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Conditions for anomalous resonance fluorescence in a squeezed vacuum
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We discuss the conditions which give rise to anomalous features in the resonance fluorescence of a two-level

atom interacting with a resonant classical field and a squeezed vacuum. A simple expression is obtained, which

is shown to coincide closely with the conditions for amplification of a probe beam and with the collapse of the
atomic system into a pure state. We thereby illustrate striking observable consequences of the evolution of a
driven system into a pure state. This situation also provides a method for preparing an atom in a pure state
whose nature depends on the squeezing phase and Rabi frequency. The conditions for hole burning are
obtained analytically, and the sensitivity of these effects to the two-photon correlations produced by the

squeezed vacuum is demonstrated.

PACS number(s): 42.50.Dv, 32.80.—t

I. INTRODUCTION

A decade ago, the first few experiments announcing the
successful observation of "squeezed" light were reported
[1—3], thus demonstrating the reduction of the quantum fluc-

tuations in one quadrature of a light beam below the geomet-
ric mean of the minimum dictated by the uncertainty prin-
ciple. Apart from the basic interest in manipulating quantum
fluctuations, the study of squeezed light was also motivated
by potential applications to telecommunications [4] and high
precision measurement, such as gravity wave detection [5].
Squeezed light has been used to enhance sensitivity in satu-
ration spectroscopy [6].

Nowadays, with many laboratories throughout the world
capable of producing squeezed sources, the search for novel
features in the interaction between atomic systems and
squeezed light is a topic of renewed interest. The first pre-
diction of unusual features in this interaction was made by
Gardiner [7], who showed that the two quadratures of the
polarization of a two-level atom interacting with a squeezed
vacuum decay at vastly different rates. The modifications of
the resonance fIuorescence spectrum of a such a system were
studied by Carmichael, Lane, and Walls [8], who showed
that for large classical applied field strengths the spectrum is
a triplet, as in the absence of the squeezed vacuum [9], but
that the central peak of the triplet has a width that depends
strongly on the relative phase of the driving field and the
squeezed vacuum when the driving field is intense. Reso-
nance fluorescence in the cavity environment has also been
considered [10].

While we are concerned only with resonance fluorescence
in this paper, we should draw attention to other aspects of the
interaction between atoms and squeezed light, including
modification of Lamb shifts and other atomic properties,
probe absorption spectroscopy, and three-level atom and
multiatom interactions. References to this large body of work
can be found in reviews [11].

Recently, we have reconsidered the problem of the reso-
nance fluorescence of a two-level atom when it interacts with
a broadband squeezed vacuum [12], and shown that spectra
may occur which are quite unlike any predicted before for
this system. They include hole burning at line center and

dispersive profiles. An unusual feature of these "anomalous
spectra" is that they occur for only a highly restricted range
of values of the system parameters.

Our previous analysis was largely numerical, and one ob-
ject of this paper is to give an analytic description which
accounts for the distinctive features of the spectra. In addi-
tion to the additional insight which an analytic description
provides, we obtain a simple expression which for relatively
intense squeezed fields provides the approximate values of
the parameters for which anomalous spectra occur. We show
that this condition coincides with other properties of a two-
level atom interacting with a coherent applied field in the
presence of an intense squeezed vacuum, namely, the condi-
tion for the amplification of a probe beam [15] and the con-
dition for the atomic system to collapse into a pure state
under the infiuence of the squeezed vacuum [16—18].

The latter effect is a particularly interesting feature of the
squeezed vacuum, and shows that the squeezed field behaves
quite differently from a conventional reservoir. Here we
show that the evolution of the system into a pure state has
striking experimental consequences —namely, a sharp reduc-
tion in the overall intensity of resonance fluorescence, and
the appearance of anomalous features.

The particular pure state into which the atom evolves de-
pends upon the squeezing phase and the Rabi frequency.
Hence we have a means of producing a variety of atomic
pure states, which are coherent superpositions of the ground
and excited states.

II. THE RESONANCE FLUORESCENCE SPECTRUM

In the rotating frame, and using a system of units in which
6 = 1, the Hamiltonian for a single two-level atom interacting
with a monochromatic laser field of frequency col is given by

H =
—,(I»&11-10)&01)+.1»&01+.*10)&1I,

where
I
1) and IO) are the excited and ground state of the

atom, respectively, with energies F& and Fo, 6 is the detun-

ing, 6'= E, —Eo —coL, and —g=—(i/2)Ae'~t is the coupling
constant, 0 being the Rabi frequency and tt t the laser phase.
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The atom also interacts with a broadband squeezed
vacuum, whose center frequency coincides with the atomic
resonance frequency. Essentially all the reservoir modes
with which the atom interacts are squeezed. The squeezed
vacuum is characterized by the parameters N and
= yMe'~(N, y, M, and P being real) where N and M satisfy
the following inequality:

(3)

Some recent reviews of squeezing phenomena are cited in
[11].

The resonance fluorescence spectrum may be calculated
by adapting the approach of Mollow [9]to include the effects
of a squeezed vacuum [8]. It can be related to the Fourier
transform of the atomic correlation function [13,14]:

M ~N(N+ 1). (2)

N is a measure of the intensity of the squeezed field and M
measures the degree of two-photon correlation. The situation
of greatest interest is that in which the equality holds in Eq.
(2). This corresponds to the maximum degree of two-photon
correlations in the squeezed field, and the field then has the
greatest nonclassical character. It also corresponds to a mini-
mum uncertainty squeezed state. Another important param-
eter is the squeezing phase 4', which is defined as the dif-
ference between twice the phase of the driving field and the
phase of the squeezed vacuum:

G(cu) =Re (o+(0)o. (t))e'"'dt,
p

(4)

where co is the frequency measured relative to the laser fre-
quency cpL, and the o(t) a.re the usual Pauli spin--,' opera-
tors. From the Laplace transform of the equations of motion
for the o., the spectrum may be evaluated using the quantum
regression theorem [9].It takes the form

G(cp) =Re[A(z = —imp) ],
where [14]

z [(z+21 )(z+ I —i 8) +0 l2]p+ s(z+ y)(z+ I —i 8+ yM e '
)

z((z+21')[(z+I ) + 8' —y M ]+II (z+I'+ yM cos&b))

with I = y(N+-,'), and

yN(I' —y M + 6 )+-,'II (I + yM cos4)
2I (I' —y'M'+ 8')+ II'(I'+ yM cosC )

and

yA (I +i 8+ yMe' )l4
2I (I' —y M + 8 )+II (I + yM cos4') (8)

are related to the stationary excited-state population and co-
herence a.]0, respectively.

By writing A(z) in the form

bp+zbt(z)
A(z) =

z[ap+zat(z)] ' (9)

A(z) =A„„(z)+A;„,(z), (10)

bo
A..h(z) =

aoz

apb~(z) —bpa&(z)
A;„,(z) =

ap[ap+ za t(z)]

We are only concerned with the incoherent part here.

where ao and bo are independent of z, we may divide the
spectrum into the sum of coherent and incoherent terms:

III. THE CONDITIONS FOR ANOMALOUS SPECTRA

The anomalous resonance fluorescence spectra take a va-

riety of forms, all quite distinct from what we may call the
standard resonance fluorescence spectra in a squeezed
vacuum. The latter, first investigated by Carmichael, Lane,
and Walls [8], take the form of a single peak with subnatural
linewidth in the low intensity limit, 0&& y, the width being
independent of the squeezing phase 4. As 0 increases, there
is a threshold value of A above which the spectrum splits
into three peaks, which at large values of A are clearly sepa-
rated. The value of this threshold, and the relative heights
and widths of the peaks, depends upon 4 as well as upon N
and M.

Recently, we have shown that other, quite different line
shapes are possible under special conditions [12]. The
anomalous spectra occur in the intermediate intensity range
A-y, where the standard spectra consist of a single line,
whose height and width depend markedly on 4. For 4=0,
they take the form of sharp holes bored into a broader single
peak at line center. As 4 increases, the character of the spec-
tra gradually changes until for 4= ~/2 they have a disper-
sive profile. Other line shapes are possible. As 4 increases
and approaches m, the anomalous characteristics of the spec-
tra gradually disappear.

Apart from their unusual profiles, a distinctive feature of
the anomalous spectra is that they only occur for a very
restricted set of values of the available parameter space. The
first consideration is therefore to identify this set. The
anomalous features only occur in the presence of the

squeezed vacuum with M= gN(N+1) and 8'=0. For sim-

plicity, we henceforth set y=1 so that all parameters are
measured relative to this quantity.
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To proceed with our analytic investigation, we assume
6'=0 and note that the maximum value of M permitted by
the inequality (2) may be expressed as

ate values of the Rabi frequency. The value of the Rabi fre-
quency at which the shift from absorption to amplification of
the probe beam occurred was

or

M „=gN(N+ 1)= /I ~ —-', (13) 2I (I —M )
0, =

M(M+I cos4) (18)

(14)

a 1
M = I ——, where a~ —.r' (15)

Setting a = —, gives M its maximal value. We substitute this
expression into Eq. (12), expand in powers of I, and then
find the condition for the leading two terms in the expansion
to vanish. After some algebra, this leads to the result that the
numerator of A;„,(0) is a minimum when

2[I'(1 —4a)+ $4a +I (1 —8a)]0 = I &)1. 16(1+cos@)(2I + 1)

If we set a=-,' (M is maximal), this reduces to the very
simple condition

1

2 cos(C/2) ' (17)

In the following we assume that ¹ is large enough to satisfy
I'&) . In fact, N does not have to be large for (14) to be a
good approximation. For ¹=1, for example, the exact value

of M,„ is M,„=+2=1.4142, while the expansion (14)
gives M „=1.4167. Even for ¹ 0.2, the error is only 6%.

In order to determine the values of 0 and 4 which give
rise to the anomalous features, we observe from our previous
investigations that they occur when the overall intensity of
the incoherent spectrum drops sharply to a minimum value.
One way to identify the relevant parameter range is therefore
to find an expression for the incoherent spectrum and then to
establish the conditions which make the intensity at line cen-
ter a minimum. From Eq. (5), the intensity at line center is
given by A;„,(0). In fact, since approximate expressions
will suffice, we consider the minimum in the numerator only
of A;„,(0). As we are assuming that M is close to its maxi-
mum value allowed by the inequality (2) we set

We note that for a minimum uncertainty state [i.e., the equal-
ity of Eq. (2) holds], we have I' —M = ~. If, further, the
condition N)&1 holds, then M=N+-,'=I', and Eq. (18)
tends to the limit (17) for large N.

As we discuss below, Eq. (17) is also the condition for the
atom to be found approximately in a pure state. It is very
surprising that a driven system interacting with a reservoir
can achieve a steady state which is a pure state, and this
result shows that a squeezed vacuum reservoir is fundamen-
tally different from the reservoirs usually studied. The decay
to a pure state of a pair of two-level atoms interacting with a
squeezed vacuum (but with no coherent driving field) was
first predicted by Palma and Knight [16].The existence of
special values of the parameters from an assembly of two-
level atoms interacting with a broadband squeezed vacuum
and an external field which lead to decay to a pure state was
pointed out by Agarwal and Puri [17], for the case ~I& =0 or
~. In our notation, their condition for the single-atom system
to be approximately in a pure state is

(gN+ 1+ +N)cos(4/2)
(19)

For N&)1 and M maximal, this reduces to condition (17).
Note that the two-photon correlations are essential (MAO)
for the system to be capable of achieving a pure state. For
4 = 0, the system is exactly described by a pure state when
Eq. (19) is satisfied: for other values of rIi the pure state is
only approximately achieved, and in addition, ¹ must be
sufficiently large.

The situation for a single two-level atom was also dis-
cussed by Tucci [18]within the context of the entropy, infor-
mation, and temperatures of the system. The pure-state ques-
tion received particular attention, and it was pointed out that
the pure state achieved for the 4=0 case for our system is
an eigenstate of the o. Pauli operator.

The parameter employed by Tucci for determining
whether the system is in a pure state is the length of the
expectation value of the Bloch vector ((o.,), (o. ), (o.,)). In
Fig. 1 we have plotted the quantity

Both (16) and (17) show a very simple dependence on 4&.

From the latter we see that A~ —,
' as rIi~0, II = 1/Q2 when

4&=m/2, and A~~ as p —+m Thus for rIi~. vr we do not
observe the anomalous spectra.

It transpires that conditions similar to Eq. (17) have arisen
in the consideration of other aspects of the interaction of this
system with the squeezed vacuum. These concern the ab-
sorption of a probe beam and the existence of a pure state for
the atom. We shall now briefly discuss these.

In [15] the same system we discuss here was considered,
except for the addition of a probe beam. Due to the existence
of the squeezed vacuum, this system was shown to exhibit
gain without any form of population inversion for appropri-

(20)

for N= 1 and 4=0, m/2, 3~/4, and vr. When g= 1, the
system is in a pure state, and when it is zero, the system is in
a highly mixed state (the entropy is a maximum). The figure
shows that for ~Ii=0 (solid line) X acquires the maximum
value of unity for A= ~. For 4= m/2 (dot-dashed line), P
acquires its maximum value, which is close to but less than

1, for A=0.63. This trend of decreasing maxima occurring
at larger values of A continues for 4 =3 '/4 (dashed line),
but for 4 = vr (lower solid line) we see that g has no maxi-
mum, and in fact declines monotonically from a low initial
value over the range of A shown.
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FIG. 1. The quantity X=(o;) +(o. ) +(cr,) as a function of
II for N= 1 and C&=0 (solid line), 4= m./2 (dot-dashed line),
4=3vr/4 (dotted line), and 4= m (lower solid line). X=I corre-
sponds to a pure state.

Increasing the value of N causes the maxima for the
4 = m/2 and 3 m/4 cases to approach closer to the value one,
while the overall magnitude in the 4=~ case decreases
even further.

Figure 2 shows the actual components of X as a function
of 4 for 0=0.63 and N= 1. (This value of II corresponds
with the maximum of the dot-dashed line in Fig. 1.) We see
that (o;) has a dispersive shape, while (o.Y) and (o.,) show a
minimum at 4= ~. It will be observed that all three vari-
ables (a ), (o.Y), and (o.,) have small absolute values at
4 = vr and so X is small at this point. Also, (o;) and (o. )
have values close to 0.7=1/Q2 for 4= m/2, so we expect
X to be close to the value one at this point.

These features are confirmed by Fig. 3, which shows X as
a function of 4 for N=1 and 0=0.63. The graph has a
maximum value (close to one) at 4 = ~/2, and a minimum
(close to zero) at &0 = m. Thus the system is well approxi-
mated by a pure state at 4 = ~/2, 0= 0.7, and N= 1, where
we have shown that dispersive anomalous resonance fluores-
cence spectra arise [12].

FIG. 3. X as a function of 4/7r for N= 1 and 0=0.63 (corre-
sponding to the maximum in the dot-dashed curve of Fig. 1).

If we increase the value of N to N=10, for example,
keeping the other parameters the same, we obtain a qualita-
tively similar plot. The major difference is that the maxima
are much closer to the value one and the minimum much
closer to the value zero.

Figure 4 provides a global view of the variation of X with
0 and 4 for the case N= 1. It can be seen that as 4 in-
creases, the maximum in the value of X occurs at larger
values of A. The value of the maximum also decreases with
the value of 4. For 4= vr, there is no maximum apparent
for the range of 0 considered.

If N is sufficiently large, the analytic approximations
(16)—(19) provide an excellent approximation for the value
of 0 for which the anomalous spectra occur, given a value of
4& vr. As all three expressions are very close to each other
in this limit, we may as well take the simplest, Eq. (17). In
Fig. 5 we compare the approximation (17) with the minimum
of A;„,(0) found numerically for the case N=2. The agree-
rnent is very good, at least up to C&=0 87r (For .valu. es of
4 larger than this the anomalous spectra are not particularly
interesting anyway. ) The agreement improves rapidly as N
increases. For N= 10, for example, the curves are practically
indistinguishable.

0.5

5 0
V

-0.5

-1
0 0.5 1.5

FIG. 2. The components (o ) (solid line), (o~) (dot-dashed
line), and (o,) (dotted line) of X as a function of 4/7r for N= 1 and
II = 0.63 (corresponding to the maximum in the dot-dashed curve of
Fig. 1).

6

FIG. 4. X, as a function of 4/vr and 0, for N= 1.



52 CONDITIONS FOR ANOMALOUS RESONANCE FLUORESCENCE 4849

4 a

2.

3 R

2
05
1

0
0 0.2

h

0.4 0.6 0.8

FIG. 5. The position of the minimum in A;„,(0) evaluated nu-

merically (solid line) and using the approximate expression (17)
(dot-dashed line) as a function of the Rabi frequency 0 and the

squeezing phase 4, for the case N=2.

However, for smaller values of N there is a significant
disagreement, as we see in Fig. 6 for N= 0.1. In this regime
the three expressions (17)—(19) also disagree among them-
selves. We have also plotted expression (19) in the figure,
and it can be seen that it provides a better estimate than Eq.
(17), but both significantly overestimate the value of Q
which produces the minimum. We have not shown Eq. (18),
which in fact has a divergence at 4=0.69m.

Note that there is a qualitative difference in the behavior
of the minimum for large and small values of N. For large
values of N, such as N= 10, the value of 0 giving the mini-
mum of A;„,(0) for a given value of tIi continues to increase
as 4 increases, as predicted by Eq. (17). For smaller values
of N, N~ 1, the minimum at first moves out as 4 increases,
in qualitative agreement with (17), but then as rI& continues
to increase above a certain value, the minimum moves back
towards the origin. This may be seen in Fig. 6.

We should emphasize that, for an arbitrary value of N, the
value of 0, which leads to anomalous spectra can be accu-

2.5

FIG. 7. A three-dimensional plot of the incoherent spectral in-

tensity at line center as a function of the squeezing phase and the
Rabi frequency, for N= 1.

rately determined from the minimum in A;„,(0). The ana-

lytic expressions give an excellent approximation to this
value for N~2. Thus the conditions for the anomalous spec-
tra to occur are not in general the same as the conditions for
the switch from absorption to amplification of a probe beam,
or for the system to collapse into a pure state. However, for
sufficiently large values of N all three phenomena occur at
the same parameter values.

Since the minimum in A;„,(0) provides the location of the
anomalous spectra, we have in Fig. 7 provided a global view
of the behavior of this minimum as a function of 0, and 4
for N= 10, showing the position of the minimum and its
increasing shallowness as 4 = vr is approached. In Fig. 8 we
have introduced a detuning of 6=0.3 which shows that the
minimum has become much shallower and has shifted to-
wards larger values of O.

We now discuss briefly why the anomalous features tend
to arise when the system approaches a pure state. The scat-
tered radiation is produced by the fluctuating dipole moment

(a+(t)) =(a,(t))+ i(a~(t)). For simplicity, we consider
the case 4=0. Then the time-dependent solutions of the
Bloch equations, given the initial expectation values
(a. (0)), (a. (0)), and (a.,(0)), are

1.5-
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FIG. 6. The position of the minimum in A,„,(0) evaluated nu-

merically (solid line) and using the approximate expression (19)
(dot-dashed line) and (17) (dotted line) as a function of the Rabi
frequency 0, and the squeezing phase 4, for the case N=0. 1.

0 3

FIG. 8. The same as Fig. 6, but with the nonzero detuning
6= 0.3 introduced.
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(a. (t))=(o. (0))exp( —y t), (21) @=0.999

(o-,(t)) =— O, y f1y
2+exp[ (yo Ic)t]y'y, +0, 2lc(ro K

n(~, (o)) (~,(0)) ~ y,
2K 2K ( 2

(,(o)) r.
2K 2

(22)

0 y fl(cr, (0))—exp[ —(yo+lc tj +

0.06

o Q.Q4

(0
~ 0.02
CC

0

E

~ 0.1

CO

~ 0.05
Ct:

0
@=0.997

0.06

0.04

0.02

0

q=0.995

0.3

0.05

where

y, = y(N+ —,'+M),

y, = y(N+ —,
' —M),

r, = —,'(r.+ r, ),

ro= 2(y, + r, )

lc=(y /4 —0 )"

(23)

(24)

(25)

(26)

(27)

The incoherent resonance fIuorescence spectrum is produced
by fIuctuations in the dipole moment. The fIuctuations are
measured by the variances (6a.;)—= (cr, ) —(cr;), that is,

(Ao-, ) = 1 —(cr,)'.

—Ay)=, , +nyy yz
(29)

which has a maximum when 0 =Do, where

&o=4r, r,
It is easily seen that A, o= —,

' when M is maximal and Eq. (15)
is employed, with a = . We have shown in Eq. (17) that this
is the condition for hole burning for N not too small.

IV. THE SENSITIVITY TO TWO-PHOTON
CORRELATIONS

We can also infer the sensitivity of the spectra to the
choice of the parameters from Eq. (16).The condition for the
radical to be real is

) 112

a~I 1 — 1—
4V)

1 1

8 16I )
(31)

Now, as suggested by Eq. (21), the variance in (Acr ) will

give rise to features controlled by y &) y. These are broad
features, of not much interest. The narrow features, accord-
ing to Eq. (22), arise from fluctuations in o. and o, Since

(o;) does not vary greatly from zero over the parameter
range of interest, its fIuctuations are roughly contrast. Hence
the sharp features will be of least consequence when the
iluctuations in o are a minimum, that is, when (a.Y) is a
maximum. The steady-state value is obtained from Eq. (22)
as

0
-4 -2 Q 2

03

0
-4 -2 0

CO

FIG. 9. The incoherent resonance fluorescence spectra for W= 1

and 4=0 for different values of the degree of squeezing, y=1,
0.999, 0.997, and 0.995.

1 1/ 1—~a~ — 1+
8 8

~
16I (32)

Thus there is only a very restricted range of values of a
(equivalently M) for which the anomalous features are pos-
sible, and the available range decreases with ¹ Setting
N=1 for example, we find that a must lie in the range
0.125~a ~0.1302. The value of M corresponding to
a=0.1302 is M = 1.4132. Defining the degree of squeezing

y by

M
'r) =

Mmax
' (33)

we find y=0.9993 in this case.
These features are illustrated in Fig. 9, where we show the

anomalous spectra for 4=0, 8'=0, and 0=0.42426 with
y= 1, 0.999, 0.997, and 0.995, respectively. The hole at line
center disappears for a slightly smaller value of y than that
predicted in the preceding paragraph, but the estimate is nev-
ertheless a useful one. This figure illustrates the vital impor-
tance of the two-photon correlations induced by the squeezed
vacuum for producing the spectral hole. For y=0.997 and
0.995 the spectra still have an unusual appearance, caused by
the height of the broad peak being of the same order as the
height of the narrow peak.

V. SPECTRAL HOLE BURNING

It is also possible to give an analytic treatment which
accounts for the hole burning features of the anomalous
spectra for 4 =0. This is presented below.

We consider first the case 4=0 and exact resonance,
6=0. The widths of the spectral features are determined by
the poles of A;„,(z). Again, we set y= 1 to reduce the com-
plexity of the expressions. For the particularly simple case
where @=0, the poles occur at

Hence to this level of approximation we can only expect
anomalous features for
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z, = —(r+M),

(3r —M) (3r M— i '
2 ( 2

1/2

(35)

(The poles for the case 4= m are obtained from the above by
reversing the sign of M. ) For simplicity, we concentrate on
the limit where I )), where the expansion (14) holds. The
approximate positions of the poles are then given by

Note that choosing this particular value for II represents a
large decrease in magnitude of the spectrum at line center, as
values for A well away from this value result in the leading
term in A being of order I, not I .

We also note that R+ is positive. However, if we change
the value of 0 by a small amount —to 0 = 1/4 —1/(8I ), for
example, we find that R+ becomes negative:

(1
4 8r]

1
zo= —2I + (36) 256I" —1281 —32I" +481 -281" + 8I —1

2(32I s —41 + 1)(16r s —2I + 1)(4I —1)
A

2I ' (37)

1
z = —2I- 8I' (38)

The incoherent spectrum consists therefore of a sum of three
Lorentzian peaks, two with broad peaks with widths given
by zo and z, and one with a narrow peak given by z+ . For
N sufficiently large, the broad peaks will form a flat back-
ground, and the dominant features will be determined by the
narrow peak. We concentrate therefore on calculating the
contribution to the incoherent resonance fluorescence spec-
trum from the pole at z =z+ . From Eq. (5), this is given by

(44)

1

64I' (45)

1

321 3 (47)

If we decrease it by a further small amount, it becomes posi-
tive again:

( 1 1 i 128I'5 —8I —10I + 27I —12I"+ 3
+'~ 4 4r(

= 8(8r'- r+1)(16r'-2r+1)(2r —1)'
(46)

Re R+ —i~ —z+

R+z+
co +z+

(39)
Thus for a small set of values somewhere in the range

4
~'

4 4r (48)
where the residue of A;„,(z) at the pole z =z+ is given by

gobi(z+) —bo~i(z+)R+=
&o(z+ zo)(z+ z —)

R =A/8, (4o)

where

A=16r (4Q —1) +81 (160 —1)—8I Q (40 —1)
—21 2A2(160 —1)+I II (40 +1)(2A —2Q +1)
—II (4A +1), (41)

and is in fact real in the special cases (4= b=0) we are
considering.

We evaluate this residue using the approximation (37) for
z+. We find

the residue R+ becomes negative. Since this residue contrib-
utes a narrow linewidth peak, the result of it becoming nega-
tive is to produce a sharp hole bored into the broader features
of the resonance fluorescence spectrum at line center.

Finally, we turn briefly to the case 4= m/2, which has
been discussed analytically in the first of Ref. t12]. The point
we wish to emphasize here is that the origin of the anoma-
lous features differs from the 4=0 situation. For 4= vr/2,

even for values of 0 well away from that which minimizes

A;„,(0), the factors which give rise to the anomalous fea-
tures are already present —the problem is that they are nor-
mally masked by other contributions whose amplitude is
much larger. As shown in [12], the essential contribution of
the squeezed vacuum is to enable us, by choosing the value
of 0, appropriately, to sufficiently suppress the amplitude of
the masking contributions to enable the anomalous features
to be revealed. This occurs for A = -,

' for N)) 1.

B=21 (21 ~ —Qz)(16r2 —4fl2 —1)(4fl2+ 1)2. (42) VI. CONCLUSIONS

For fixed 1, we regard R+ as a function of 0:
R+ =8+(Q ). The above expressions are complicated, but
we note that a remarkable simplification occurs if we set
A = —,'. For then the first four terms in the expression for A all
vanish, and we have

4r —1
+

( 4) 32(8I —1) 512I

We have considered the incoherent part of the resonance
fluorescence spectrum of a two-level atom interacting with a
squeezed vacuum, and have given analytic expressions for
the parameter values which permit the anomalous spectra to
arise. For N) 1, this coincides with the conditions for ampli-
fication of a weak probe beam, and for the system to be well
approximated by a pure state. For 4=0, we have also ob-
tained analytic expressions which explain the hole burning at
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line center, and the sensitivity of the anomalous features to
variations from the optimum values of the parameters. We
have shown that as 4~ vr, the anomalous features disappear.

The anomalous features arise when the average Auctua-
tions in the dipole moment are a minimum. This corresponds
closely with the condition for the system to be in a pure state.
We have shown that the occurrence of the anomalous spectra
provides a striking experimental manifestation of the atomic
system evolving into a pure state. This system provides a
possible method for preparing a two-level atom in a variety
of pure states, which are coherent superpositions of the

ground and excited states, by suitably choosing the squeez-
ing phase and Rabi frequency.
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