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Noise in dead zones
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We investigate the quantum noise gained by a weak probe laser interacting with a driven two-level system
in the Doppler-broadening limit in which the so-called "dead zone" of the absorption spectrum is formed. We
find that the plot of the noise as a function of the pump-probe detuning (which we shall refer to as the "noise
spectrum") is hardly affected by the Doppler broadening for the case of a resonant pump. It consists of a large
central peak flanked by two smaller peaks at the edges of the dead zone, which are at the Rabi sideband
frequencies. Thus the dead zone, which is produced when absorption and gain regions of the absorption
spectrum are averaged by Doppler broadening, is a rather noisy region, indicating the occurrence of many
competing absorption and emission processes. The probe noise spectrum for a detuned pump is quite different
in the presence and absence of Doppler broadening as is the absorption spectrum. On Doppler broadening the
absorption spectrum consists of a dead zone centered at the Rayleigh resonance frequency with asymmetric
absorption peaks on either side. The noise spectrum has a peak at the center with two sidebands at the edges
of the dead zone. The sidebands are of almost the same intensity for short path lengths, but the peak on the side
of the three-photon scattering becomes larger than the other peak as the path length increases.

PACS number(s): 42.50.Lc, 42.50.Gy, 42.65.—k

I. INTRODUCTION

Recently [1—3], there has been a revival of interest in the
zones of almost zero probe absorption ("dead zones"),
which occur when a driven two-level system is interrogated
by a weak copropagating beam in the limit of large Doppler
broadening. These dead zones, first predicted by Baklanov
and Chebatoev [4], were described in detail by Khitrova,
Berman, and Sargent [5]. Essentially, the two points of zero
absorption that occur for a resonantly driven two-level sys-
tem at the probe frequency co@= ~ 2Vb, (where
2V„,=db, F, /fi is the Rabi frequency of the driving field)
are replaced in the Doppler limit [limit in which the Doppler
width D) 2Vb,)(I/Tq)] by a zone of almost zero absorp-
tion between the two points —2Vb (co2(2Vb, . The re-
newed interest [1—3] in dead zones has mainly been con-
cerned with the behavior of the refractive index within the
dead zone. It was predicted by Scully and co-workers [6] that
a variety of coherently prepared driven three- and four-level
systems can exhibit a maximum in their refractive index at a
point of zero absorption. It was also shown [2,3,7,8] that the
much simpler resonantly driven two-level system displays
the same behavior. Subsequently, the effect of Doppler
broadening on both the absorption and refractive index of
this system was explored [1—3]. It was found that the mini-
mum and maximum values of the refractive index that occur
at points of nonabsorption in the absence of Doppler broad-
ening are scarcely affected by Doppler broadening. Thus it
seems that the dead zone is only inactive with respect to
absorption, but not to dispersion. The origin of the dead zone
and the associated behavior of the refractive index have re-
cently been explained using velocity-dependent dressed
states by Ling and Barbay [1]. (One should note that the
behavior of the absorption [9,10] and of the absorption and
refractive index [3], in the absence of Doppler broadening,
has also been discussed in terms of dressed states. )

Another reason for the renewed interest [1]in dead zones

is the apparent similarity between the dead zone and the
region of transparency [termed electromagnetically induced
transparency (EIT)] observed by Harris and co-workers [11]
when an atomic system is driven by an intense field. This
similarity is particularly impressive in the calculations of
Moseley et al. [12]and Gea-Banacloche and co-workers [13]
of the Doppler-broadened probe absorption and refractive in-
dex in a cascade three-level system interacting with a strong
pump and weak counterpropagating probe. Again the ex-
trema in the refractive index were found to occur at the edges
of the region of near transparency. The calculations of Mose-
ley et al. [12] were performed in order to explain their ob-
servation of focusing and defocusing of the weak probe
within the EIT window, induced by the transverse intensity
profile of the strong pump. In recent papers [14], we dis-
cussed the related problem of the nonlinear refractive index
cross modulation produced in a two-level system interacting
with an intense off-resonance laser and a second moderately
strong laser tuned near one of the Rabi sidebands of the
system. As a consequence, depending on the transverse pro-
files of the two lasers, self-focusing (defocusing) may be
induced in the self-defocusing (focusing) nonlinear medium.
Some recently observed anomalies in conical emission [15]
could be explained qualitatively by these effects.

In the present paper, we consider an aspect of the dead
zones that has not yet been discussed, namely, the quantum
noise gained by a weak probe whose frequency co2 lies
within the dead zone as it propagates through a medium of
driven two-level atoms. We recently showed [16,17] that, in
the absence of Doppler broadening, a weak probe propagat-
ing through a medium of resonantly driven two- or degener-
ate A-shaped three-level atoms [18] has three peaks in its
"noise spectrum" (for brevity, we refer to the plot of the
probe noise as a function of the pump-probe detuning as the
noise spectrum), situated near points of probe nonabsorption.
This is true for all values of noL (where ao is the absorption
coefficient and L is the propagation length) for the three-
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level system that is population trapped. However, for the
two-level system, the noise spectrum changes from three to
two peaks as the value of o.pL increases, provided the pump
Rabi frequency is sufficiently small. We interpreted the peaks
in the noise spectrum at points of probe nonabsorption as
indicative of the fact that, at these frequencies, a large num-
ber of absorption processes compete with an equally large
number of emission events so that the average absorption is
zero. Here we shall demonstrate that the probe noise spec-
trum, in common with the refractive index spectra, is only
weakly affected by Doppler broadening. This is true because
the dead zone, in analogy with the points of nonabsorption,
results from the averaging out of many absorption and emis-
sion events.

The probe noise spectrum for a detuned pump is, how-
ever, quite different in the presence and absence of Doppler
broadening. In the absence of Doppler broadening, it consists
of a peak at the three-photon scattering (TPS) frequency, a
smaller peak at the extraresonant frequency, and an even
smaller peak at the absorption frequency due to the fact that
the probe at this frequency has already been significantly
absorbed on propagation. In the Doppler limit, the outer
peaks move to the edge of the dead zone and are of the same
intensity for small propagation lengths so that the spectrum
is similar to that obtained for a resonant pump. The probable
reason for this is the dominant contribution of the resonant
velocity subgroup to the noise. As the propagation length
increases, the peak on the side of the TPS frequency gradu-
ally becomes more intense than the peak on the side of the
absorption frequency.

The noise properties of a weak quantum probe interacting
with a driven two-level system were described by Boyd and
co-workers [19].They were interested in the effect of colli-
sions on the noise associated with the amplification of the
weak probe when the system is driven near resonantly by a
strong pump [20]. We adopt the same formalism derived
from the quantum theory of multiwave mixing developed by
Agarwal [21].We note that such a theory has also been de-
rived using different formalisms by Sargent, Holm, and
Zubairy [22] and Reid and Walls [23]. The equivalence be-
tween these theories and that of Agarwal has been discussed
by Agarwal and Boyd [24].

II. GENERAL DERIVATIONS

We treat a two-level system interacting with a strong
pump and a weak probe. The energy level scheme and ge-
ometry of the system are given in Fig. 1, The frequency
offsets of the pump and probe frequencies co& 2 from the reso-
nance frequency ~b are given by 6& 2= ~b —

cu& z and the
pump-probe detuning by 6= 6]—62= ~2 —

cu& .
We assume the pump to be linearly polarized and much

stronger than the probe and write it (in the interaction pic-
ture) as a classical field, ignoring its depletion due to inter-
action with the medium:

Et(r, t) =e,exp[i(kt r gott)]+c.c. —

The much weaker probe is taken to be a quantum field writ-
ten as

IB&

probe, 2

pump, (0
two level atoms

z=0 z=L

FIG. 1. (a) Two-level system. (b) Geometry of the atom-laser
system.

E2(r, t) = P2e2a exp[i(k2. r —to2t)]+ H.c. (2)

Bp A

BI;
t [How+ HoF+ Ht P]+I.AP (3)

Here Ho& and HOF are the unperturbed Hamiltonians for the
atom and the field; H] is the atom-field interaction Hamil-
tonian and Lz is the relaxation operator, which involves con-
tributions from both spontaneous emission and atomic colli-
sions.

The equation for the density operator for the field p2 is
derived by tracing the density operator p over the atomic
variables and by applying projector operator techniques. The
following master equation results [21]:

Here a is the annihilation operator for the probe, a2 is the
polarization unit vector of the probe, P2 = —i(co2/U) ", and
V is the quantization volume. We assume Planck's constant
to be equal to unity here and in the following derivations.
The following assumptions are made in the derivation: (i) the
dipole approximation; (ii) the rotating-wave approximation,
with the applied and generated field frequencies assumed to
be very close to the atomic resonance; (iii) the Markov ap-
proximation, with the time scales associated with the field
dynamics assumed to be much longer than those associated
with the atomic dynamics; and (iv) the probe and the gener-
ated fields are so weak that it is sufficient to keep only terms
up to second order in the annihilation operator for the probe.

We write the equation of motion for the density operator
for the coupled atom-field system as
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X [at, [a,p2]])+H.c.

Here N is the number of atoms in the medium and

(4)

equations [26] for the density matrix elements of this system,
whose general form is given by P(r) =A'P( r)+B, where
9' is the vector of the density-matrix elements, A is a matrix,
and B is a vector.

For the closed two-level system, the familiar equations
[21] are

Q (i8) =
3o

dr e ' 'Q+ (r) =(P2 (i8)P2 (0))

+(P2 (0)P2 (i6))—2(P2 (i8))(P2 (0)),

C (i8)= dr e ' 'C (r) =(P2 (i8)P2 (0))
Jo

1
+iA)

T2

Pab

Pba

1

2(Pbb Pa )

2t Vb~

A A -+

where P2 = P ~z and P2 = P ~2 are operators related to
the polarization that drives the probe.

This master equation describes the characteristic change
in the probe's mode due to linear absorption and emission in
the presence of the pump. The functions C and Q" are

polarization correlation functions [21]: C is proportional
to the semiclassical susceptibility whereas Q+ corresponds
to the quantum fluctuations of the atomic system. Specifi-
cally, the real part of C+ determines the absorption and its

imaginary part determines the dispersion whereas Q+ con-
tributes to the quantum noise.

These correlation functions are calculated with the aid of
the quantum regression theorem [25], which we summarize
as follows: If

(;( 1))=X g;, ( 1
—2)(G,(t2)).

where t&~t2, then

(Gk(t2) G, (t, ))=g g;,(t, —t2)(G1,(t2) G, (t2)),

where G~ is a complete group of operators, g;, are c func-
tions, and the system is assumed to be Markovian.

In order to calculate these expectation values, we first
recall that for the two-level system, the polarization operator
1s

1

T2
—2i Vb,

iVb Vg
ba

c+ ldbal (—-2U2, 2+3+ U2, 3'pl).

Q = ldbal'& —2U2, 1'p1+ U22(1 2+1p2)
—2 U23'P1'P3j,

Here p„„+p»=1 and p~b=e '""p,b., rg is the equilibrium
value of the atomic inversion pbb

—p„, in the absence of the
pump, Vb, is the pump Rabi frequency, and T] and T2 are
the longitudinal and transverse relaxation times.

When the Laplace transform is applied to this equation, it
is possible to evaluate "Il'(z) = U(z) 1Ir (0), where
'Ir(0) = —A 'B is the steady-state solution and
U(z)=(zI A) ', wher—e I is the identity matrix. When
z = —i 6 the result gives the matrix elements required for the
calculation of the polarization correlation functions.

In terms of the U matrix and the steady-state va1ue of the
density matrix elements %(0), the polarization correlation
functions are thus given by

p= p'+ p = db. e1 la)(b I+ db. e11»(al.

Assuming that the probe is in the aR direction, it follows that

P2=P2 +P2 =P".eg+P . e~=db, la)(bl+db, lb)(al.
(8)

The quantum regression theorem requires the knowledge
of the expectation values of the polarization operators. These
expectation values involve the calculation of the elements of
the density matrix pb, = (la)(b l) . In fact, the terms

(P2 (0)P2 (0)) and (P2 (0)) and their Hermitian conjugates
always reduce to a sum of terms of the form (la)(bl). In
order to calculate these matrix elements we turn to the Bloch

da = —aa+ f(z), (12)

where

u= noC+ ( —i8) —= [2vrNcu2n/(h/2') Vc]C+ ( —i 8'),

in agreement with Agarwal [21],where we have dropped the

(0) from the steady-state density-matrix elements in these
equations for simplicity.

In order to examine the gain and the noise in these sys-
tems, we now follow Gaeta and co-workers [19]and convert
the master equation into a Langevin equation for the annihi-
lation operator a:



4842 ROSENHOUSE-DANTSKER, WILSON-GORDON, AND FRIEDMANN 52

0
P 0.02-

0.01

0

c 001
0
p. -0.02
0
~ -0.03

-5o 0
pump-probe detuning

50

0.04
0
& OO2-

o
0

0 -0.02

~ -0.04
-5o 0 50

pump-probe detuning

p 8

-Q.2 -' .
Ic -0.4-

tti

-0.6—

~ I

-40
I

-20 0
pump-probe detuning

20 40 60

FIG. 2. Typical absorption ( . ) and dispersion (—) (pro-
portional to n —1) spectra plotted as a function of BTz in the Dop-
pler limit: (a) the pump is resonant with the atomic transition

A, Tz=O and (b) the pump is detuned from the atomic resonance
frequency such that 5

& T2 = —40. Other parameters are
IIT, =2(1/Tz), Vb, Tz= 10, and DTz= 50,
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z=tcln determines a steady-state traveling-wave situation,

c/n is the phase velocity of the probe, and f(z) is the Iluc-

tuation operator such that (f(z) ) =0. This equation is easily
derived by multiplying the master equation from the left by
a and taking the trace over the field variables.

Second-order correlation functions of f(z) can be derived
in a similar way from the master equation by multiplying it
by the number operator. Thus, in agreement with Gaeta and
co-workers [19], the second-order correlation functions for
the fluctuation (noise) operator are

FIG. 4. For a detuned pump (a) the gain spectrum plotted as a
function of BTz with (—) and without ( . ) Doppler broaden-

ing and (b) the noise spectrum plotted as a function of 8'Tz with

(—) and without ( . . ) Doppler broadening. The parameters
are 1IT, =2(1/Tz), Vb, Tz=10, A, Tz= —40, and DTz=50.

and therefore over the interaction length, the amount of
quantum noise introduced by the atomic fIuctuations is given
by

(f'(z)f(z')) = oRe[Q' ( — ~) —&' ( —~)]~(z—z'),
(13a)

(f(z)f'(z'))=~oRel:0' ( —i~)+&' ( —i~)]~(z —z').
(13b)

Integration of the Langevin equation over the interaction
length leads to the following equation [19], which is the
familiar equation for a linear amplifier (see, e.g. , [27]):

(FtF) = Re[g ( —&8) —C+ ( —ib)].
2 Re[C+ ( —i 8)]

Finally, the Doppler-broadened spectra for copropagating
pump and probe beams are obtained by averaging numeri-
cally over all the correlation functions according to

L

a(L) = ga(0) +F=ea(0) + f—(z) e t' ldz,
00

(14)

[noise(a) ]u((at —(a ")) (a —(a) )) —=(ftf)

in which g is the gain of the probe and I' is the noise opera-
tor related to the probe amplification in a strongly driven
atomic system. Also, according to Gardiner [28],

4.5—

3.5—

(~i ~)la= ~D ]

X exp—

dA', ( (b, ', , 8') I

(~t —~i)'
D2 (17)

Ch

0
D

t'ai

C p
ut
CD

-1
-50 0 50

pump-probe detuning

ED
CO

c 1
0
Ctt

Q
Ic

gati

-1
-50 0 50

pump-probe detuning

0—2.5—

2—

1.5—

0.5—

FIG. 3. Typical gain ( ) and noise (—) spectra plotted as
a function of 8'Tz in the Doppler limit for noL =40: (a) the pump is
resonant with the atomic transition A, Tz=O and (b) the pump is
detuned from the atomic resonance frequency such that

A, Tz= —40. Other parameters are 1IT, =2(1/Tz), V„,Tz= 10, and
DT2= 50.
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propagation length for a detuned pump. The parameters are
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