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Quantum interference in the spectrum of a driven atom: Effects of pumping
and phase Auctuations
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The quantum interference in the spontaneous-emission spectrum of a driven atom, when the upper level of
the atomic transition is coupled to a third level via a classical driving field, results in a dark line in the absence
of the atomic decays. The existence of the dark line is independent of the Rabi frequency associated with the

driving field. There is no such dark line in the spontaneous-emission spectrum when, instead of the upper level,
the lower level is coupled to a third level via a driving field. In this paper, we include the level decays,
incoherent pumping, and the finite bandwidth of the driving field in our analysis and study their role in the

spontaneous-emission spectrum in the two configurations.

PACS number(s): 42.50.—p

I. INTRODUCTION

The interaction of an excited atom with the vacuum re-
sults in the spontaneous emission of the radiation. This ra-
diation has an isotropic distribution in space which leads to a
Lorentzian linewidth in the frequency domain with the band-
width proportional to the Einstein spontaneous decay rate
[1].In the well-studied problem of resonance fluorescence,
where a two-level atom is driven by a strong field, this
Lorentzian spectrum splits into a three-peak spectrum [2]. In
this three-peak spectrum, the location of the peaks is gov-
erned by the Rabi frequency of the driving field whereas the
widths of these peaks are determined by the Einstein spon-
taneous decay rate. Recently, Narducci et al. [3] have pre-
dicted that an additional coupling to a third level in an ex-
cited atom in the resonance fluorescence configuration would
lead to significantly different results for the spontaneous-
emission spectrum and, under certain conditions, spectral
narrowing in the resonance fluorescence spectrum is ob-
tained. These results have been experimentally verified [4].

A closely related, but much older, problem is the so-called
Autler-Townes spontaneous emission from a driven atom. If
one of the two levels involved in the spontaneous emission is
coupled by a strong coherent field to another level, the
spontaneous-emission spectrum is a two-peak distribution
known as the Autler-Townes doublet [5].Recently, Zhu, Nar-
ducci, and Scully [6] have pointed out a dark line in the
Autler-Townes spontaneous-emission spectrum when the ex-
cited level is coupled to a third level via a classical field. The
existence of the dark line is independent of the Rabi fre-
quency associated with this driving field. No such dark line
is present when, instead of the excited level, the ground level
is coupled to another level via a classical field. In a simple
model, which did not include any level decays, they showed
that the presence of a dark line in the spontaneous-emission

spectrum of an upper driven atom is due to the quantum
interference in the two possible paths. This is an example of
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a number of novel phenomena associated with quantum in-
terference in driven three-level systems which include ab-
sorption cancellation [7], correlated spontaneous-emission
laser [8], lasing without inversion [9], electromagnetically
induced transparency [10], and enhancement of the index of
refraction with no absorption [11].

It would be interesting to see, especially from an experi-
mentalist s point of view, how the spontaneous-emission
spectrum from a driven atom is modified when the level
decays, the incoherent pumping, and the finite bandwidth of
the driving field are included in the analysis. In this paper we
present analytical results for the spontaneous-emission spec-
tra in both upper- and lower-level coupling configurations
when all the level decays, pumping rates, and the finite band-
width of the driving field are included and discuss our results
with reference to the quantum interference in the three-level
system. The finite bandwidth of the driving field is incorpo-
rated by taking into account the phase fluctuations associated
with the driving field [12]. In our model, these phase Iluc-
tuations lead to a Lorentzian linewidth of the driving field.
Above threshold, the amplitude and phase fluctuations are
decoupled and for a well-stabilized laser, the amplitude fluc-
tuations can be neglected. A comparison between the results
for the spontaneous-emission spectrum for the two schemes
(upper- and lower-level couplings) indicates the presence of
a much larger dip in the spectrum of the upper coupling case
as opposed to a much smaller dip in the case of lower cou-
pling. Our results elucidate the conditions under which this
dip corresponding to a dark line in the spontaneous-emission
spectrum can be experimentally observed.

II. MODEL

We consider two possible schemes in which the
spontaneous-emission spectrum of an excited atomic state
decaying to the ground state is effected by a coupling with an
additional atomic level. We consider the spontaneous emis-
sion in a three-level atom. In the first scheme, an arbitrarily
strong classical field, having a finite bandwidth, couples the
excited level with the additional level [see Fig. 1(a)],
whereas in the second scheme a driving field induces a cou-
pling between the ground level and the additional atomic
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tion frequency of the upper two atomic levels, i.e., ~c. . and
the driving field frequency P is denoted by 6, i e.,

P O)ca

/a&

la)

B. Lower-level coupling scheme

In this scheme, a classical driving field couples the level

l c) with the ground level lb) of the three-level atom [see Fig.
1(b)]. In the presence of this additional coupling of the level

lc) with the ground level lb), the atomic level la) spontane-
ously decays to the ground level lb). Again we assume the

phase of the driving field to be undergoing phase fluctuations
resulted from the finite bandwidth of the field. As in the
scheme described in Sec. II A, we are interested in the study
of the spontaneous-emission spectrum of the atomic level

la).
The Hamiltonian for the system with the lower-level cou-

pling, in the interaction picture and under rotating-wave ap-
proximation, is given by

0
v;„,= —A 5

l c)(c
l

—fi, —e '~" c)(b
l

ib& + e'«'&lb)(cl
2

FIG. 1. Schematic representation of two atomic configurations:

(a) upper-level coupling scheme, (b) lower-level coupling scheme.
The arrows with dotted lines indicate the incoherent pumpings and

those with solid line represent the atomic decay from one level to
another.

where 0 is the induced Rabi frequency and @(t) is the time-
dependent fluctuating phase of the field driving the atomic
level lc) and the ground level lb). The detuning between the
atomic transition frequency of the levels lc) and lb), i.e.,

co,b, and the driving field frequency P is denoted by 5, i.e.,
5= P COcb.

level [see Fig. 1(b)].We shall refer to the two schemes as the
upper-level coupling and the lower-level coupling scheme,
respectively. In both the schemes, we include appropriate
level decays and incoherent pumps in a closed system con-
figuration.

C. Phase-diffusion model of the driving field

Both the above Hamiltonians i.e., Eqs. (1) and (2), repre-
sent the fluctuating phase of the driving field. This Auctuat-

ing phase can be described as

4 (t) = 0(0)+ rt, (t),

A. Upper-level coupling scheme

In this scheme, a classical field is driving the upper level
la) of a three-level atomic system [see Fig. 1(a)]. In the pres-
ence of this additional coupling with level lc), the atomic
level la) spontaneously decays to the ground level lb). The
phase of the driving field is Auctuating, which leads to the
finite bandwidth. In the following, we calculate the
spontaneous-emission spectrum from atomic level la).

The Hamiltonian for the system, in the interaction picture
and under the rotating-wave approximation, can be written as

0,
v;„,= —A. Ale)(cl —5 —e '&"lc)(al

F(t) = 4t(t), (4)

with zero average, i.e., (F(t))=0. This corresponds to a
Weiner-Levy diffusion process which leads to the Lorentzian
linewidth with bandwidth D. For such processes the two-
time correlation function on the interaction time scale can be
taken as

where $(0) is a constant corresponding to the average value
of the fluctuating phase and @,(t) is its random part. We
assume that P&(t) is undergoing Brownian motion described
by a Gaussian random process, such that (@,(t))= 0. These
phase fluctuations can also be characterized by the following
random force:

+ e'«'la)(cl
2 (F(t)F(t'))=2DB(t —t') .

where A is the induced Rabi frequency and @(t) is the time-
dependent fluctuating phase of the field driving the upper
two atomic levels. The detuning between the atomic transi- ( 4(t) rb(t )) =D(t+ t —

I
t —t l) (6)

Now on substituting the values for @(t) from Eq. (4) the
above equation yields
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which indicates it to be a stationary process. In this paper, we
have assumed, for simplicity, that P(0) = 0.

III. SPONTANEOUS-EMISSION SPECTRUM

The emission spectrum of the spontaneously emitted ra-
diation from a driven atom located at rp, at some observation
point r, is given by the Fourier transform of the following
time-time field correlation function:

(o(.t+ r)) = p,b(t+ r)e'"~'+'l,

d 0*
d P b(»=i

2 P,b«)e' " '—y.bp b(t) .
dt (12)

where co is the atomic transition frequency between atomic
levels ~a) and ~b). The equation of motion for the density
matrix element p, b(t+ r) can be written in a usual way:

.A~(t, t+ r) =(E (r, t)E l(r, t+ r)), (7) In the above equation, y, b is the decay rate of the off-
diagonal density matrix element which is defined as follows:

where E(—) are the positive and negative frequency parts of
the total field operator, respectively. The positive frequency
part of the field operator at the position r, under far field
approximation and for the field polarization in x direction,
can be written as [13]

( ) M~ smtj2 (E+ (r, t)= „,o-
47TEpC ~l" 7

where y is the angle between the electric dipole~ and r
while co is the atomic transition frequency. This equation
indicates that the positive frequency part of the field opera-
tor, which is associated with the destruction operator of the
field, is proportional to the atomic state lowering operator
cr at a retarded time. A similar expression for E( ) can also
be obtained.

It can be seen by substituting the values for E(+) and
E~ 1 in Eq. (7) that the two-time correlation function of the
field operators is proportional to the two-time correlation
function of the atomic raising and lowering operators, i.e.,

r;, =
2 X (~;1,+ II')k) ~

k=a, b
(13)

x1(t) = P b(t)

x2(t) =p,b(t)e' (14)

The corresponding closed set of stochastic differential equa-
tions can be written in the following matrix form:

d—X=
t G, + i/(t) G]X,

where W;~ corresponds to the population transfer from the
ith level to the jth atomic level with W;~ = 0 for i =j. It can
be seen from the above equation that p, b(t+ r) is a stochas-
tic variable and it is coupled to p, b(t)e'~'1'1, which is an-
other stochastic variable. We therefore define

,W(t, t+ r) -(a+(t)a(t+ .r)) . . (9)
where X is a column matrix with elements x1(t) and x2(t),
and Gi is the following time-independent matrix:

According to the quantum regression theorem, under certain
conditions, this two-time correlation function given in Eq.
(9) can be obtained from the single-time correlation function
(o. (t+r)) [14]. As we are interested in the steady-state
spectrum, i.e., t~~, the correlation function in Eq. (9) de-
pends on the time difference ~ only and the spectrum, apart
from a constant factor, will be given by

S(cu;a10) =Re (o.+(t)o. (t+t+ r))„„d „„,e'"o'dr .
0

The matrix G has just one nonzero element, i.e., G22= 1.
Next we take the ensemble average over the stochastic

variable before actually solving the matrix differential equa-
tion for the required density matrix element. The resulting
equation for (X) is [15]

d—(X)=[G1—DG ](X), (17)
We now proceed to determine the spontaneous-emission

spectra in the two atomic configurations discussed in Sec. II.

A. Upper-level coupling scheme

In this scheme, we assume that a classical field, having a
finite bandwidth, is driving level ~a) of a three-level atomic
system with level ~c) [see Fig. 1(a)]. In the presence of this
additional coupling we are interested in the study of the
spontaneous-emission spectrum of the atomic level ~a) de-
caying to ground state ~b). The Hamiltonian of the system is
given by Eq. (1).

First we consider the expectation value of the lowering
operator corresponding to the atomic transition ~tb)~~a),
i.e.,

(P.b(t+ r))=~11(~)(P.b(t))+M12(r)(P, b(t)e' ") .
(18)

In writing the above equation, we have defined

M»(7') = [e ')11

M12(7) = [e '112, (19)

where, in the above equation, () represents the ensemble
average over the random phase ( P(t)). The time-dependent
solution of the above differential equation for the required
density matrix element (p,b(t)), i.e., (x1(t)), is
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where M= G, D—G . The above value of (p,b(t+ r)) is
then substituted in Eq. (11) to obtain the expectation value of
(a(t. + r)), i.e.,

—R}= [N)+ i $(t)N]R )+I,dt (25)

((cr (t+ 7)))=[M/](7)(p„b(t))+M}2(v)

(p ( t )e i P (t })] i co (t + T} (20)

Here the second angular bracket corresponds to the quantum-
mechanical expectation value.

According to the quantum regression theorem, the
evaluation of the two-time correlation function
((o+(t)o. (t+ .~))) is identical to the evaluation of the ex-
pectation value ((o(t+ r. ))) except that, instead of using
p(t+ r), we have to use p(t+ r)o.+ [14].Hence it follows
from Eq. (20) that the two-time correlation function averaged
over the stochastic process is given by

where R& is a column matrix with elements x3(t), x4(t),
xs(t), and x6(t). The matrix N, is of the form

i B/2

iA*/2
—(y,.—i~)

—i0/2
—EA/2

N1= —i0*/2
iII */2

—( y„+ ib, ) i A*/2

iA/2

N22= 1, N33 —1, It = Wb, , I4 = Wb, . (27)

(26)

and matrices N and I have the following nonzero elements:

(( (t) —(t+ )))=[M ( )(p (t))™
X(p,.(t)e'«'})]e'"' . (21)

In writing the closed set of differential equations above, we
have defined the quantities

It can be seen that the two-time correlation function de-
pends on the averages of two other stochastic variables

p,„(t) and p„e'«'}. The differential equations correspond-
ing to these stochastic variables can be obtained from Eq. (1)
in a straightforward way, and the result is as follows:

yi = W, b+ W„,+ Wb„,

y2 = W„+W,b+ Wb, ,

P}= W„—Wb, ,
(28)

O~
p„(t)= ——(W„+W„b+ Wb„)p„(t)+i p„(t)e'«'}

dt

—i p„(t)—e 'bt'}+ (W„—Wb, )p„(t) + Wb, ,

P2 Wc a W ha

The stochastic averaging of the above stochastic differential
equation, i.e., Eq. (35), yields the following simple inhomo-
geneous differential equation [15]:

(22)
d—(R})= [N}—DN ](Ri)+I . (29)

—[p,.(t)e'«'}]= t —p„„(t)—[y„—i~ —i4'(t) f

~
0,

X p,.(t)e'«'} —i
2 p„(t) .

In writing the above equations we have used

pbb = 1 —p„,—p„. Moreover, appropriate incoherent popu-
lation transfer rates, i.e., W;~, are introduced. It can be seen
from these equations that the required stochastic variables
are coupled with other stochastic variables as well.

We can write a closed set of stochastic differential equa-
tions to obtain the solution for the required variables. For this
purpose we define the variables

SU(coo, co) =Re([M '(coo;cu)]»(x3(cc))

+ [M '(~oo ' to) ]i2(x4( ))) ~ (30)

The net effect of the finite linewidth D of the driving field
appears to be a replacement of y, and y, by y, + D and

y„+D, respectively. This is, however, a more complicated
dependence than a simple rescaling as y, and y2 [see Eq.
(28)j also contain the decay and incoherent pumping rates
that are contained in y, „and y„[see Eq. (13)j.

It follows from Eq. (10) that the Fourier transfer of the
two-time correlation function, i.e., Eq. (21), gives the
spontaneous-emission spectrum. The spectrum in the steady
state can be obtained by taking the limit, t~~, and we ob-
tain

x3(t) =P„(t),

x (t) = p,„(t)e'«'},

x (t) = p„(t)e
(24)

x6(t) =p„(t) .

The coupled set of stochastic differential equations can now
be written in the following form of a stochastic matrix dif-
ferential equation:

where

M(coo, co)

~ i(~o —~)+ y.b

—iA/2

—iA*/2

t(~o ~)+(y.b+D) t~—
(31)

The required cofactors of the above matrix can be written in
the following form:
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1 x —I', b

x —
y [i(tu(i —co)+x]

0.020

~cb

[i(duo tu) +y]

2(x —y) [i(tu(i —cu)+x]
M '(c0o, tu), 2=

(32)
0.015--

3
0.010--

[i(~o—~)+y] (33)
0.005--

where we have defined

(y.b+I'.b) 4(y.b—I b)'
x,y=

0.000
-2

with

I,b=(y, b+D) —ib, . (35)

FIG. 2. Spectrum in the upper-level coupling scheme for
II = 0.3 with W, b

= 1.0, Wb, = 0.01, W„=0.02 for (a) D = 0, (b)
D=O 05an. d (,c) D= 0.1. The unit of the spectrum is W, b .

The steady-state value of the variables (xs(~)) and

(x4(~)) appearing in Eq. (30) can be obtained by taking all
the time derivatives in Eq. (29) to be zero. This gives

In general, both x and y are complex quantities. For large
values of 0, the Stark effect complicates the above spectrum.
Here in this paper we restrict ourselves to the region

(yab I cb) )—l&l (43)

( ( ))=Z II'.,I'(y W.+P W.)+
2 (y-+D)

i

X(Wb, + Wb, ) (36)

where we have defined the quantities

I .,=(y.,+D) —tA, (38)

0,
(x ( ))=

II i
2

I .,[(y2 —p, )Wb, + (p2 —y, ) Wb, ]
i

(37)

Under this condition both x and y are real and, for 6 = 0, the
above spectrum, i.e. , Eq. (40), becomes a difference of two
Lorentzian functions centered at co= ceo having widths equal
to 2x and 2y, respectively. In Fig. 2, the spectrum for
the upper-level coupling scheme is shown when

W, b)& Wb, , W,„,D, under condition (43) for different values
of D with 5 =0. The difference of the two Lorentzian func-
tions results in a dip at co=~0 instead of a dark line as
shown in Ref. [6]. It can be seen from the figure that the
depth of the dip decreases with the increase in the diffusion
constant D.

+1 (yi y2 pip2) II ..I'+ 2 (yi+ y2 pl p2)

X(y, +D) .

On substituting the values of (x3(~)) and (x4(™))from

Eqs. (36) and (37) and the values of [M '(tu(i, co)],t and

[M (ct)p ', tu)] i2 from Eqs. (32) and (33) into Eq. (30), and
on taking the Fourier transform [see Eq. (10)] we obtain the
following expression for the spectrum:

SU( Cup,
' to) = Re

[i(c0(i
—tu) +x] [i ( too cu) +y]—

(40)

d A—p.b(r)=-t
2 p.,(r)e ' "-y.b(r) (44)

As before, this is a stochastic differential equation. Let us
define

B. Lower-level coupling scheme

We now derive the spontaneous-emission spectrum for the
second scheme where a coupling is introduced between the
lower level lb) and the level lc) via a coherent driving field,
having a finite bandwidth [see Fig. 1(b)]. The atom-field in-

teraction is described by Eq. (2). In this scheme, the differ-
ential equation corresponding to the density matrix element

p„b(t) is given by

where

(x —I,b)(xs(~)) —i A*/2(x4(~))
x —

y
(41)

yi(r) = p.b(r)

y (r)=p.,(r)e '~" (45)

( 1(y
—I,b)(xs(~)) —iA*/2(x4(~))

x (42)

The corresponding closed set of stochastic differential equa-
tions is averaged over the stochastic process and the time-
dependent solution for the required density matrix element is
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(p,b(t+ r)) =Z&&(p, b(t))+Z~2(p„(t)e ' ' ), (46)

where the coefficients in the above equation are defined as
follows:

Zll I e ]11

Z12 I
e ]12 (47)

—ni2
—iA (2 —(y„+id) (48)

with Z = (K &

—D K ) . Here K, is a constant matrix of the
following form:

The differential equation for the density matrix element
p„(t) is again derived for this scheme and the appropriate
decay and pumping mechanisms are introduced, i.e.,

&, P.,(t) = —yt P-(t) + P2P-(t) + Wb

It can be seen here that p„(t) is not directly coupled to the
driving field. It is important to note that the pumping in
atomic level la) is through incoherent means from the level

lc) which is coupled to the lower level lb) via the classical
driving field having a finite bandwidth D. The density matrix
element p„(t) is coupled to two other stochastic variables,
i.e., p,b(t)e'~ ' and pb, (t)e '@ ' We th. erefore define the
variables

and the matrix K has just one nonzero element, i.e.,

@22= 1.
It follows, on substituting the average value for the den-

sity matrix element (p,b(t+ ~)) to obtain the expectation
value for the (o(t+ r)). and again using the quantum re-
gression theorem, we obtain

y3(t) p (t)

y (t)=p.,(t),

yS(t) = p, b(t)e' ',
y (t) =p, (t) e '~"

((tr+(t) o —(t+ r))) =I.Zll(&)(P (t)]e (49)

It is interesting to note that the two-time correlation function
in this scheme just depends on (p„(t)), whereas in the pre-
vious scheme it depended on (p„(t)e'~t'~) as well.

We recall that the real part of the Fourier transform of the
two-time correlation function, Eq. (46), gives the
spontaneous-emission spectrum. In the steady state, the spec-
trum becomes

Rz= I
L]—+ i 4(t)L]R2+ 1,dt (57)

where R2 is a column matrix with elements ys(t), y4(t),
ys(t), and y6(t). The matrix L& is of the form

The corresponding coupled set of stochastic differential
equations can be written in the matrix form

5'L, (too'to) =«(I:Z '(too'to)1»(y3( ))) y2
—iB*/2 iO/2

where

Z(~o ~)

—i 0/2 —i fI —( y,„—iA)

iA~/2 iB* 0 (y.b+E~)

( E(~o to)+ y~b

iA*/2
i B/2

i(too co)+ (y—„,+D)+i6)
and the nonzero elements of matrix L are L33= 1,
L44= —1. The column matrix J is of the form

and the required cofactor of the above matrix can be written
as i A/2

—iA*/2

(59)

1 u —1„,
I Z '(coo, co)] ~~

=
u —v I i(coo —~o)+ u]

I ac

I i(coo —~o)+v]

where we have defined

(52)

As before, Eq. (54) is averaged over the stochastic pro-
cess and solved for the steady-state value for the required
variable

1
(y3( )) = ~ Irb. l'(y2Wb. +P2Wb, )+

2 (yb, +D)
2

(y.b+r. ,) "- 4(y. b r..)'- I&l'-
Q, U = (53) X(Wb, + W„) (60)

With where

r.,=(y.,+D)+is . (54) I b, =(y,b+D)+id, (61)



QUANTUM INTERFERENCE IN THE SPECTRUM OF A DRIVEN 4809

0.010

0.008--

0.006--
3
3

0.004--

0.002--

0.000

FIG. 3. Spectrum of the lower-level coupling scheme for
0=0.3 with W,b=1.0, Wb, =0.01, W,b=0.02 for (a) D=O, (b)
D=0.05, and (c) D=0.1. The unit is W, b'.

/nf'
"2 (VtV2 —Ptp2)IFb, l'+

2 (2rt+P2)(Y b+D)

(62)

v —I„,
[i((oo—o))+ v]

(63)

On substituting the value of (y3(~)) in Eq. (47) and using
Eq. (49), we obtain the following spontaneous-emission
spectrum for the lower-level coupling scheme:

IV. RESULTS AND DISCUSSION

In Ref. [6], it was shown that there exists a dark line in
the spectrum of the upper-level coupling scheme for 5 = 0 at
~o= cu. No such dark line exists in the lower driven case.
The existence of the dark line is a consequence of quantum
interference. Physically we can understand this behavior eas-
ily in the dressed atom picture. In the upper coupling case,
the upper level is split in a doublet with a spacing 0, . The
coherence in these levels leads to a destructive interference
in the spontaneous emission at co= coo, thus resulting in a
dark line. On the other hand, in the lower coupling case, the
lower level is split in a doublet. The spontaneous emission
from the upper level to this doublet is incoherent and the
resulting spontaneous-emission spectrum consists of a sum
of two Lorentzians. This causes a dip at co= coo, for large
values of induced Rabi frequency 0, but not a dark line. The
analysis of Ref. [6], however, assumed the atom to be ini-
tially in level ~a) and ignored any pumping mechanism, level
decays, and the linewidth of the driving field. The spectra for
the two cases (upper- and lower-level couplings) derived in
Sec. III include all these effects. The spectrum in the two
coupling schemes, i.e., Eqs. (40) and (63), reduces to the
following form in the absence of any driving field (i.e. , for
A=O):

Y2Wb +P2Wb 7 b
'v, L(~o'~) =

2 2(7172 PlP2) (~o ")+7b
(65)

This is a Lorentzian function centered at co = coo with a width

2y„b. In the following we discuss the two spectra for the
small values of induced Rabi frequencies A of the driving
field, having finite bandwidth, in the presence of incoherent
pumping s.

Let us consider the spectrum for the upper-level coupling
scheme, i.e., Eq. (40), when only W,„, Wb, , and W„are
nonzero. For this case the condition (43) simplifies to

The above spectrum is a difference of two Lorentzian func-
tions under

—,'[W.„-(W,.+2D)]'o ~n~'. (66)

(64)
The widths of the two Lorentzian functions appearing in Eq.
(40) become

as both u and v are real for 5 = 0. The two Lorentzian func-
tions are centered at co= coo with widths 2u and 2v, respec-
tively. In Fig. 3, the spectrum for the lower-level coupling
scheme is shown for different values of diffusion constant D.
For the sake of comparison, we have taken
W b~& Wb, W, b, D. It can be seen from the figure that there
is no dip as there was in the case of the upper-level coupling
scheme. However, for the values of parameters considered in
Fig. 3, the condition (64) is no longer valid. Hence the spec-
trum given by Eq. (63) cannot be described as a difference of
two Lorentzian functions.

We now present a comparative study of the spectra in the
two coupling schemes to explain the difference, in particular,
the additional dip at co —coo in the upper-level coupling
scheme. We further discuss the role of incoherent pumping
and finite bandwidth of the driving field on the spectrum
which lead to the dip instead of a dark line in the upper-level
coupling scheme [6].

Px= ab ba W (W +2D) (67)

P, =Wb, +(W„+2D)+, , (68)
ab h ca+

where p, and p, y
are the widths of the first and second

Lorentzian functions, respectively, under condition (60). It
can be seen from Eq. (65) that the width of a single Lorent-
zian function, for this case, in the absence of driving field is
W b+ Wb, . As W b corresponds to the atomic decay
whereas Wb, corresponds to incoherent pumping, we always
have W„b)Wb . A comparison with the first Lorentzian
function in the presence of the driving field shows that there
is a slight reduction in the width. However, this reduction is
accompanied by the subtraction of another Lorentzian func-
tion with width p,y. Furthermore, for W b~W, +D, it can
be noticed that p,~~]Ky.
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In Fig. 2, the spectrum for upper-level coupling is shown
for W b)& Wb, , W„,D, for different values of D. The sub-
traction of the two Lorentzian functions leads to the dip in
the spectrum at co=coo as both the functions peak at this
point. The width of the dip depends on the width of the
second Lorentzian function, i.e., p,y. It can be seen from
Eqs. (67) and (68) that, for this particular case, we have

p'y (pr The width of the second Lorentzian function in-
creases with the increase in the values of Wb„, W, , and D
[see Eq. (68)]. However, the depth of the dip depends on the
difference in the values of two Lorentzian functions at
co= coo. In the upper-level coupling scheme, the ratio of the
values of two Lorentzian functions at co=coo is [see Eq.
(4o)l

Bp 3-

0. 't 5

(a)

0.20 0.25 0.30 0.35

(69)

[Wb, (W,b+2D)]—) lAl (70)

The widths of the first and second Lorentzian functions, re-
spectively, under the above condition are

In Fig. 4 this ratio is plotted against induced Rabi frequency
0 under the condition (66) with the same values of incoher-
ent pumping rates as in Fig. 2, for different values of diffu-
sion constant D. It can be seen that the ratio always remains
larger than unity. This means that the contribution from the
first Lorentzian function in Eq. (40) is always larger than the
second Lorentzian function, which has a narrower width.
Hence the difference of the two Lorentzian functions results
in a dip at co —coo instead of a dark line predicted in Ref. [6].
The depth of the dip increases with 0 as it can be seen from
Fig. 4 that the ratio RU approaches unity for higher values of
A, allowed under condition (66). The ratio, however, in-
creases for higher values of diffusion constant D, which re-
sults in the further reduction of the depth of the dip.

For the lower-level coupling scheme, for a corresponding
simple case when only W b, Wb, , and W, b are nonzero, the
condition (64) becomes

W„.-(W„+2D) ' (71)

P, =W b+(W b+2D)+
Wb„—~ W, b+ 2D) (72)

The widths of the two Lorentzian functions are approxi-
mately equal for W„b&& Wb„, W, b, D. However, the condition
(70) is not satisfied for the set of parameters considered in
Fig. 3. In this case both u and v given by Eq. (53) become
complex and the spectrum for the lower coupling scheme
cannot be described as a difference of two Lorentzian func-
tions located at co= co0. The actual form of the spectrum is
more complicated, but at ~= coo the contribution from the
other terms vanishes and the spectrum is effectively the sum
of two Lorentzian functions, i.e.,

FIG. 4. The ratio of the values of two Lorentzian functions at
co= coo appearing in the expression for the spectrum in the upper-
level coupling scheme, i.e. , Eq. (40), for the same values of inco-
herent pumpings as in Fig. 2 against the induced Rabi frequency
0 for (a) D = 0, (b) D = 0.05, and (c) D = 0.1.

(Y,( )&r„,
Sl(co; Mo) =

2 [(too to)+ ' Vl&l' —(7'.b I .,)]'+.'(V—.b+ I ..)-
+

[(~o—~) —'4l&l' (r.b I-..)]'+—'(r.b—+I' )- (73)

located symmetrically around co=coo. For the case under
discussion the two Lorentzian functions are located at

~o —~= —2 ll&l'-2[Wb. —(W.b+2D)], (74)

with equal widths W,b+ 2[Wb„+(W,b+2D)].
From the above discussion it can be seen that the spec-

trum in the upper-level coupling scheme for
W, b~) Wb, , W„,D, under condition (66), is a difference of

two Lorentzian functions with much narrower width of the
second Lorentzian function. The presence of the incoherent
pumping and finite bandwidth of the driving field in our
realistic system results in a dip at co= coo instead of a dark
line predicted in Ref. [6]. On the other hand, for the corre-
sponding case in the lower-level coupling scheme, i.e.,
W„b~) Wb„, W,b, D, the spectrum at ~= ~o effectively is the
sum of two Lorentzian functions located around 0)= coo.
This may be attributed to the Stark splitting of the ground
state lb).
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