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Electromagnetic field quantization in absorbing dielectrics
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The electromagnetic field is quantized in dielectric media that show both loss and dispersion. The complex
dielectric function of the medium is assumed to be a known function and the loss is modeled by Langevin
forces in the forms of noise current operators. The noise current correlation function is related to the assumed
dielectric function by the fluctuation-dissipation theorem. Field quantization is carried out for the infinite

homogeneous dielectric, the semi-infinite dielectric, and the dielectric slab, where the fields in the second and

third cases are restricted to propagation perpendicular to the dielectric surfaces. The forms of the vector
potential operator are obtained in the different spatial regions for all three geometries, and in each case the

required canonical commutation relation for the vector potential and its conjugate generalized momentum

operator is verified. The spatial dependence of the vacuum field fluctuations is calculated for the two dielectric
geometries that have surfaces.

PACS number(s): 42.50.—p, 12.20.—m

I. INTRODUCTION

The growth in experiments on quantum optical processes
that take place inside material media has stimulated the de-
velopment of techniques for the quantization of the electro-
magnetic field in dielectrics. There have been several presen-
tations of the quantization procedure for various special
cases of the general problem. The treatments have mainly
considered lossless dielectrics in which the dielectric func-
tion a(r, co) is real, and they cover nondispersive inhomoge-
neous materials with interfaces, in which a(r, co) is indepen-
dent of to [1—3], dispersive homogeneous materials in which
e(r, co) is independent of r [4,5], and, more generally, disper-
sive inhomogeneous materials [6,7]. The quantization has
been carried out explicitly for simple geometries of nondis-
persive media, such as semi-infinite samples [8—10] and
slabs [11],and quantum-optical effects at dielectric interfaces
have been investigated [12].The general features of quantum
electrodynamics in the presence of dielectrics have also been
studied, with detailed applications to processes in specific
geometries of material media [13], and with a careful deri-
vation of the multipolar form of the Hamiltonian based on
the canonical quantization procedure [14].These derivations
assume a known phenomenological form for the dielectric
function, but the theory has also been developed for micro-
scopic models in which the oscillator variables of the dielec-
tric are explicitly included, so that the form of the dielectric
function is itself determined by the model; the quantization
procedure employs the coupled polariton modes of the inter-
acting field-oscillator system, and results have been obtained
for both homogeneous [15] and inhomogeneous media [16].

A dielectric that shows dispersion must inevitably be
lossy, in accordance with the Kramers-Kronig relations, and
it is intrinsically inconsistent to assume the presence of one
property without the other. However, the quantization of the
electromagnetic field in lossy, or absorptive, dielectrics is
considerably more complicated since the loss inevitably

couples the field to a reservoir, whose oscillators act as noise
sources. A relatively simple representation of the loss mecha-
nism is provided by a distribution of fictitious optical beam
splitters in an otherwise lossless dielectric [17];these remove
a portion of any incident field and also add a corresponding
portion of the reservoir noise fields. More fundamental mi-
croscopic models have also been employed to quantize the
field in terms of polariton and reservoir operators [18—20];
the complex dielectric function in these calculations is again
determined by the model, and the results obtained so far
apply to homogeneous media. They have been used to cal-
culate the vacuum field fluctuation in absorbing dielectrics
[21] and so to find the spontaneous emission rate for an
excited atom; the expression obtained agrees with that de-
rived from fluctuation-dissipation theory, where formal quan-
tization of the electromagnetic field is unnecessary. The
method has also been extended to obtain the field-field cor-
relation function between different space-time points in
terms of the complex permittivity of an arbitrary dielectric
material [22]. Another approach to the problem of quantiza-
tion in lossy dielectrics uses Langevin forces to represent the
noise, and this method has been applied to calculation of
quantum-optical processes in dielectric slabs [23,24] and of
Casimir effects in absorbing media [25].

The aim of the present paper is a more comprehensive
treatment of electromagnetic field quantization in dispersive
and absorbing dielectrics. The cases of an infinite homoge-
neous medium, a semi-infinite medium with a Oat surface,
and a plane parallel slab of material are treated for light
beams that propagate perpendicular to the surface with plane
parallel wave fronts and a single linear polarization direction.
The three geometrical arrangements of dielectric are shown
schematically in Fig. 1; brief details of the quantization for
the first two have been given previously [26].The method of
Langevin forces is used here, but it is shown where appro-
priate that the results agree with microscopic model calcula-
tions, beam splitter models, and Casimir force calculations.
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a(to) = [n(to)], (2.1)

where n(co) is related to the real refractive index rt(co) and
extinction coefficient tc(co) by

n(to) = rj(to)+i tr(to) (2.2)

These functions are defined for positive frequencies, but their
forms for negative frequencies are obtained from the cross-
ing relations [27]

tt, (oo)

e( —c0) = e*(ro), n( —ro) = n*(to),

rt( —co) = rt(co), a.( —co) = —ir(co). (2.3)

tt, ((o)
The form of e(co) in the upper half of the complex co plane
is restricted by causality considerations to have neither poles
nor zeros. It also conforms to the limit [27]

s(to)~1 for co~~ in any manner. (2.4)

(c)

a, (m)

tt, (to)

The function e(co) —1 has the nature of a generalized sus-
ceptibility, and its properties outlined above are shared by all
functions of similar nature, otherwise known as linear re-
sponse functions or Green functions [28].

We consider electromagnetic waves that propagate paral-
lel to the x axis with their transverse electric and magnetic

n

vector operators E(x, t) and B(x,t) parallel to the y and z
axes, respectively. The field operators satisfy Maxwell's
equations in the forms

FIG. 1. Representations of the three spatial arrangements of di-

electric treated, showing notations for the destruction operators
used in the definitions of the vector potential operator, (a) infinite
homogeneous dielectric, (b) semi-infinite dielectric, and (c) dielec-
tric slab. Operators denoted by the same symbols are generally
given by different expressions in the three geometries.

and

oE(x, t)
Bx

BB(x,t)
Bt

BB(x,t) AD(x, t)
Bx BI;

= P,o + PoJ(x, t),

(2 5)

(2.6)

The Langevin method has the advantages that it is valid for
an arbitrary dielectric function and that the avoidance of any
specific model for the dielectric material removes the need
for complicated diagonalization of material, reservoir, and
field variables. The forms of the quantized field expressions
in the different spatial regions are determined for each geo-
metrical arrangement of dielectric, and it is demonstrated
that the canonical commutation requirements are satisfied.
This demonstration provides a rather stringent test of the
accuracy of our calculations [9]. The present paper is re-
stricted to the formal quantization of the electromagnetic
field and the evaluation of vacuum fluctuation spectra. The
resulting operator expressions are easy to use, and they pro-
vide all possible information needed to calculate the devel-
opment of measurable properties of light beams as they
propagate through the dielectric samples.

E(x, t) =E+(x,t)+E (x, t),

B(x,t)=B+(x,t)+B (x, t),
(2.7)

where D(x, t) represents the electric displacement; The trans-

verse current operator j(x, t) plays the role of a Langevin
force associated with the noise sources. The forms of the
Maxwell equations given in (2.5) and (2.6) are identical to
those used by Lifshitz in his derivation of the Casimir force
between two parallel dielectric slabs (see the very clear dis-
cussion in Ref. [29]).An alternative and equivalent formula-
tion [19]expresses the current as a time derivative of a noise
reservoir polarization, which appears in the displacement
term in (2.6). The field operators are separated into positive
and negative frequency components in the usual way:

II. PRELIMINARIES and Fourier transform operators are defined according to

The dielectric function e(x, co) for the three spatial ar-
rangements of material to be considered is equal to unity in
the free-space regions and is equal to e(co) in regions occu-
pied by the dielectric medium. The complex refractive index
n(co) is related to the material dielectric function e(cu) in the
usual way,

1
E+(x, t) = dcoK (x, c0)e

$2~~ o

P oo

B+(x,t) = deil (x, to)e
$2~& o

(2.8)
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M(x, co) = eoe(x, co) 6 (x, co), (2 9)

and the frequency domain Maxwell equations are obtained
from (2.5) and (2.6) as

ojF(x, co) = i co&+ (x, co )Bx
(2.10)

and

8A'(x, co)

Bx

i coe(x, co)
z W(x, co)+ p, o~ (x, co).

C

(2.11)

with similar separations and transforms for the displacement
and noise current operators. The negative frequency compo-
nents are given by the Hermitian conjugates of the positive
frequency operators.

The Fourier transform displacement operator is defined by

and this result is used in the following sections to derive the
forms of the vector potential operator for the various geom-
etries of absorbing dielectric sample.

The form of the generalized momentum operator that is
conjugate to the vector potential in the quantized field theory
is determined by the well-known techniques of Lagrangian
mechanics. The Lagrangian densities of systems formed
from regions of dielectric that do not fill all of space are the
same as that derived for an unbounded dielectric [18], but
modified by appropriate restrictions on the spatial extent of
the matter that forms the sample. The resulting canonical
commutators have the same forms not only in free space and
in unbounded dielectric media, but also more generally in the
semi-infinite dielectric and the slab considered in the present
paper. It is convenient to assume a gauge in which only the
transverse part of the vector potential participates in the
quantization [30]. This could be the Coulomb gauge, in

which the conjugate momentum is —eoE(x, t) and the ca-
nonical commutation relation is

It is convenient to express the field operators in terms of a
vector potential operator A(x, t), which has decompositions
similar to (2.7) and (2.8), using the relations

[A(x, t), —eoE(x', t)]= (i6/S) 8(x —x'), (2.18)

or the multipolar gauge, in which the conjugate momentum
is D(x, t) a—nd the canonical commutation relation is

(x, co) = i co A~+ (x., co),

(2.12) [A(x, t), D(x', t)]—=(ifilS) 8(x —.x'). (2.19)
BM+ (x, co)

M+(x, co) =
Bx

The first Maxwell equation (2.10) is automatically satis-
fied when these expressions are substituted, while the second
Maxwell equation (2.11) gives

8 M (x, co) co e(x, co) .
,A+(x, co) = p, o~'+(x, co).

(2.13)

The vector potential operator is given by standard Green-
function methods in the form

M~+(x, co) = S dx' S'(x,x', coP'+(x', co), (2.14)
J —oo

where S is an area of quantization in the y-z plane, perpen-
dicular to the direction of propagation, and the Green func-
tion is determined by solution of

P+(x, co)~ (x', co')]= u(co) B(x—x') 8(co —co'), (2.20)

where the real function a(co) is determined by the condition
that (2.20) should be consistent with (2.18) and (2.19). The
noise current operators are also assumed satisfy

P'+(x, co)~'+(x', co')] =@' (x, co)~' (x', co')] =0. (2.21)

III. INFINITE HOMOGENEOUS DIELECTRIC

A. Field quantization

These two commutators are mutually consistent because, in a
fully microscopic treatment, aoF. and D differ by a contribu-
tion proportional to the variables of the dielectric material,
which commute with the vector potential A.

The field commutation relations are closely related to the
corrvnutation properties of the noise current operator, or
Langevin force, in (2.13). For noise that is uncorrelated at
different positions and different frequencies, the latter com-
mutation relation has the form

8 co e(x, co) ~ po
2 + 2 5'(x,x', co) = 8(x —x').

(Bx c )
(2.15)

We consider in this section the field quantization in an
absorbing dielectric medium that fills all of space. The di-
electric function is accordingly

The Fourier-transform Green function defined by

t oo

e(x, co) = e(co) = [n(co)] for all x. (3.1)

X(x,k, co) =
2~~- dx ' Ã(x, x', co)e'"' (2.16) The coordinate-space Green function is obtained by contour

integration of (2.17) as

is easily found for each spatial region, where e(x, co) has the
value unity or e(co), independent of x. It has the form S'(x,x', co) =

2M~ —~
dk S'(x, k, co)e

ikx

Ã(x, k, co) =
$2$7S k —[co e(x, co)lc ] ' (2.17) exp

280ccon(co)S

i i con( co)
~

x —x '
~

~

(3.2)
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M+(x, co) =
2eoccon(co) g

(
dx exp

icon(co) lx x—'l )

c I

X~+(x', co). (3.3)

It is convenient to separate the vector potential operator
into rightwards and leftwards traveling contributions as

M+(x, co) =M~(x, co)+M~ (x, co), (3.4)

and a particular integral solution of (2.13) for the vector
potential operator is obtained with the use of (2.14) as

[~g(x, co),~~(x, co')] = [~1(x, co),~L(x, co') ]= 8(co —co'),
(3.12)

[~~(x, co),~~(x, co')] = [~~(x,co),~~(x, co')] =0.

sR(x, co) = i
2coK(co) '~ t'~ t icon(co)(x —x')

dx' expl
c J —oo c

The notation for these rightwards and leftwards operators is
illustrated in Fig. 1(a). They reproduce the vector potential
commutation relations (3.7) and (3.8), and they convert (3.5)
and (3.6) to

where Xf(x', co) (3.13)

X~ (x, co) (3.5)

i "& t icon(co)(x —x') ~

,A~ (x, co)=, , dx' exp
2eoccon( co) J tC

and

2coK(co) ~
"

& t icon(co)(x —x') ~

rL(x, co) = i dx' expl-
c t J~ C

Xf(x', co). (3.14)

i ™ t icon(co)(x —x')
MI+(x co)= dx' exp'—

28oc con co C

It will be seen that these operators provide very convenient
representations of the electromagnetic field variables.

X~+(x', co). (3.6) B. Canonical commutation relation

These rightwards and leftwards vector potential operators
have the commutation properties

[M„+(x,co),M~(x, co')] = [ML (x, co),M~ (x, co')]

u(co) 6(co —co')

8eocco3ln(co)l K(co)
(3.7)

and

In order to evaluate the canonical commutation relation
(2.18), with the electric field operator obtained from (2.12),
we need the commutation relations of the new operators
gx, co) at different positions. These are readily obtained from
(3.10), (3.13), and (3.14), and the results are

[~~(x,co),~~t(x', co') ]= [~L(x', co'), ~Lt(x, co) ]
= 8'(co —co')exp([icoq(co)(x —x')

[M~ (x, co),ML (x, co ') ]= [M~L+ (x, co),M~ (x, co
'
)]= 0,

(3.8) and

—coK(co)lx —x I]/c) (3.15)

where (2.20) has been used.
It is advantageous for the calculations that follow, despite

the accompanying proliferation of symbols, to introduce
boson-type operators as replacements for the operators de-
fined above. We thus define a modified Langevin force op-
erator by

[~~(x,co),~~t(x', co')]

= [&1(x, co ),&R(x, co)]

2 K(co)= 8(co —co') 0(x —x') sin
v(~)

cog(co)(x —x') i

c

f(x, co) —~+(x, co)/gn(co), (3 9)
t coK(co)(x x )1

X exp c (3.16)

whose commutation relation from (2.20) has the boson form

[f(x,co),ft(x', co')]= 8(x —x') 8'(co —co'). (3.10)

This local commutation property of the force operators also
holds for the bounded media considered in Secs. IV and V.
New operators for the vector potential are introduced by

( (~) ) 1/2

~1 (x, co) =
2 & .2 ~1(x, co), I=R,L,

8aocco n co j K co t
(3.1 1)

where the gx, co) operators also have boson-type commuta-
tion relations when they are evaluated at the same positions,

where 0(x —x') is the unit step function. It is seen that, apart
from a phase factor in (3.15), the ~~ and ~1 operators obey
independent boson commutation relations in the absence of
dielectric loss, when K(co) = 0. However, the presence of loss
produces a decay of the like-operator commutators (3.15)
with spatial separation and a coupling of the leftwards and
rightwards operators in the commutator (3.16). The coupling
is caused by the interaction of these operators with common
noise sources associated with the absorption. A step function
occurs in (3.16) because the two kinds of waves only sample
the same noise sources when they are evaluated at positions
such that they have passed through a common region of the
dielectric. The physical requirements on the quantization
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[A(x, t), —eoE(x', t)]

=l
30

~(~)
dc'

8 rreoc co r/( co) K( co)

exp[icun(co) ~x
—x' ~/c)

n(co)

procedure are, however, expressed not by the commutation
properties of these subsidiary operators but by the canonical
commutation relation (2.18), and with the use of (3.15) and
(3.16) this can be put in the form

delta function have been used. The required form (2.18) of
the canonical commutator is thus obtained from the quanti-
zation procedure outlined above, and the choice of a(cu)
made in (3.18) is justified. The alternative form (2.19) of
canonical commutation relation is also satisfied, as it has the
same integral representation as (3.20) but with an additional
factor of e(cu) in the integrand; the end result is exactly the
same as in (3.21) because e(cu) has no poles in the upper
half plane and also satisfies (2.4).

The final form of the vector potential operator in a homo-
geneous medium in Fourier space, obtained from (3.11) and
(3.18), is

exp[ —icon*(cu) ~x
—x'~/c]

+
n *(co)

(3.17) I' /I r/( co)

[ ( )]'S ~~(x, co), I=R,L,

The nature of the function u(co), which was introduced in
the commutation relation (2.20), is determined by the condi-
tion that the right-hand sides of (2.18) and (3.17) should be
identical. Consider the choice

(3.22)

and the time-dependent form obtained with the use of (2.8)
and (3.4) is

n(cu) =4eokcu'rj/(cu) K(co)/S (3.18)

Then with use of the crossing relations (2.3), (3.17) becomes

[A(x, t), —eoE(x', t)]

f' oo fi, t/(cu)
A (x t)= dcu

J p 47reocco[n(cu)] S i

x [~R(x, co) + ~c (x, cu) ]e (3.23)

dc'
2mcSg

exp[i cun(cu) fx —x' [/c]
n(cu)

(3.19)
Corresponding expressions for the electric and magnetic field
operators are derived with the use of (2.12). The latter re-
quires the results

and with an application of the standard rules for contour
integration, this can be written

[A(x, t), —eoE(x', t)]

ui~R(x, co) con(cu)=l eR (x, co ) + t
Bx c

f 2 co K ( cu ) ) 1/2

f(x,~)
(3.24)

t
oo goo

2~'SJ "J
exp[ik(x —x')]

dk co
k c —cu [n(co)]

(3.20)

where there are simple poles in the upper and lower halves of
the complex k plane at k = ~ cun(co)/C. It is now possible to

perform the integration over ~; the co integrand is itself a
linear response function, closely related to the Green func-
tion in (2.17), with no poles in the upper half of the complex
co plane. The integral along the real co axis in (3.20) is there-
fore the negative of the integral around the semicircle at
infinity in the upper half plane, so putting co = p exp (i'll), we
find [19]

8&L(x, co)

Bx

cun(cu) i 2 co K(co)
&L(x, co) —t ' f(x, co),

C i C

(3.25)

7 oo

E+(x, t) =i
&0

fl, cu 'g ( co)
dc'

47reoc[n(cu)] Si2

1/2

which are readily obtained from (3.13) and (3.14). The field
operators are thus

lfl
[A(x, t), —eoE(x', t)]= —

2 lim2mS
f~ (oo

d6 dkp e '

o and

x [~R(x, co) + ~L(x, cu)]e (3.26)

exp[ik(x-x')]
X

2C2p2e2(0[nn(pe i')]2

ifi, f
dk exp[ik(x —x')]

2mSg

( It cur/( cu) 1

8+(x, t) = i dco 3 [~R(x.cu) sc(x co)]e
g 0 ( ~aoc

(3.27)

l6= —8(x —x'),
S

(3.21)

where the property of the complex refractive index obtained
from (2.1) and (2.4), and a standard representation of the

It would appear from the derivation of the expression
(3.23) for the vector potential operator, from the particular
integral (3.3) onwards, that the complete solution should also
include a complementary function contribution. However,
the destruction operators (3.13) and (3.14) that occur in
(3.23) can be written
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BR(x, cu) =~R(xo, cu)exp
i icon(cu)(x —xo) ~ (Oi cY(x, co) S(x,co') ~0) =,F(x, co) 8'(cu —co'). (3.33)

i 2cuK(co) ~
"

I ~ i icon(co)(x —x') ~

dx' explc

Xf(x', cu) (x)xo) (3.28)

and

icon(co)(x —xo) ~

~1 (x, co) = ~L(xo, co)exp—
C

i 2coK(co) ' «o i icun(cu)(x —x') ~

+g dx'exp'—
c

Xf(x', co) (xo~x), (3.29)

which have the forms of complementary function plus par-
ticular integral. %'e note that in an infinite sample of absorb-
ing dielectric material, unlike the semi-infinite and slab
samples, there are no contributions to the solution from
waves incident from outside the dielectric. The forms de-
rived above are therefore complete and the degrees of free-
dom are specified by the continuum of noise currents. The
Hilbert space consists of the electromagnetic vacuum state,
denoted ~0), and the excited states produced by application
of combinations of the ft(x, cu)

(0~ H(x, cu) 8'(x', cu') iO) = cucu'(0~M+(x, cu)M~ (x', cu') i0)
(3.30)

when account is taken of the vanishing of terms in which
destruction operators act directly on the vacuum state ~0).
Thus with the use of the form of the vector potential operator
from (3.22) and the commutation relations (3.15) and (3.16),
the field-field correlation function becomes

(0~ K(x, cu) 8'(x', co') ~0)

C. Vacuum field fluctuations

A straightforward application of the quantized field opera-
tor is provided by the derivation of the electric field fIuctua-
tion in the vacuum state of the electromagnetic field. Con-
sider first the field-held correlation function in Fourier space,
obtained from (2.12) as

It follows from (3.31) and (3.32) that the power spectrum is
given by

fL co r/( co)
M(x, co) = e,cS ~n(cu)~'~

=2ficu ImÃ(x, x, co). (3.34)

This expression in terms of the imaginary part of the Green
function agrees with the standard form of the fIuctuation-
dissipation theorem [28] (a difference of 2m from the theo-
rem given in this reference is the result of a different con-
vention for Fourier transforms). The same expression for the
field-field correlation function can therefore be obtained ei-
ther from the quantum-mechanical second-quantization pro-
cedure developed here or from the methods of statistical me-
chanics in which the required Green function is determined
classically.

The expression obtained from (3.33) and (3.34) can be
compared with the transverse field-field correlation function
in a three-dimensional absorbing dielectric [21],

@co
(O~F (r, cu)F (r, cu')~0)= s y(cu)ci(cu —cu'),

3~epC
(3.35)

(OP(x, cuP(x', cu') ~0) = (2eolc/S) cu Im[e(cu)]

&& 8'(x —x') 8'(cu —cu'). (3.36)

This is another example of a correlation function that can be
obtained independently of the quantization procedure by an
application of the fiuctuation-dissipation theorem [29].

which is independent of the extinction coefficient cc(cu), in
contrast to the one-dimensional correlation function. The
three-dimensional field-field correlation function (3.35) de-
termines the rate of spontaneous emission by an excited atom
embedded in the absorbing dielectric. The one-dimensional
field-field correlation function obtained from (3.33) and
(3.34) similarly determines the rate of spontaneous emission
by an excited system whose radiation is restricted to electro-
magnetic field modes that propagate in only a single dimen-
sion, for example, an infinite two-dimensional dipole sheet
that is coherently excited over its entire area.

The noise-current correlation function is also readily cal-
culated with the use of (3.9), (3.10), and (3.18) in the form

28pcS

exp[icon(co) ~x
—x'~/c]

n( cu)

exp[ —icun*(cu) ~x
—x' ~/c]+ 8'(cu —co'). (3.31)

(0~ K'(x, cu) Ã(x', cu') ~0) =2fi co 1m[K(x,x', co)) ci(cu —cu').
(3.32)

The value of the correlation function at a common spatial
position determines the power spectrum W(x, co) of the field
fIuctuations according to

The correlation function can also be expressed in terms of
the coordinate space Green function (3.2) as

D. Comparisons with previous work

The expression (3.23) for the vector potential operator is
precisely the same as the form obtained in Eq. (5.21) of Ref.
[19], except for the replacement of n(co) by ~n(cu)

~

in the
square-root factor in the integrand of (3.23), which corre-
sponds to an unimportant change in the phase of the destruc-
tion operators defined in (3.11). However, there are impor-
tant differences in the formalisms that lead to the two
expressions. The microscopic model of [19]has the advan-
tages that it derives the explicit diagonalization of the
coupled electromagnetic field, dielectric oscillator, and reser-
voir to construct the overall polariton modes of the system,
and the form of the dielectric function is derived in terms of
the parameters of the model. Much of the derivation in [19]
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considers a dielectric with a single resonance, but the expres-
sions obtained for the quantized fields are not so restricted,
as discussed at the end of Sec. IV in this reference. The
microscopic canonical quantization theory thus provides a
general self-consistent theory of the dielectric properties and
the electromagnetic field operators. On the other hand, the
Langevin force calculation presented above has the advan-
tage that it is simpler, in that the variables of the dielectric
medium need not be considered explicitly, and it is also gen-
eral, in that the dielectric function can have any form con-
sistent with causality requirements. However, the dielectric
function for a particular application is not provided by the
theory, and its form must be obtained from independent cal-
culations or experimental results.

The Langevin force approach has also been used in the
calculation of Casimir forces between a pair of absorbing
dielectric plates [25].This work applies to a dielectric with a
single resonance and the field is quantized only in the re-
gions of free space around and between the plates. Neverthe-
less, the Langevin force operator within the dielectric is
needed to derive these field operators, and its form can be
compared with that derived here from (3.9) and (3.18). The
two expressions are found to be in exact agreement after
allowances are made for different units and normalization
conventions.

The simplest approach of all to the field quantization rep-
resents the absorption in the dielectric as being caused by a
distribution of beam splitters [17]. Each beam splitter re-
moves a small fraction of the intensity of a propagating light
beam and simultaneously couples a small fraction of vacuum
field into the beam, in such a way that the input and output

mode operators at the beam splitter both satisfy boson com-
mutation relations. A continuously absorbing material is rep-
resented by the limit of a dense distribution of feeble beam
splitters. The beam splitter model was applied to propagation
in the positive direction and the relation between mode op-
erators at two different points is identical to that given in
(3.28). The relation between mode operators and the electro-
magnetic field operator, analogous to (3.26) was not ob-
tained, but the formalism is adequate for calculation of such
quantities as the effects of propagation on direct detection
noise and on the initial optical squeezing of a light beam
[17].

a(x, co) = e(co) =[n(co)] for x)0,
1 for x&0. (4.1)

The vector potential operator is again determined by (2.13)
and (2.14), with a Green function obtained by solution of
(2.15). The particular integral part of the Fourier-transform
Green function is given by (2.17) but there are now also
complementary function parts, whose coefficients are deter-
mined by the usual electromagnetic boundary conditions at
the interface. A straightforward calculation leads to the result

IV. SEMI-INFINITE DIELECTRIC

A. Field quantization

We consider in this section the field quantization in a
space that is half occupied by vacuum and half by an absorb-
ing dielectric medium. Brief details of the calculations have
been reported previously [26].The dielectric function is now

5'(x, k, co) = &

P p C/CO
—

1 COX/C

x~0,
$2rr5 n(co)+ 1 k+ [con(co)lc] '

(k l ) + I icon(co)xlc ikx

x~0,
n(co)+ 1 k —[con(co)/c] k —[con(co)/c]

(4.2)

and the corresponding coordinate-space Green function, with x assumed positive, is

$(x,x', co) = &

T(co)exp
2 8pc WAS

ico[n(co)x' -x]
x&0, x'&0,

~ 2aoc con(co)S
—R(co)exp

i icon(co)(x+x') ~

+ exp
C

icon(co) )x x'
~

)—
x~0, x'~0,

/

(4.3)

where

n(co) —1
7"(co)=

( ), R(co) =— (4.4)

are the usual amplitude transmission and refIection coeffi-
cients, respectively, for light incident on the interface from
the vacuum. The corresponding coefficients for light incident
from the dielectric are, respectively, n ( co) T( co) and
—R(co). The two kinds of terms in the large brackets of the

Green function (4.3) for x)0 are typical of interface sys-
tems. Thus the first term corresponds to communication be-
tween the points x and x' via reflection in the interface,
while the second term corresponds to direct communication
between the two points. The first term tends to zero in the
limit coK(co)x/c&)1, while the second term reproduces the
form (3.2) for an infinite homogeneous dielectric. The Green
functions given in (4.3) determine the electromagnetic field
quantization, but in order to calculate the vacuum field Auc-
tuation spectrum, we also need the corresponding expression
in the free space to the left of the interface,
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+ exp
t icd~x x—'~~

x&0, x'&0.
c

/

l i co(x+x ')
Ã(X,X', co) = R(co)exp

28pc LES C

(4.5)

x =0, and its form is still given by (3.14). The contribution in

BR(x, co), which represents a rightwards-traveling wave in the
dielectric, has a complementary-function part determined by
the electromagnetic boundary conditions and a particular-
integral part determined by the Green function (4.3); the
complete expression for the operator is

The expressions (4.3) and (4.5) agree with more general
Green functions derived for interfaces in three dimensions
[31].

A particular integral solution for the vector potential op-
erator is now obtained by substitution of the Green function
into the integrand of (2.14). However, in contrast to the in-
finite homogeneous dielectric treated in Sec. III, the com-
plete form of the vector potential operator for the semi-
infinite dielectric includes a complementary-function part
that corresponds to a free field incident from the vacuum at
negative x towards the interface at x=0. It is convenient to
write the vector potential operator in the vacuum as

ZR(x, cd) = n(co)
„2T(co)uR(cd) + t

I 2 co K ( co ) ~

X —R(co)
Jp

dx' exp
t icon(co)x' )

f(x', cd)
C

X exp
t i cdn(co)xl

(4.10)

icon(co)x' l
+ dx' exp'— f(x', co)

i

'I 1/2
/ h,

A+(x, t) = dcd~
J p i 4178pccoSI

X [ ( )
iQJxlc+ ( )

Eco xlc] LcrJt (0
(4.6)

[ R(~) R(~')] = ~(~—~'). (4.7)

has its well-known free-space form [5].The leftwards propa-
gating field, corresponding to the contribution with destruc-
tion operator ~z(co), has both a complementary function and
a particular integral part. The complete form of this operator,
determined by the usual electromagnetic boundary condi-
tions and by the Green function (4.3), is

t 2 cd'g(cd) K(co) i
mz( co) = R(cd)~R(cd) + i T(co) '

C /

icon(co)x
X dx'exp f(x', co).

Jp C
(4.8)

where the rightwards-propagating incoming field, corre-
sponding to the contribution with destruction operator
~R(cd) with commutator

This expression reduces to the form (3.13) obtained for the
infinite homogeneous dielectric when cd K(cd)x/c&) 1, but in
general there are additional terms that result from the pres-
ence of the interface. It is readily verified that the operator
~R(x, cd) defined by (4.10) continues to satisfy the relation
(3.24), and the expressions (3.26) and (3.27) for the electric
and magnetic field operators remain valid for x)0 inside the
dielectric. The degrees of freedom for the semi-infinite di-
electric include the incoming field described by ~R(cd) in
addition to the continuum of noise currents, and the Hilbert
space is correspondingly augmented by the excitations of
this field.

The forms of the Green function for the semi-infinite di-
electric given in (4.2) and (4.3) are useful in themselves for
calculations of the electromagnetic vacuum-field Auctua-
tions, but if these are not required, the vector potential op-
erators can be calculated more directly by a straightforward
application of the boundary conditions [26]. The problem is
essentially that of finding the relation between input and out-
put operators at the interface [32]. Thus with the form of
A+(x, t) given in (4.6) for x(0 and the electric and mag-
netic field operators given in (3.26) and (3.27) for x)0, the
boundary conditions at x=O give

It is straightforward to show that this leftwards operator has
the simple commutation relation

[v(~)]'"-.( )+-.( )= ["(0, )+=.(o, )]n co
(4.11)

[ z(~) z(~')]= ~(~ —~'). (4.9)
and

The notation for incoming and outgoing field operators is
illustrated in Fig. 1(b). Expressions for the electric and mag-
netic field operators for x(0 are very easily obtained from
(4.6) with the use of (2.12). The expression for the vector
potential operator in the vacuum half-space obtained from
(4.6) and (4.8) agrees with that used in calculations of the
Casimir force between a pair of absorbing dielectric plates
[25] when the plates are coalesced, shifted, and thickened to
form a semi-infinite slab, and account is taken of different
units and normalization conventions.

It is convenient to retain the form (3.23) for the vector
potential operator inside the dielectric. The contribution in
~z(x, co), which represents a leftwards-traveling wave in the
dielectric, is unaffected by the presence of the interface at

R(~) — z(~) = [ 7(~)]'"["R(0 ~) "z(0 cd)] (4.12)

where a minor change from Eq. (7) in [26] results from a
different choice of phase in the definition of the destruction
operator (see Sec. III D). These equations can be solved for
the output operators ~z(co) and ~R(O, cd) in terms of the input
operators ~R(co) and ~z(O, Cd), regarded as known. The gen-
eral forms (4.8) and (4.10) of the unknown operators are then
easily rederived with the use of (3.14) and (3.28). Note that
the input operator ~z(x, co), which is expressed entirely in
terms of the noise operators for the absorbing dielectric ac-
cording to (3.14), replaces a free wave incident from + ~ in
the case of a nonabsorbing dielectric [10].
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I: L(~) R(~')] = ~(~ —~')R(~). (4.13)

B. Canonical commutation relation

The evaluation of the canonical commutation relation
(2.18) is more complicated for the semi-infinite dielectric as
the field operators themselves have more complex structures
and there are two spatial regions to consider. Thus in the
vacuum, the basic operator commutation relations are given
by (4.7) and (4.9), with a cross commutator obtained by the
use of (4.8) as

K( co)
+i R(co)exp

7/ co

(i con(co)(x+x') ~

icon*(co)(x+x') ~

—R*(co)exp
C

(4.14)

[&R(x,co),&R(x, co )]
/ icosi(co)(x —x') —coK(co) ~x

—x
~= ci(co —co') exp

C

The commutation relations of the operators in the dielectric
are obtained from (3.10), (3.14), (4.7), and (4.10) as

the corresponding relation for ~L(x, co) is the same as in
(3.15), and

( icon(co)(x+x') &

[~R(x, co),~L(x', co')] = [ ~L( x', co'), ~R(x, co)]*= 8(co —co') —R(co)exp
C t

2K(co)
+ 0(x —x') sin

v(~)
co 71( co) (x —x ' ) ) / co K ( co ) (x —x '

) \

expc C
(4.15)

[mR(co), ~L(x', co')] = 0, (4.16)

These commutation relations reduce to the forms (3.15) and

(3.16) appropriate to an infinite dielectric medium for points
far from the interface where coK(co)x/c&)1. The operators
for the incoming waves on opposite sides of the interface
commute,

The canonical commutation relations (2.18) and (2.19)
can now be evaluated with use of the expressions (3.23),
(3.26), and (4.6) for the vector potential and electric field
operators, together with the commutators given above. There
are four cases to check, with both positions x and x' either in
the vacuum or in the dielectric. Consider first the canonical
commutator (2.18) with both positions in the dielectric. It is
straightforward to show that

but the other pairs of operators in the vacuum and dielectric
half-spaces have the nonzero commutators [A(x, t), —eoF(x', t)]

n*(co)T*(co)
[~R(~),.R(X,~')]= ~(~ —~ ) . , ]1/2

LV co)

icon*(co)x'~
X exp (4.17)

ifi I exp[icon(co)(x+x')/c]
2~CSJ

dco —R(co)
n(co)

exp[icon(co) ~x
—x' ~/c]

+ X~O, x')0. (4.20)
n co

[~~L(co) ~L(x co )] ~(co co )

X[y(co)]" T(co)exp[icon(co)x'/c],

(4.18)

K(co) T(co)
[~L(co)~+R(x o )] i~(~ ~ ) ~ ~1/2Loco]

The integrals can be evaluated by the same methods as used
in (3.20) and (3.21), and indeed the second term in the large
bracket of (4.20) reproduces the same integral as (3.19),
which gives the desired result for the canonical commutator.
For the first term in the large bracket, we use the property
that R(co) defined in (4.4) is itself a linear response function,
which determines the rejected field produced by an incident
field. Thus, as mentioned after (2.3), causality requires that
the function can have no poles in the upper half of the corn-
plex co-plane [33].Furthermore, in view of (2.1) and (2.4),
R(co) has the property

X exp
/icon(co)x')

C
(4.19) R(co) —+0 for co —+~. (4.21)

where the forms of the transmission and reAection coeffi-
cients given in (4.4) have been used in simplifying the last
result.

Thus, when the contribution of the first term in the large
curly brackets is evaluated by conversion to polar coordi-
nates as in (3.21), the integrand vanishes on the semicircle at
infinity, and this term is zero. The canonical commutator thus
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l ( ico[n(co)x' —x]~
X(x,x', co) = V(co) exp

28pc ct)S lC
i co[n( co)x'+ x] ~

+ W(co)exp
C

and

2[n(co) —1]
W(co) = exp

(i co[3n(co) —1]ll

(5.4)

x~ —l, x~l (5 2)

where the upper and lower signs refer to the two ranges of x
on the left and right of the slab, respectively,

D(co) = [n(co) + I] —[n(co) —1] exp[4i con(co) I/c]
(5 5)

2[n(co)+ 1] l ico[n(co) —1]l~

V(co) = exp'Dco I c (5.3)

consistent with notation used previously [34] for the spatial
modes of a lossless dielectric slab. The Green function for
the interior of the slab is

S'(x,x', co) = [n(co)] —1

D( co)

t icon(co)(2l+x+x') ~

expl + exp
C

l icon(co)(2l x —x')—)

[n(~) —1]'
+

D(co)
+ exp

(i con(co)(4l+x x') ~—
exp c

(icon(co)(41 x+x'—) ~

+ exp
io)n(co))x —x'[& —l~x&l, —l&x'(l. (5.6)

The structure of this Green function is typical of slab systems. Thus the first four terms correspond to communication between
the points x and x' via the four distinct patterns of reflection in the slab surfaces, and the denominator D(co) results from
summation of multiple reflections of the same kinds. The final term corresponds to direct communication between the two
points.

The Green functions (5.2) and (5.6) determine the electromagnetic field quantization, but the calculation of vacuum field
fluctuations also requires the corresponding expressions for positions outside the slab, given by

Ã(x, x', co) =
28 pc o)S

[n(co)] —1

D( co)

t —ico[2l ~ (x+ x')] l
expl

C

( 4 icon(co) l 1

exp~ I

—1
c

i coax x'/ ~—
x,x'& —l, x,x') l, (5.7)

where the upper and lower signs refer to the left and right of
the slab, respectively. The Green function for positions that
lie on opposite sides of the slab is not needed here. The slab
Green functions (5.2), (5.6), and (5.7) reduce to those for the
semi-infinite dielectric given in (4.3) and (4.5) when the co-
ordinate origin is shifted to the left-hand surface of the slab
and the limit l +oo is taken. Related forms of the Green
function, in the time domain and in Laplace transform space,
have been derived for the absorbing dielectric slab [23].

A particular integral solution for the vector potential op-
erator is now obtained by substitution of the Green function
given by (5.2) and (5.6) into the integrand of (2.14). The
complete solution also contains complementary function
parts that correspond to free fields incident on the slab sur-
faces from the regions of vacuum to its left and right. The
notation for the operators associated with the rightwards and
leftwards parts of the fields in the three spatial regions is
illustrated in Fig. 1(c). The operators for the incoming fields
on the left and right of the slab have the free-space commu-
tators

[ ~(~) /t(~')] = [&t.(~),&&(~')]= ~(~—~'),
(5 g)

similar to (4.7), and the operators for the two kinds of in-
coming wave commute,

[ ~(~) &i(~') ]= o (5.9)

(
A+(x, t) = dco'

p ( 4778pccoS

1/2
i(»x/c

(~)e —Ecoz/c]e IQJ/ (5.10)

analogous to (4.16).
Consider first the complete fields exterior to the slab. The

field on the left can be written in a form similar to (4.6),
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where the operator for the leftwards-propagating outgoing
field is given by

where the operator for the rightwards-propagating outgoing
field is given by

~1.(co) =R,(cd)~ic(cd)+ Ts(cd)~r(co. )

i 2 cd'g(cd) K(cio) l
+g'

)

) 2cdq(cd) K(cd)
Xii(cd) =Rs(cd)BL(cd)+ Ts(cd) ~ii(cd)+ i

c

i COll( Cd) X
dx' U(cd)exp~—

fl
dx' V(cd)exp

icon(co)x

f(x', co),
icon(co)x'

+ W(co)exp
C

(5.11)

)icon(cd)x
+ W( co)exp' f(x', cd).c (5.15)

and (3.9) and (3.18) have been used. The amplitude trans-
mission and refIection coefficients for the slab are given by
[34]

It is again straightforward, but algebraically lengthy, to show
with the use of the forms of the coefficients (5.3), (5.4),
(5.12), and (5.13) that the outgoing field operators have the
simple free-space commutators

4n(co) ( 2/cd[n(cd) —1]l~

Ts(co) = exp'
D co C )

(5.12) [ i(~) ~(~')]=[~~(~).&~(~')]= ~(~ —~') (5.16)

and

[n(co)] —1
R,(co) =— 2i col l

exp~—
C

) 4icdn(co)il
X l —exp~

C
(5.13)

( )
—iruxlc] —isn't (5.14)

These coefficients reduce to the corresponding expressions
(4.4) for the surface of a semi-infinite dielectric when l~~
and account is taken of the different positions chosen for the
coordinate origins in the two cases. The field on the right of
the slab is similarly given by

f ) ii2

A+(x, t) = dco [~~(~)e'""
l 4 Vl ROC COS)

Expressions for the electric and magnetic field operators on
the left and right of the slab are readily obtained from (5.10)
and (5.14), respectively, with the use of (2.12). The expres-
sions for the vector potential operator on either side of the
slab obtained from (5.10), (5.11), (5.14), and (5.15) agree
with those used in calculations of the Casimir force between
a pair of absorbing dielectric plates [25] when the plates are
coalesced and account is taken of different units and normal-
ization conventions.

Consider now the complete field inside the dielectric slab,
which again has the same form as (3.23) but with new defi-
nitions of the left and right destruction operators. Thus with
use of the interior Green function (5.6) and addition of the
complementary function parts obtained from free fields inci-
dent on the slab from the vacua on its left and right, the
complete expressions for the operators inside the dielectric
are

t'ii(x, co) = n(co)
,i2[V(co)~ii(co)+ W(co)/c(cd)]+i

r) co

) 2 cd K ( co) i

c
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) )
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)

(5.17)

and
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1/2 [W(~)tt'R( ~) + (~)~L(~)]+

lt/ co

2 co K ( cd ) l
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C )
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D(co)
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D( co)

I' icon(co)(4l+x') l & ) icon(co)x'\ ) icon(cd)xl
f(x', co)+ dx' exp l f(x', co) exp!—

c ) JE )

(5.18)



4g3552 D UAN TIZATION IN ABSORBINGELECTROMMAGNETIC FIELD QU

e forms (3.13) and (3.14) forreduce to thThese expressions
mo eneous die eclectric and to t e og

dl 'fi d th t 3.2
( )
cu), respectively, a

q3.27) remain valid
'

en in (3.26) and
he uantized

op o g
ie

'
More comp ica e

mic modelave been derive
ade for initial

op

1 d 1excitations o
s are not required, t eIfte r

directly y scan again e ca
nda conditions.

edd t' fi 1

'~ 1.2

P

g~0.8

0.6

-40 -20 0
2(ox / c

20 40

ectrum W(x, c0) of vacuum
f d' I l b

tion of the spectrum
vicinity o a

thee value. The slab thickness isized to its free-space v

comp ex re1 fractive index is n cu =

I: v(~)]'"—i col/c+ "
( )

ical/cR(tu) e

and

= 6(tu tu )Ts—(tu)~')]=I:&R(~) R(~ )]=I: i(~). L(~

and

~I"(-1, )+;(-l, )1

(5.19)
of the slabopposite sideswave operators onThe outgoing wave p

commute,

1/2—i calle "
(~ )

ical/c
I (~)]R(tu e I: i(~),&~(~')]= o, (5.25)

~I:;(-1, )--;(-l, )],
(5.2O)

conditions at x = g= I ivewhile the boundary con

I-;(l, )+'.(l, )]n(cu)

anc1

i abulic
( )

' — '""'=I:V(~)] .R" (l, cu) —~i(l, cu)].

(5.22)

Rttu e

co evaluated at x=-=-I are
d = b

(3.29), respective y.

C1

rmine ~L (cu,
rs ~ (tu)
s 5.11),

u t5 18) are redenve .

of the six vartettesec
o erator shown in Fi . c

se have quite simp
struction ope

efinitions. se

-h.-.--'. ..-.—

tors obtained from (5.11 and

(Cu =
R 6 Cu )]= 8(Cu —Cu )Rs(tu)I.~L,(tu) ~R tu

5.4), (5.12),lows witlo 'th the use of (5.3),H

o h co anand (5.1

17 and (5.18) are more co d
A pendix. The degrees

lbi 1 d hh dielectric s

ass
h H'lb

) /.

ise currents, and t e

c1

'h h 1 b
otential operasatis e

fh 1

cted, an rforward but very protracte,

m field fluctuations is
Appen ix.

of the vacuum e
he fiuctuation-diss p

r s ectrum

dG f to
y

(334) h th q
'

h f} tws the spatiaand
Ii da nitude is normtion spec g

g mbles a re ec
th i- fi tp g

s ectrum or
'

r outside t e ieed oscillatory behavior
1 b that decay with is

}1 1

inside the s a
ion of the s ae behavior in

oscillations ro
th t hoosite si

3, about 9.5 perio s o
nt of constructive in er

2 't should be emphasizenFi. , i
o

' witht emtuaio '
d are ony o

a ain even
1 t th -di1 b shows acomp e ethe lossless s a s



MATLOOB, LOUDON, BARNETT, AND JEFFERS

tion spectrum whose oscillations decay with distance from
the surfaces, both within the slab and in the free-space re-
gions on either side [11].

VI. CONCLUSIONS

We have presented expressions for the electromagnetic
field operators in absorbing media whose spatial distributions
take the forms of an infinite homogeneous dielectric, a semi-
infinite dielectric, and a dielectric slab. The three distribu-
tions are illustrated in Fig. 1, together with the notations for
the destruction operators that provide the most convenient
expressions for the quantized fields. The vector potential op-
erator inside the dielectric medium can always be written in
the form of (3.23), but the operators ~R(x, co) and ~l(x, cu)

have the different expressions (3.13) and (3.14) for the infi-
nite homogeneous dielectric, (4.10) and (3.14) for the semi-
infinite dielectric, and (5.17) and (5.18) for the dielectric
slab. These expressions include contributions from the noise

operators f(x, cu) associated with the dielectric loss mecha-
nisms, also from a rightwards incoming free field with de-
struction operator ~R(cu) for the semi-infinite dielectric, and
from rightwards and leftwards incoming fields with destruc-

tion operators ~R(co) and 81(co), respectively, for the dielec-
tric slab. The vector potential operator in the vacuum to the
left of the dielectric can always be written in the form of
(4.6), where the operator ~~(cu) is associated with an incom-

ing free field and the operator ~l (cu) is given by the expres-
sion (4.8) for the semi-infinite dielectric and by (5.11) for the
dielectric slab. Finally, the vector potential operator to the
right of the dielectric slab is given by (5.14), where the op-

erator /R(co) is given by the expression (5.15) and Yz (co) is
associated with an incoming free field. There are no incom-
ing free fields for the infinite homogeneous dielectric since
any electromagnetic wave launched from infinite distance is
totally absorbed.

The detailed expressions for the electromagnetic field op-
erators in terms of incoming fields and noise operators thus

depend on the local environment, and the commutators of the
destruction operators, listed above, with their conjugate cre-
ation operators are strongly influenced by the dielectric
boundaries. The operator commutators inside the dielectric
always simplify to the equal-space forms (3.12) at positions
separated from any boundary by distances large compared to
the characteristic decay length associated with the dielectric
absorption. Particular attention has been paid to the commu-
tator of the vector potential operator with its canonically con-
jugate momentum, given by (2.18) and (2.19) for two
choices of transverse gauge. While it follows from general
principles that the quantized field expressions must satisfy
these commutation relations, they are extremely useful in
providing verifications of the accuracies of the overall struc-
tures and detailed algebraic coefficients that occur in the field
operators [9].All of the quantized field expressions derived
here conform to the canonical commutation relations.

The scope of the present paper is limited to the deriva-
tions of formal expressions for the field operators in the three
spatial arrangements of dielectric. However, the expressions
are easy to use in practical calculations, and they can be
applied immediately to such problems as the effects of

&OIf(x ~) IO& = &OIf'(x. ~) IO&
= o (6.1)

(0~f"(x ', co')f(x, co) iO) = 0. (6.2)

These simple conditions are sufficient for the extraction of
useful results from the theory.

The quantized field expressions are restricted to propaga-
tion in one dimension perpendicular to the dielectric sur-

faces, and these are adequate for a wide range of optical
systems, where plane parallel light beams are confined in
fibres or arranged to fall perpendicularly on material bodies.
However, a further range of observable effects, notably spon-
taneous emission by atoms close to dielectric surfaces or
vacuum field Casimir forces on dielectric surfaces, require a
quantized field theory that incorporates propagation in all

spatial directions. The extension of the one-dimensional
theory presented here to three dimensions is in progress, to-
gether with the applications of the one-dimensional theory
outlined above, and the results will be reported subsequently.
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APPENDIX

In this Appendix, we give further results for the operator
and field commutation relations associated with the dielectric
slab. Consider first the operators in the interior of the slab
defined in (5.17) and (5.18). Their commutators are obtained
with the use of (3.10), (5.8), and (5.9) in the forms

propagation through absorbing dielectrics on light that ini-
tially displays nonclassical features, or to the mechanical ef-
fects of light on absorbing media. The quantization proce-
dure is also readily extended to other configurations of
dielectric media, for example different dielectrics in contact
or separated by free space. Although the Langevin force op-
erator is not derived here from any detailed model of the
dielectric loss mechanisms, in contrast to the calculations
reported in [19], all physical predictions of the theory are
determined in the usual way by expectation values of the
operators. With the usual assumptions of a noise reservoir
effectively in its zero temperature vacuum state for experi-
ments in the visible frequency region, the required expection
values can be found with use of the commutator (3.10) and
the basic results
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4i con ( co) l i
(A4)

[n(cd)] —1
N(co) =
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( 2i con( co) l ~

expl c j
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and D(co) is given by (5.5).
The vector potential and electric field operators inside the dielectric slab are expressed in terms of ~z(x, co) and ~t (x, co) by

(3.23) and (3.26), respectively. The value of the equal-time canonical commutator (2.18) in the slab is thus determined by the
commutation relations listed above, and it simplifies, after some algebra, to

ih,
[A(x, t), —aoF(x', t)] = dcu exp

27rcSq n cu

icon(co) ~x
—x'~ ~ M(co)

+ expc j n(cd)

icon(cd)(x x') ~—

l icon(cd)(x —x') l N(co)
+exp~~, — +

)
exp

icon(co)(x+x') l t icon(co)(x+x') )
~+ exp

C

The functions M(co) and N(co) have no poles in the upper
half of the complex cu plane, and they both tend to zero as

the frequency m tends to infinity. Thus, similar to the evalu-

ation of (4.20), only the first term in the integrand of (A6)
makes a nonzero contribution. This remaining integral is
identical to that in (3.19), and the canonical commutator

therefore has the required value given by (2.18).

The canonical commutator is evaluated for positions out-
side the slab with the use of the expressions for the vector
potential operator obtained from (5.10) and (5.14). The com-
mutator takes the same form as that for the exterior of the
semi-infinite dielectric given by (4.22), except that the re-
flection coefficient R(cd) is replaced by the slab coefficient
Rs(cu), and similar arguments lead to the required value
given by (2.18).
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