lo7rW )" (p+l)! ( W l
" W l

cos(l @) for i = 1—r /w

sin(lP) for i = 2,

with w being the beam waist and p, l=0, 1,2, . . . , respec-
tively, the radial and the angular index. We have introduced
cylindrical coordinates: r=(x +y )" represents the radial
distance from the axis while P denotes the angular variable
in the transverse plane. The functions L„' are the Laguerre
polynomials [16].The modes (30) correspond to a superpo-
sition of two waves carrying, respectively, angular momenta
+ l and —l; the twin photons, emitted in the process of para-
metric down-conversion, are associated with such waves in
order to conserve the total angular momentum of radiation.
The functions f„l,(r, p) obey the orthonormality relation

271- f +~
r dr d@ foal;(r, P)fp l; (r, 4)=&p„&l l 6l;

Jo 0

I (x,x';co) = dt e '" I (x, t;x', 0) (28) (31)

Under the same conditions applied in deriving Eq. (27) one
finds

The corresponding eigenfrequencies are given by [17]

tu l= toOO+(2p+1) ~ (32)

r(, ', )=g f,( )f,( ')s, (~,@,) . (29) where j depends on the mirrors curvature and on the dis-
tance between them. It must be noted that the modes gather
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dp 1

d
= .

&
[»P]+ X X &Pi~Pdt EfL i=12 p l

(33)

where p is the density operator of the intracavity signal field.
The Liouvillians

Api; = y( a„i;pa„i; pa„i;a„i; —a„l;api, p)— (34)

describe the damping of the mode pli due to cavity losses
with rate y. The Hamiltonian is given by

free+ int (35)

where Hf„, represents the free evolution of cavity modes

in degenerate families, each of which is characterized by a
particular value of the integer q =2p+ l'.

The quantum model for the OPO below threshold takes
into account diffractive effects and is formulated in terms of
a master equation describing the temporal dynamics of the
intracavity field A (x, t) . According to the semiclassical treat-
ment, the signal field in the OPO below threshold vanishes,
but in a fully quantum picture there are signal photons gen-
erated by quantum noise. We neglect pump depletion and
linearize the master equation around the stationary state of
the OPO below threshold; hence the pump field is treated as
a classical quantity. The master equation in the interaction
picture reads

choo co
(40)

When 6oo~ 0, the instability threshold corresponds to
M =1+Aoo and the system emits the signal in the funda-
mental mode q=O (i.e., p=l=O). When, instead, hop~0,
the threshold is lower. In particular, when there is a family
2p+ l = q, which is in exact resonance with the signal field,
i.e., when

~oo+ q&= ~. (41)

~oo
2J +l'= —r (42)

IV. EQUAL TIME SPATIAL CORRELATION FUNCTION
OF A GENERIC QUADRATURE COMPONENT

We are interested in the space-time behavior of the signal
field purely generated by quantum noise; on average its am-
plitude is zero because we are considering the OPO below
threshold. Hence all the information is contained in the cor-
relation function, defined in Eq. (24). The general formalism
has been described in Sec. I, so now we must only specialize
it to the present case of Gauss-Laguerre modes. The space-
time correlation function reads

the instability arises in the modes of this family for
M = 1. By using Eq. (40), condition (41) can be recast in
the form

free ~ ~ 2 (~pli ~s) pli plii=1,2 p, l

and the interaction Hamiltonian has the form

(36)
I"(x, t;x',0) =2y X g fpi;(r, W)fpi;(r', @')Spi;(t)

i =1,2 p, l

(43)

f 2m f+~lfL r
int 2 ~P

oo 0o
r dr dg([A~(r, g)]

where

S i;(r) =(:8A i, (r)BA„i,(0):) (44)
—IA(r 0)]') (37)

y
(38)

(39)

with M~, being the classical stationary value of the pump
amplitude, which is assumed to be real and positive for sim-
plicity. Here g is the coupling constant, proportional to the
second-order susceptibility y . If we insert the modal ex-
pansion (15), with fi(x) being the Gauss-Laguerre functions,
and make use of orthonormality relation (31) we obtain

+ oo

dr e '"'S«, (r) (45)

which is well known from the literature [18] for a single
OPO. It is convenient to distinguish between the radial and
the angular dependence; taking into account that the spec-
trum does not depend on the index i [see Eq. (48)] one has

and we took into account that the single-mode OPO's are
uncorrelated and assumed that the LOF phase is constant
over the transverse plane. This last quantity is connected
through a Fourier transform to the single-mode spectrum of
squeezing,

i =1,2 p, I

Hence the master equation describes the dynamics of an in-
finite set of independent, single-mode, degenerate optical pa-
rameteric oscillators. From the linear stability analysis we
know [5,12] that the uniform stationary solution (a i;) =0
becomes unstable with respect to the buildup of a family of
modes characterized by a certain value of q = 2p+ I, in cor-
respondence to a suitable threshold value of the pump inten-

sity M„. The value is determined by the sign of the detuning
parameter

I'(x, t;x',0)=2yg f„i(r)f i(r')cos[l(@—P')]S„,(t)
p, 1

with

I »2(

fpi( ) (2 Bio~ 2) 1/2
( + I) i iv2~

I-
xL' 2

(46)
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One notes the invariance of the space-time correlation func-
tion under rotations P~ @+8 around the axis z, which fol-
lows from the cylindrical symmetry of the system.

Now let us go further in the calculation of correlation
function: we start from the spectrum of squeezing for single-
mode degenerate OPO [18]

4M
S~,( co) = " (2M„+Re[(1 —5„,(1+6„,—M„—to ) +4co

with Aoo being defined in Eq. (40). Maximum squeezing
S„~(to)= —1 is predicted for the quadrature operator
i (a„l, a—„l;) corresponding to @t = 7r/2: this goal is
achieved at threshold for the critical modes that minimize the
detuning 6p&. However, we should keep in mind that ex-
tremely close to threshold our linearized model breaks down
and this result must be regarded as an asymptotic limit for
the OPO below threshold. By inverting Eq. (45) we obtain
the quantum fiuctuations in the time domain [5]

+M„+ co —2ib, „,) e '~1-])

where we introduced the normalized quantities

(48) 1 1 ~+-
S„,(t) = dco e'"'Sp, (to)2y 2'') (51)

GO i CO

=~oo+(2/ +l)—
y 7

(49)

(50)

However, we should remark that this expression is valid for
the field inside the cavity, because in order to deal with di-
mensionless quantities we introduced the factor 1/(2 y). The
best intracavity squeezing is only one-half of the one achiev-
able outside:

(~„'—~„'I) '"»nh(v'~„' —~,'ilail)I:Sp~(r=o) —~„cos(2@i)]+Ski(r=O)cosh(u'~„' ~„'i rl),

(b,„, M„) "sin(g—b,„,—M„ lr)l[ S&(r= 0) —M„cos(2@L)]+S„&(r=O)cos(QA„, .A„rl), .—A„~b~, I

(52)

where ~=ty and

M„+cos(2 PL) —A~&sin(2 PL)S„t(r=0)=M„

1+,A„
S„,(r=O) =M„

(53)
and approaching threshold one finds

(55)

By inserting the expression of S~t(r=O) into Eq. (46), one
finds the equal time correlation function (56)

I (x,x';0) =2@M„Q f„l(r)f„&(r')cos[l(P—@')]
p, l

M„+cos(2 PL ) —A„tstn(2 Pt )

1 —M'+ 6', (54)
lim I (r, b P) =~ (57)

This result implies that for the unstable modes (for which
5~&=0) the fluctuations diverge approaching the critical
point. As a consequence, the correlation function also di-
verges

We consider the special case of points x and x' having the
same radial distance r= r from the axis z (i.e., they lie on
the same circle of radius r); hence the correlation function
(54) depends only on the angle 6@=@—P'. Moreover, we
will discuss only the case of 600~0 and will assume the
resonance condition (41) between the signal field frequency
co, and the frequency-degenerate family of modes specified
by Eq. (42). Let us examine the behavior of the correlation
function in the two opposite cases Pt = 0 and 7r/2;

@t = 7t/2 corresponds to the quadrature of maximum squeez-
ing and Pt = 0 to the quadrature of maximum amplification.

A. Case Pl =0
This choice corresponds to the most noisy quadrature

At(x, t)+A(x, t); in such a case Eq. (53) reads

However, the ratio I'(r, b, @)/I (r, h$=0) remains finite
even for Mp~ 1 —because the spatial behavior of the cor-
relations function is determined exclusively by the unstable
family of modes and the diverging factor drops:

(58)

where X'
&

means the sum extended only to the modes of the
frequency-degenerate family, which satisfies Eq. (42). Hence
the angular variation arises from the factor cos[l(@—@')] of
the modes that belong to the unstable family only. While the
mean value of the signal field is still zero and the mean
intensity is uniform over the circle, the correlation function
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It is interesting to investigate the equal time correlation func-
tion when the two points x and x' coincide because in that
case one gets information about the normally ordered Auc-

tuations of the homodyne field FH.
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FIG. 3. Plot of equal time fluctuations S~,(r= 0) of the quadra-

ture operator /(at, —
a~&) for M„=0.9 when (a) Aoo=0, s/y=0. 5;

(b) ~oo= 2 g/y=0. 5 (c) /~oo=0 s/y 2; an=d (d) Aoo= 2
s/y= 2. The markers indicate the value for each family q= 2p+l.

displays an angular spatial modulation connected with the
arising instability: such a phenomenon has been called a
quantum image [4,5, 19].

B. Case +I ——m/2

For the most squeezed quadrature one has

1
pS(( =r0) = —M„

p pl
(59)

5„,=0
lim S„I(r=0)= '

g„)— [ 0, b,„t40.
(60)

Hence the dominant contribution to the correlation function
arises from the unstable modes family, since S„&(r=0) van-

ishes for the out-of-resonance modes, so that

In Fig. 3 we plot S„&(r= 0) for col = m/2 as a function of the
index q = 2p+ I, which distinguishes each family of modes,
for different values of the parameters Aoo [see Eq. (40)] and

g/y controlling the intermode spacing [cf. Eqs. (32) and

(50)]. We remind here that S„t(r=0) represents the steady-
state fluctuations of the intracavity field mode pl. From Figs.
3(a) and 3(b) one sees that quantum fiuctuations are reduced
below the shot-noise level for the family that becomes un-

stable at threshold (q= 0 and 4, respectively) and for a few
families around it. After increasing the intermode spacing
from g/y=0. 5 to 2 [Figs. 3(c) and 3(d)] the number of
modes exhibiting reduced fluctuations decreases and already
for q = 10 one has S„I(r=0)-0.A similar result is produced
when the pump field reaches the threshold value

as it follows from Eq. (23). Through Eq. (27) it is possible to
link the properties of the correlation function to those of
single-mode spectrum of squeezing:

1 I'+
l(r, &4=0)=2 g [f„(r)1' d~s„,(~) .

7T p J —~
(63)

The negativity of the correlation function rejects the non-
classical effect of squeezing in the output field (i.e.,

S~&&0) in the quadrature under consideration; hence it is a
signature of the quantum nature of the fluctuations that gen-
erate the signal field below threshold. We point out that even
at threshold the correlation function remains negative thanks
to the contribution of the unstable family of modes:

lim &(r,&4=0)= —yX [f„,(r)]
. -i- —+1- p, l

P

(64)

On the contrary, in the case of the OPO with plane mirrors,
analyzed in [5], one deals with a continuum of modes: this
means that the sum is replaced by an integral and upon ap-
proaching threshold the bandwidth of modes with relevant
noise reduction shrinks to a single point so that the correla-
tion function vanishes and the inAuence of squeezing disap-
pears.

We note that despite the noteworthy difference between
Eqs. (61) and (57), the ratio I'(r, A@)/I (r,O) for Pl = rr/2

approaches the same limit (58) obtained for $1 =0, when
M —+ 1 —.Actually, the limit (58) holds for any value of the
phase Pi . Incidentally, it happens that the ratio
I'(r, hP)/I'(r, O) takes on the same value for @I=0 and
m/2 also far from threshold. In fact, the squeezing spectra in
the two cases turn out to be proportional:

M„+1
S t(r=O, PL, =O) = S,(r=0,$ rlr/2) . (65)M —1p

Because the proportionality factor is independent of the in-
dices p and l, it can be simplified in the expression of the
ratio, which gives equal results for both quadrature compo-
nents. This property is no longer true for two arbitrary phases
of the local oscillator field.

V. NUMERICAL EXAMPLES

We have calculated the equal time correlation function
given by Eq. (54), by truncating the sum to a large but finite
value (100) of indices p and I. We believe that this numeri-
cal restriction does not affect the results; moreover, real sys-
tems cannot support transverse modes of arbitrary high order
because of diffraction losses related to the finite size of mir-
rors and of other intracavity elements, such as pinholes and
modulators. As a first example, we consider the case
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(hop=0) in which the instability arises in the fundamental
mode (0,0), usually designated as TEMpp.

FIG. 4. Intensity profiles in the transverse plane of the three first
families of modes q=O, 1, and 2: (a) fundamental mode TEMpp,
(b) and (c) mode (0,1) with i = 1,2, respectively; (d) mode (1,0);
and (e) and (f) mode (0,2) with i = 1,2, respectively.

FIG. 5. Ratio I'(r, 6P)/I'(r, 6/=0) plotted along a circumfer-
ence of radius r=w, when bop=0, Pr =0,7r/2, and (/y=1 for
increasing values of pump amplitude: M~„= 0.5 (solid line),
M~~=0.9 (dashed line), and M~= 1 (dotted line).

circle and this behavior is the analog, in the case of spherical
mirrors, of the divergence of the correlation length found in
the case of planar mirrors [5].An increase of the intermode
spacing s/y produces the same effect on the ratio
I (r, AP)/I (r,O) as approaching threshold, i.e., the out-of-
resonance modes are less effective and spatial modulations
tend to disappear. Also in the following cases it remains true
that the increase of the ratio j/y enhances the contribution of
the mode family resonant with the signal field.

Let us now turn to examine the case when 500(0 and the
instability arises in q= 1, because Eq. (42) is satisfied for
2@+i=1. Figures 4(b) and 4(c) show, respectively, the in-

tensity profiles of the cosine mode (fpii) and of the sine
mode (fpi2) in the transverse plane; the correlation function
is computed on the circle where their intensity is maximum.
The curves in Fig. 6 describe the behavior of the ratio
I (r, A@)/I (r,O) as a function of the relative angle 5@ be-
tween the two points x and x in which the spatial correlation
function is calculated. Again, by increasing the pump ampli-
tude from 0.5 (solid line) to threshold (dotted line) one ob-
serves that the unstable family plays a more and more im-

portant role. In particular, the oscillations at threshold agree
with the prediction of Eq. (58) when l= 1

(67)
I/2

foo(")=
7TW

(66)
As anticipated in Sec. IV, the correlation function exhibits an
ordered spatial modulation despite the fact that the mean

Its intensity profile, characterized by cylindrical symmetry, is
shown in Fig. 4(a). We are interested in the angular depen-
dence of correlation function, measured between two points
on the same circle, and in order to exhibit the spatial modu-
lation in the best way it is convenient to plot the ratio
I (r, A P)/I (r,O). This quantity has been evaluated for both
quadratures @L=0 and ~/2 and we found that in any case
one obtains the same results even though, as pointed out in
Sec. IV, the two operators are affected by quantum noise in a
completely different way. In Fig. 5 we plot this ratio for
different values of the pump field amplitude. Far from
threshold (solid line), the correlation decreases substantially
away from the value 5/=0, 2m. Approaching threshold
(dashed line), the correlation increases everywhere and be-
comes perfectly constant at threshold (dotted line) because
the contribution of the P-independent fundamental mode is
dominant. Thus there is a perfect correlation over the whole
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FIG. 6. Ratio I (r, A r/r)/I" (r, A r/i= 0) plotted along a circumfer-

ence of radius r=w/Q2, where the intensity of unstable modes

fp» and fp, 2 has a maximum. The detuning parameter is

5&&p= —1, fr=0, m/2, (/y= 1, and the pump amplitude M~ is
equal to 0.5 (solid line), 0.9 (dashed line), and threshold (dotted
line).
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FIG. 7. Three-dimensional plot of I (r, /t s/s)/I (r,O) as a func-

tion of r, the radius of the circle along which the correlation func-
tion is calculated, and 6@, the relative angle between x, and x'.
The pump amplitude is equal to threshold; hoo= —2, (/y= 1, and

Pt = O, m./2.

intensity of the signal field in the stationary state is uniform
over the circle. The field possesses a spatial structure that can
be investigated through the correlation function; hence the
system provides an example of a quantum image [5].

As a final example we investigate the case of q = 2, where
there is degeneracy with respect to three distinct. Gauss-
Laguerre modes: p = I, l = 0 and p = 0, l = 2 (sine and cosine
configurations). The intensities of those modes are plotted in

Fig. 4: one sees that the intensity of mode (1,0) presents a
central peak surrounded by a ring, while a linear combina-
tion of cosine and sine modes (0,2) gives rise to a doughnut
mode. Varying the radius of the circle on which the correla-
tion function is measured, the ratio I (r, s5, P)/I (r,O) reflects
the changes in the intensity of modes under consideration.
Figure 7 presents the ratio I (r, A P)/I (r,O) as a function of
the relative angle AP and of the radius of the circle. Since
we are at threshold, the behavior of the correlation function
is dominated by the modes of the resonant family; in particu-

lar, at r=w/Q2 the intensity of mode p= 1, l=0 vanishes
and hence the ratio I (r, 6 P)/I (r,O) oscillates as cos
[2(P—P')]. This is clearer from Fig. 8, where the same

quantity is measured over the circle with radius r = w/Q2 for
different values of pump amplitude. The mode p=1, I=O
does not contribute and the spatial modulation is due exclu-

FIG. 9. Spatial correlation function I (r, ksts) normalized to
I (r, A/= 0) vs the angular difference s5, $ along a circle of radius

r = w/ V2. The detuning is Boo= —I, j/y= 0.5, and Pr = 0;
M„=0.5 (solid line), ,%„=0.9 (dashed line), and .A„equal to
threshold (dotted line).

sively to the other unstable modes fo2t and fo2z. Far from
threshold (solid line) the correlation decays rapidly with the
angular distance between the two points x and x'. Close to
threshold (dashed line) the correlation length increases and a
spatial structure, which becomes a perfect sinusoidal oscilla-
tion at threshold (dotted line), emerges; this corresponds
again to a quantum image. Again, at threshold the correlation
extends to the whole circumference; this phenomenon for
our system with cylindrical symmetry corresponds to the
critical divergence of the correlation length in the system
with translational invariance, considered in [5].

VI. SPATIAL CORRELATION FUNCTION
IN THE FREQUENCY DOMAIN

It is worthwhile to investigate the spatial properties of the
correlation function in the frequency domain also in view of
possible experimental implementations. The general form of
the Fourier transform of the correlation function is found at
the end of Sec. II [Eq. (29)]; in the case of Gauss-Laguerre
modes it reads

where we recall that co = co/y and the expression of the spec-
trum of squeezing is given by Eq. (48). We analyze sepa-
rately the zero-frequency behavior of the correlation function
for the two quadrature operators corresponding to LOF
phases PL=0, vr/2.
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FIG. 8. Ratio I (r, b t)/I(srs, k /0) s'splotted along the circle
with radius r=w/Q2. The detuning is Aoo= —1, j/y=0. 5, and

s/sL=O, m/2;, M =0.5 (solid line), M =0.99 (dashed line), and

.A~ equal to threshold (dotted line).

A. Case Pz=0

Approaching threshold for signal generation, the spectrum

S„,(to=0) diverges in correspondence with the unstable
modes; the situation is therefore analogous to what happens
in the time domain [see Eq. (56)]. The conclusions of Sec.
IV A apply equally well to the present case and, again, the

ratio I (x,x';su=0)/I'(x= x'; co=0) remains finite, display-
ing a spatial structure determined by the unstable family of
modes. A nice example of quantum image is provided by
Fig. 9, where, as usual, the correlation function is calculated
between two points lying on the same circle; the curves cor-
respond to different values of pump amplitude Mp ranging
from 0.5 to threshold. The family q = 2 is on resonance and
at threshold the correlation function displays a perfect sinu-
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VII. CORRELATION FUNCTION OF INTENSITY
FLUCTUATIONS

II I
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FIG. 10. Plot of the zero-frequency spectrum qmof s ueezing 5 &of
t —a ) vs the detuning 5

z~
'. (a)the quadrature operator i (a„,—a,)

M =0.5 and (b) M„=0.9.P
I't ( 1xt; 'xt') =(BI,„,(x, t) BIout(x t )) (70)

An alternative approach to investigat pe s atial structures of
a field generated by quantum noise is provided by the corre-
lation function o in ef f tensity fIuctuations. This metho is sim-

ler from an experimental point of view because it oes not
'll t fi ld. %e define the correlationrequire a local osci ator e

function

soidal oscillation along the whole circumference. The picture
is quite similar to t a oh t f the equal time correlation function
(Fig. 8).

where

8'I,„,(x, t) =I,„,(x, t) —(I, $) (71)

B. Case @t.
——vr/2

When the phase Pt is equal to ~/2, the spectrum of
squeezing at zero frequency turns out to be

~&x, t~ is the intensity of the output signal field measured atI,„, xt is ei
time t and at the position x= (x,y). In terms o p
tors Eq. (70) turns out to be

I (x, t;x', t ') = (I,„,(x, t) ) 8(x—x') 8(t t ')'—
+ 6&'&(x, t;x', t') , (72)

an ispo e ind
'

1 tt d in Fig. 10 as a function of the detuning Ap& for
a,A =0.5 andtwo i eren vaud ff nt values of the pump amplitude: a,Ap=

um the maxi-(b) M = 0.9. It is evident that increasing the pump ep
mum increases and moves c.oser o pf t
h h ld one has complete noise suppressiontres o o

S~/(co=0) = —1 for the unstable modes (
the case o t e equaf the e ual time correlation function Sp& 7.=0,
which is a ways nega iv, L

=
„( = 0)(0 is restricted to a small bandwi t o

und the unstable family, which shrinks as emodes aroun e u
am litude approaches threshold. The arge max'

1 s a fundamental role in the Founer trans o
~ ~

form of the cor-paysa un
re not onlrelation unc ionf t' because now the leading terms a y

din to the unstable modes but also otherthose correspon ing o e
Fi . 11 we lot themodes sufficiently close to resonance. In Fig. we p o

ratio I r, b, P)/I (r,O) when the resonance condition is me

6 (x t; xt') =(A, (tx, t)A, (tx', t')A, „,(x', t')A, „,( tx)

—(I,„,(x,t))(I,„,(x', t')) . (73)

The first term is the shot-noise contribution and is propor-
he second one1 to the mean intensity, as usua. he stiona to e

&~&(x, t;x', t') corresponds to the normally o pordered art
and, according to quantum detection theory, peo 20, re resents

The calculation ofthe intensity correlation function. e
G (x, t;x', t') is carried out in the Appendix.

ties of the signa e ra er1 fi ld th r than in its temporal behavior, we
~ ~

consider the s ecial case of equal time correlalation function,
d d reviously for the quadrature operators. By ex-

modes, wepanding the field on the basis of Gauss-Laguerre mod
arrive at the result
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M„( I + iA„,)
G"'(X,X') = r' g g f„/s(X)f„t;(X')

1.5—

+r' X X f„i;(x)f„/;(x') ~2" ~2

(74)

Again, the expression above can be cast in such way that the
cylindrical symmetry becomes apparent

0.5—

y/w 0—

M„(1+i 5„,)
G (x,x') = r g f„&(r)f„&(r')cos(lt!sP) 2 2

p, l

-0.5—

+ r' X f„I(r)f„i(r')
p, l -15—

X cos(lA P) 2" (75)
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where the functions f„i(r) are given in Eq. (47) and
6@=/ —P'. We note that the correlation function never
takes negative values; this phenomenon is linked to photon
bunching in the time domain and is a signature of increased
intensity fluctuations. Indeed, fluctuations diverge at thresh-
old for signal generation for the unstable modes, which meet
the resonance condition A~l =0; this means that the correla-
tion function is dominated by the particular family of modes

q =2p+ l, which satisfies condition (42).
In Fig. 12(a) we plot the normally ordered correlation

function of the intensity fluctuations near threshold
(M~„=0.999), when the instability arises in the family
q=2, corresponding to the modes p=0, I=2, with i=1,2,
and p=1, I=O. We fixed the point x so that the mode

p = 1, l = 0 vanishes and varied the second point x' in the
transverse plane; this choice enhances the oscillatory charac-
ter of the spatial correlation function, suppressing the un-

modulated contribution coming from the mode p = 1, l = 0.
The resulting pattern exhibits, as expected, a modulation as
cos (25P). In general, an arbitrary location of the point x
reduces the symmetry because of the interplay of the on-
resonance modes [see Fig. 12(b)]. If we restrict the analysis
to a circle, along which the mode p= 1, l =0 is zero, we
obtain the oscillating behavior shown in Fig. 13, similar to
the plots obtained for quadrature operators.

2
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FIG. 12. Contour plot of equal time correlation function
Gl l(x,x') where (a) x=(w/+2, 0) and (b) x=(w, O) and x' varies

in the transverse plane. The detuning is 500= —2, the pump ampli-

tude is M„=0.999, and s/y= 1.

VIII. CORRELATION FUNCTION OF INTENSITY
FLUCTUATIONS IN THE FREQUENCY DOMAIN

To complete the analysis of spatial properties of the signal
field, we calculate also the correlation function of the inten-

sity fluctuations in the frequency domain. In general, the
spectrum of intensity fluctuations is defined as
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(77)

FIG. 13. Ratio G~ (r, AP)/G (r,O) plotted along a circle of
radius r=w/Q2. The detuning parameter is boo= —2, s/y= 1, and

the pump amplitude M„ is equal to 0.5 (solid line), 0.99 (dashed

line), and 0.999 (dotted line).
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FIG. 14. Ratio Gt i(r, kg)IGt i(r, 0) plotted along a circle of
radius r=w/Q2. The other parameters are hoo= —2, P/y= 1, and

the pump amplitude M„ is equal to 0.5 (solid line), 0.9 (dashed
line), and 0.999 (dotted line). The curve for .A„=0.99 is practically
indistinguishable from the dotted line.

where we separated the shot-noise contribution from the

Fourier transform G( )(x,x';0), of the normally ordered
part defined by Eq. (73), which cames the interesting infor-
mation concerning the spatial behavior. In the simplest case
of zero frequency, we have been able to find an analytical
expression, which is, however, quite involved. Therefore, we
present here only the results of the numerical implementation
of such that allow for readily capturing the main features. In
analogy to Sec. VII, Fig. 14 shows the zero-frequency spec-
trum of the normally ordered correlation function along a
circle of radius r = w/+2 when the family of modes q = 2
matches the resonance condition (41). It is remarkable that
approaching threshold the spectrum of the correlation func-
tion displays an increasing spatial order, characterized by a
sinusoidal modulation, which in the case under consideration
corresponds to the function cos (2AP). This implies that
also in the frequency domain the phenomenon of quantum
images is present and the pattern, "visible" through the Fou-
rier transform of the time correlation function, is again con-
nected to the family of modes that becomes unstable at
threshold.

IX. CONCLUSIONS

In this paper we have, first of all, extended the results of
[5] to the realistic case of cavity with spherical mirrors, in
which one has only cylindrical symmetry, whereas for the
cavity with plane mirrors considered in [5] there was both
translational and rotational symmetry. With this proviso, all
the interesting phenomena pointed out in [5] basically re-
main valid in the case of cavity with spherical mirrors,
namely, we showed the following.

(i) Approaching threshold, all the points of an arbitrary
circle centered at the axis of the system become perfectly
correlated and this is analog of the divergence of the corre-
lation length found in the case of translational symmetry.

(ii) When the detuning parameter b, oo is negative, the cor-
relation function exhibits a sinusoidal modulation over the
circle. Because the mean intensity is uniform along the
circle, this means that one has again the quantum image phe-
nomenon.

(iii) For the "squeezed" quadrature component, the value
of the correlation function calculated for equal points is
negative, which demonstrates the quantum nature of the Auc-
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APPENDIX

In order to compute the second-order correlation function

G (x, t;x', t')

=(A t( xt) At( 'xt')A, „,(x', t')A, „,(x, t))
—(A t„,(x, t)A,„,(x, t) )(A t„,(x', t ' )A,„,(x', t '

) ) (A 1)

it is convenient to relate the output field A,„,(x, t) to the input
field A;„(x,t), which in our case is in the vacuum state. To
this end, we follow the approach of Langevin equations [15]
for the slowly varying envelope field operator inside the cav-
ity

BA
(x, t) = —y (1+igloo)A(x, t) —M~„At(x, t)

&/ r' w'
—i — 1 — 2+ V'~ A(x, t)w' 4

+ $2 yA;„(x, t) (A2)

where 7& = B /Bx + B /By is the transverse Laplacian and

A;„(x,t) represents the noise term, i.e., the vacuum input
entering the cavity through the outcoupling mirror. By insert-
ing the field expansion (15) in the Eq. (A2) and by projecting
onto the Gauss-Laguerre modes and taking into account the
relation [22]

tuations that generate the signal field. This feature is true for
the equal time correlation function, but not for the zero-
frequency correlation function.

In addition to the spatial correlation function of a generic
quadrature component, we have also calculated the more eas-
ily measurable spatial correlation function of the intensity
fluctuations, both for equal times and for zero frequency. The
same properties (i) and (ii) hold also for this correlation func-
tion, whereas property (iii) is not true even for the equal time
case; the latter fact is related to the absence of antibunching
in the squeezed vacuum state.

In this work we aimed to provide a simple but realistic
model that can lend itself to experimental implementation.
To proceed in this direction one might drop the hypothesis of
a plane-wave-injected field, replacing it with a Gaussian
beam both in the case considered here and for a system with-
out cavity, which generates squeezed light by means of a
traveling wave interacting with a nonlinear crystal [21].We
trust that the extension to the case of a cavity with spherical
mirrors and to intensity correlation function, obtained in this

paper, can pave the way to the experimental observation of
the described phenomena.
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w', ~ r~'
f„„(r,P) = —(2p+ I+ 1)fbi;(r, P), (A3)

4 ~
qwi

we obtain

a„'&,'(0) = v'2 yaz&, (A) —a„'"„(A) (AS)

where a„'"„'(A) and a„'"„(fl) are defined in an obvious way,
we find for each mode

with

(t) = —y[(1+id pi)alai, (t) —Mpap„(t)]

+ $2ya'"„(t)

a„'&,'( cu) = U„i(tu)a„'"&,(tu)+ V„&(cu)a„&,( —ca), (A9)

where the coefficients of the unitary transformation are
(A4)

[1—i Dpi( —ca)][1—ib pt(ta)]+Mp
[1+i A„,(ta)][1—i 5„i(—tu)] —.A„

~;.(»t) = X X f,t;(r. W)a„'"i;(t)
i= 1,2 p, l

(A5)

f +oo

a„i;(D)= dt e' 'a„i,(t)
J —oo

(A6)

and b,„„give nby Eq. (50). The equation above, together
with the one for at„(t), forms a linear system that can be
easily solved in the frequency domain. Let us define the Fou-
rier transforms

[a,'"(A), akt (A')]=2m. 6, „8(A—A') (A12)

2M'
V„t(cu) = . 2 . (A 1 1)[1+ih„i(tu)][1 —i 6„,( —cu)] —M„

Here we introduced the dimensionless frequency co=A/y,
while A„&(~ ta) = A„,~ tu, where the upper and lower signs
must be taken concurrently. The input-output relation (A9)
together with commutation rule

ati, ( —A) =
J —oo

dt e' 'a„&;(t) (A7)

If we take into account that the output field is linked to the
input and intracavity fields by the relation

enables us to compute the output field correlation functions
of any arbitrary order. For simplicity, we use in (A12) and in
the following a single label i (or j, k, or l), which stands for
the whole set of indices (pli) In pa.rticular, the second-order
correlation function turns out to be given by

(a, (0 i )a, (A2) ak"'(As) a', "'(A4))

=(27r) Ji8;, 6q i8(Ai+IIq) 8(A3+A4)V,*(Ai)U*(Q~)Ut(As) V((04) +[6, k8, i8(Ai —As)8(A2 —A4)

+ ~, , i ~, ,k~(&1 —&4) ~(&2 —&3)]V,*(&i) V*(&2)Vk( s) Vi( (A13)

this result holds for a vacuum input, in which case normally ordered quantities have a vanishing expectation value. With an

inverse Fourier transform and by summing up over Gauss-Laguerre modes, we obtain the equal time intensity correlation
function of signal field

M~„(1+ikey, )
G (x,x') = y g g fJ„,(x)fz, ;(x') "~2 &&

+ y g g fz, ;(x)ft„,(x') (A14)
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