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Quantum-mechanical interference effects in the spontaneous-emission spectrum of a driven atom
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We study the influence of quantum interference on the spontaneous emission from an excited two-level atom
when either the atomic upper or lower level is coupled by a coherent field to a third, usually higher-lying, state.
In the case of the upper level coupling, destructive quantum interference between two competing decay
amplitudes produces a dark line in the emission spectrum, a phenomenon that should not be confused with the
well known population trapping, and a narrowing of one of the two side lobes that make up the spectral profile.
Quantum interference is absent, instead, in the case of the lower level coupling, and the spectrum modified by
the external driving field is just the incoherent superposition of two Lorentzian lines. We suggest a physical
interpretation of these results. In addition, we compare the analytic predictions of the simplest nontrivial
versions of these models with more realistic but nonanalytic descriptions and show, numerically, that the
interference effects persist in the upper level case even when additional complications are taken into account.

PACS number(s): 42.50.Ct, 42.50.Lc

I. INTRODUCTION

The significance of quantum-mechanical interference in
spectroscopy has been well documented since the early
1960s [1].Systems consisting of a ground state, a quasicon-
tinuum of discrete levels, and a true continuum, in particular,
have been investigated extensively using Fano's approach or
suitable extensions [2], and have yielded among their predic-
tions the emergence of population trapping and holes (or,
ideally, zeros) in the Iluorescence spectra. More recently,
quantum interference phenomena have attracted renewed at-
tention following the discovery of a new class of effects such
as optical amplification without population inversion [3],
electromagnetically induced transparency [4], and the en-
hancement of the index of refraction with greatly reduced or,
ideally, altogether without absorption [5].Beside opening the
door to possible practical applications which might include
the development of new types of lasers, the creation of opti-
cal materials with unusual properties, and the design of in-
strumentation with improved sensitivity [6], quantum-
mechanical interference is a fundamental phenomenon,
worthy of attention in and of itself, and the source of numer-
ous interesting and counterintuitive manifestations [7].

When a two-level atom decays by spontaneous emission
to the ground state, the spectrum of the emitted radiation has
a Lorentzian shape as a function of frequency, and a band-
width that scales with the decay rate of the upper state in the
absence of other effects (collisions, external fields, etc.) other
than those induced by the field vacuum. If one of the two
levels under consideration is coupled to a third state of the
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atom by a coherent field [8], the spectrum of spontaneous
emission may develop structure, such as one normally asso-
ciates with the emergence of the so-called Autler-Townes
doublets [9,10]. In this case quantum interference can be
responsible for the appearance of unexpected phenomena.

In this paper we explore the effects of quantum interfer-
ence on the spontaneous emission spectrum of the atom
when either the excited or the ground state is split into
Autler-Townes doublets by the action of a coherent field. To
be more precise, we wish to compare two different situa-
tions. The first corresponds to the setting of Fig. 1(a): the
excited atomic state of interest, level 2 in the figure, is
coupled by a coherent field to another level of the atom, level

(a)

3

(b)

FIG. 1, Schematic representation of the two atomic configura-
tions discussed in this paper; (a) displays the upper level coupling,
and (b) the lower level coupling configuration. In both cases Ao
denotes the Rabi frequency of the external driving field, and ~0 its
carrier frequency. The wavy line indicates the spontaneous decay
process that generates the spectrum of interest.
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3 in this case [11], and it undergoes spontaneous emission
back to the ground state (level 1) as a result of the interaction
of the atom with the vacuum. The second situation is illus-
trated schematically in Fig. 1(b): the atomic ground state is
now coupled by the coherent field to another excited atomic
level, while level 2, as in the previous case, decays to the
ground state by spontaneous emission.

If we ignore, for the moment, the important complications
related to the preparation of the initial atomic state, an issue
that will be considered in Sec. IV, the main conclusion of our
analysis is that, in the first case [Fig. 1(a)] the spontaneous
emission spectrum displays a dark feature (a hole in the spec-
trum) as a result of the destructive interference of competing
decay amplitudes, while this dark line is absent in the second
case [Fig. 1(b)].

A qualitatively similar prediction was advanced by Agassi
some ten years ago [2(a)].Although the emphasis of Agassi's
paper was on the radiative decay properties of atomic states
that included continuous bands, the paper also dealt with the
spontaneous emission from a set of discrete states with a
structure similar to that displayed in our Fig. 1. In the ab-
sence of an external applied field, Agassi predicted the emer-
gence of a dark line in the spontaneous emission spectrum
which should be best observable when the frequency spacing
between the top two levels [levels 1 and 2 in Fig. 2 of Ref.
[2(a)]] is comparable to the Einstein spontaneous decay rate.
This is, of course, a rather stringent requirement which is
avoided with the setting of our paper. In our case the effect is
especially pronounced if the driving field is weak and reso-
nant with the 2-3 or the 1-3 transitions, respectively. In fact,
for weak, resonant driving fields the dark line splits the usual
emission spectrum in two halves, each having the same
height and a width which is approximately one-half of the
standard value; thus the key signature of the interference
effect is the appearance of a split spectrum in the case of Fig.
1(a), a feature which is absent, instead, with the setting of
Fig. 1(b) (at least under weak driving field conditions; for
sufficiently strong fields two peaks do emerge, but they are a
consequence of the large Autler-Townes effect).

With a stronger, but still resonant, driving field the dark
feature of the spectrum widens, in line with the expected
behavior of the dressed states doublets, whose spacing is
controlled by the Rabi frequency of the driving field. In the
case of Fig. 1(b), instead, the emission spectrum is the inco-
herent superposition of two Lorentzian lines; as the strength
of the driving fields grows, a dip begins to form which be-
comes progressively deeper for even stronger driving fields,
and the two Lorentzian lines move apart from each other.
Thus, also in the second case under study, the spectrum even-
tually splits into two halves; there are significant differences,
however, because not only is the separation of the two spec-
tral components gradual as the driving field strength in-
creases (unlike the first case where the dark line, in principle,
is always present as long as the external field is turned on),
but also the width of each component matches that of the
unperturbed spontaneous emission spectrum, and it is not
half as wide.

An additional signature of the different behavior of the
two emission processes becomes apparent when the driving
field is detuned from the two transition frequencies co32 and

co3&, respectively: in the first case, the peak heights of the

two spectral components remain equal to one another, but the
width of one becomes progressively narrower while the sec-
ond broadens, as the detuning increases in magnitude. In the
second case, the peak height of one component grows and
the other decreases, for increasing detuning, while the two
linewidths are virtually unaffected.

The above qualitative description provides a useful cata-
logue of the phenomenology, but it fails to suggest how one
can interpret the various aspects of the effect in physical
terms. In order to complete this introduction we raise, and
hopefully answer, a few questions directed to the issue of the
physical interpretation. The first question can be phrased as
follows: in what sense are the predicted phenomena a mani-
festation of quantum interference?

Probably the most direct way to answer is to observe that
the application of a resonant field, e.g. , between levels 2 and
3 of Fig. 1(a), transforms the previously bare atomic states
into new states that are dressed by the (classical) radiation
field. Thus, an atom initially excited in level 2 (for example)
finds itself in a well defined linear superposition of two
dressed states upon application of the driving external field.
At the time when the atomic excitation is released spontane-
ously into the vacuum and the atom decays back to its
ground state, the dressed states interfere with each other. Af-
ter a sufficiently long time, when the emission process has
taken its course, the signature of the interference can be
found in the presence of a dark line, as described qualita-
tively above.

Of course, a dark line is a symptom of destructive inter-
ference. Thus, the next obvious question is, why destructive?
Why not constructive, or perhaps something in between? The
answer is that, in fact, the detailed character of the interfer-
ence depends upon the initial conditions. Constructive inter-
ference is also possible and, when this happens, our calcula-
tions predict the possibility that, for appropriate values of the
parameters, an enhanced emission peak will appear, instead
of a dip in the fluorescence spectrum. Intuitively, it is rea-
sonable that one should be able to tailor the character of the
interference process by varying the relative complex weights
of the interfering histories, but it is not so obvious how to do
it. In order to address this issue in some detail, we devote an

Appendix to a sketch of a calculation of the spontaneous-
emission spectrum starting from an arbitrary initial superpo-
sition of the states 2 and 3 of Fig. 1(a), and thus from an
arbitrary mixture of the atomic dressed states. The possible
existence of positive interference in spontaneous emission,
predicted in the Appendix, appears not to have been noticed
before.

Perhaps just as obvious is the question, why is quantum
interference absent in the case of the lower level coupling?
The answer is that in this case, as in the previous one, the
decay process can proceed along two paths. In the case of the
lower level coupling, however, one can ascertain, in prin-
ciple, which of the two paths the atom has chosen to decay.
This could be done, for example, by monitoring the absorp-
tion of a very weak probe tuned between either one of the
states of the ground doublet and an excited state elsewhere in
the atomic energy spectrum. In the case of the upper level
coupling the action of the same probe would unavoidably
destroy the initial quantum state of the atom, in the same
way as with the standard double slit experiment if one at-
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tempted to uncover the path of the proverbial single photon.
In order to identify the key physical features of the pre-

dicted behaviors as unambiguously as possible we develop,
in Sec. II, simplified models for the two processes in which
we retain only the essential ingredients, and ignore both the
mechanism by which the atom is placed in its initial excited
state and the spontaneous relaxation of the atom from level 3
to lower-lying states. In Sec. III we discuss the results and
implications of our calculations and display a few character-
istic examples. The inhuence of the excitation mechanism
and of the additional decay processes is considered in Sec.
IV, where we use the more general approach based on the
regression theorem to derive the spontaneous-emission spec-
trum along the lines of Refs. [12(a)] and [12(b)]. Section V
contains a few general remarks and conclusion comments.
This paper also includes an Appendix with the main steps of
a calculation in which we extend the analysis of the upper
level coupling to more general initial conditions that those
considered in Sec. II. This generalization shows that the in-
terference effects need not be always of the destructive type
but that, under appropriate conditions, constructive interfer-
ence is also possible.

II. SIMPLIFIED MODELS
AND SPONTANEOUS-EMISSION SPECTRA

In this section we provide an analytic derivation of the
spontaneous-emission spectra with the help of the traditional
Weisskopf-Wigner approach [13], adapted for the inclusion
of an additional coupling mechanism to a higher-lying state
in each model. In both cases [Figs. 1(a) and 1(b)] we con-
sider a three-level atom, which is prepared initially in its
excited state 2 by an unspecified excitation mechanism (this
part of the model will be taken into account explicitly in the
more realistic but no longer analytic treatment of Sec. IV).
The transition 2-1 is coupled to the vacuum of the electro-
magnetic field, while the additional transitions 2-3 [see Fig.
1(a)] and 1-3 [see Fig. 1(b)] are induced by a classical field
with an assigned Rabi frequency Ap. This simplified treat-
ment, as we have already mentioned, omits the spontaneous
decay of the excited state 3 to lower-lying states, a feature
which will be included in the discussion of Sec. IV. Because
the calculation strategy is somewhat different in the two
cases for reasons of convenience, we consider each sepa-
rately and, for ease of nomenclature, we refer to the configu-
ration of Fig. 1(a) as the "upper level coupling, " while we
refer to that of Fig. 1(b) as the "lower level coupling. "

H&(r)=i&+ g, (b,a&a$ bja)ap)
J

+ i', (Doe '"o'af3aq —Ao e'"o'a&as) (2.3)

(the upper index 5 denotes the Schrodinger picture). The
operators a, , a; are the Fermion creation and annihilation
operators for electrons, the index i labels one of the three
atomic states of interest, and e; denotes the corresponding
energy, measured from some convenient reference level; the
operators b~, bj, instead, are photon creation and annihila-
tion operators, and the index j labels the momentum and
polarization indices of the jth field mode whose frequency is
coj. The symbol g, denotes the coupling constant between
the atomic transition and the jth mode of the vacuum field,
and is given by

I'

COj

2fi, ~ pU

1/2

(2 4)

where p, is the modulus of the 2-1 transition dipole moment,
and V is the quantization volume which will be allowed be
become infinite at an appropriate point in the calculation;
O, p is the Rabi frequency of the classical driving field, and
cop is its carrier frequency which, in this case, is equal or
approximately equal to the transition frequency co32.

We are interested in solving the Schrodinger equation for
the driven atom. In the interaction picture this has the form

d l

d, l P(r)) = ——„H~(r) I+(r)), (2.5)

where

i HotNHs(r )
—i Hoilk

8&=
GO&

—
COpy, Ap = COp Q)32. (2.7)

We assume the state vector of the system at the arbitrary time
t to have the form

= ifi, g g, (e ' ~'b, a~~a, —e' ~'bfafa~)
J

+ i6(Doe ' o'a&aq —Ao e' o'aza3), (2.6)

and where the detuning parameters Bj and Ap are defined by

A. Upper level coupling

With reference to Fig. 1(a), the model Hamiltonian has
the form

'p(r) ) = c,(r) l(0)) l2)+ c,(r) l(01) I

+g c„(r)b,'l(0) (2.8)

H= Ho+ Hi (t),

where the unperturbed contribution to Eq. (2.1) is

3

Ho= + e;afa;+g A, co&bfb)
i=1 j

and the interaction part is

(2 I)

(2.2)

where
l i) (i = 1,2,3) is the ith unperturbed stationary state of

the atom, l(0]) denotes the vacuum of the electromagnetic
field, and the initial values of the expansion amplitudes are

C&,(0) =0, and Cz(0), c&(0) are arbitrary (apart, of course,
for the normalization requirement).

Upon substituting Eq. (2.8) into Eq. (2.5) and after some
simple steps, we arrive at the following first-order differen-
tial equations for the expansion amplitudes:
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d—Cij(t) = g—je' "C2(t), (2.9a)
C,(t~~) =0, (2.14b)

—C2(t)= —Afe' "Cs(t)+g g, e ' J'C„(t),
J

d

dt
C—,(t)=noe 'rotc, (t),

(2.9b)

(2.9c)

g, ~ a++I a +I
+ i(ho+ 8, ) X'+ i(d o+ 8, ) t

'

(2.14c)

The spontaneous-emission spectrum, S(cu), is propor-
tional to the Fourier transform of the field correlation func-
tion

which we can solve along the lines of the traditional ap-
proach of Weisskopf and Wigner [13].Following this proce-
dure, one solves formally Eq. (2.9a) and substitutes the result
in Eq. (2.9b). After taking the limit V~~, the remaining
amplitude equations take the form

(E~ l(r, t+r) Et+l(r, t)&,

=('P(t)lE (r t+ r) E'+'(r, t)I'It(t)&~ (2.15)

where, in a finite quantization volume, the positive and nega-
tive frequency parts of the electric field operator are given,
respectively, by

d—C, (t) = —Ao*e'~o'C, (t) —,' yC, (t), —(2.10a) fLtdJ l
Et+l(r, t) =i+ ' e,b, exp[i(k,"r—to, t)],

i2eoVi

where

d

dt
—C, (t)=Doe ' oC, (t),

y=2vrg (co2,)D(co2i),

(2.10b)

(2.10c)

E (r, t)=[E+ (r, t)]t,

and where the asymptotic form of the state vector is

(2.16a)

(2.16b)

and D(co2, ) is the vacuum density of modes calculated at the
atomic transition frequency. In this calculation we have ig-
nored the small vacuum-induced frequency shift in the tran-
sition frequency co2& .

Solving the coupled equations (2.10a) and (2.10b) is now
a simple matter, and the result of this calculation is

(2.17)

with Cij(~) given by Eq. (2.14c). After substituting Eqs.
(2.16), (2.17), and (2.14c) into Eq. (2.15), and after carrying
out the infinite volume limit, we arrive at the required result

k t+ + k t) iAot (2.11a)
~(~)"

1 ci,.l', (2.18)

where

and

+
~+Cs(t) =flo + e '+ e

)

(k +r) C2(0)+ Q(~) C3(0)

(l + r) c,(0)+n,*c,(0)
k+ —k

(2.11b)

(2.12a)

(2.12b)

with 8,
' replaced by 8'—= co —co2, in Eq. (2.14c). The structure

of Eq. (2.18), and specifically the dependence of the emis-
sion spectrum upon the modulus squared of the sum of two
amplitudes, makes it clear by inspection that the detailed
spectral shape of the radiated fIuorescence is intimately con-
trolled by quantum interference effects. In particular, for
50+ 8'= 0, the amplitude C& „vanishes identically, thus
yielding a dark line in the spectrum at the frequency
co co 3 $ coo or at the center of the traditional Lorentzian
line if the atom is resonantly driven (Do=0). This is one of
our main results and it will be discussed and illustrated in
greater detail in Sec. III of this paper.

r tr'
Z L2)

I = -,
' y+ iso.

1/2

(2.13a)

(2.13b)

B. Lower level coupling

For the setting illustrated in Fig. 1(b) it is convenient to
adopt a slightly different approach [14].We select

Ho=&to2iaza2+ktooa3as+ g htojbjbJ, (2.19)
It is just as simple to derive an expression for the remaining
amplitudes Ci, (t); because, however, we are only interested
in the asymptotic form of the emission spectrum, we write
down only the long-time solutions which we specialize, fur-
thermore, to the initial conditions C2(0) = 1, C3(0) = 0. The
required results are

as the unperturbed Hamiltonian, and

Hi(t) =fi(t03i —coo)a3a3+ ikey gz(btazai —b aia2)
J

Cq(t~~) =0, (2.14a) + iti, (Doe '"o'a3ai —Ao e'"o'a, a3) (2.20)
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as the interaction contribution, where the meaning of the
symbols is the same as adopted in Sec. II A. In the interac-
tion picture, the Hamiltonian (2.20) takes the form

d—C2(t)= sino g g, e ' /'u, (t)+ cos0 g g, e ' /'p, (t),
J J

(2.28a)

H)(t) =Hq+Hq(t),

where

Hz ———fi, hoasas+i h(Aoasa &

—Ao a ta3),

(2.21)

Ap= cop co3)
(2.22a)

a—,(t) = —ik n, (t) —g, single' /'C2(t), (2.28b)

d p—,(t) = —ikpp, (t) —g, cosine' /'C2(t), (2.28c)

and

He=ifig g (b a2a&e ' /' ba—ta2e' /'), (2.22b)
J

H„l~)=f ~.l~),

HAlp&=&) Pip&,

(2.23a)

(2.23b)

and the Schrodinger equation is still given by Eq. (2.5), with
the new interaction Hamiltonian (2.21). However, instead of
expanding the unknown state vector in terms of unperturbed
eigenstates of the system, as done in Eq. (2.8), we introduce
the dressed atomic eigenstates In) and Ip) and the corre-
sponding eigenvalues X and k&, defined by

with the initial conditions C2(0) =1, n, (0) = p, (0)=0 f«
all values of j.

Next, we solve Eqs. (2.28b) and (2.28c) formally, substi-
tute the results into Eq. (2.28a), and carry out the limit
V—+~, as done in Sec. II A. The result of this calculation is
the following equation of motion for the amplitude C2(t):

—c2(t)= —
ml sin 9D(to2, k)g (—cu2t —k )

+cos HD(co2& —
X/3)g (to2& —k/s)]C2(t).

(2.29)

In view of the slowly varying nature of the vacuum mode
density D and of the coupling parameter g, we can safely let

Their explicit expressions are

l~)= »n~l»+ie'"co«13&.

IP) =
cos~ll 1&—ie'" »n~l3).

(2.24a)

(2.24b)

D(~» —~.) =D(~2t —~P) =D(~2i).

g(~2i —l .)=g(~2t —
~ P)=g(~2t),

r

and arrive at

(2.30a)

(2.30b)

where d—C2(t) = —,' yC2(t), — (2.31)
l&ol

Q) '+IAol2
(2.25a)

where the damping rate y is defined as in Eq. (2.10c). Fi-
nally, the asymptotic solutions of the amplitude equations are

l&oI

Qz2~+ IAol'

0o ——Insole'",

and the eigenvalues are given by

(2.25b)

(2.25c)

C2(t~~) =0,

n, (t~~) = g sin0
—,'y —i(k + 8', )

(2.32a)

(2.32b)

(g2 ) 1/2

+ +ID, I'(4
/g2 ) 1/2

kp= — — +IQol2 ~

S4

(2.26a)

(2.26b)

p/(t ~~) =g cos 8
—,
'

y —i(kp+ 8, )
(2.32c)

The long-time correlation function of the spontaneously
emitted field is given again by Eq. (2.15), but now the as-
ymptotic form of the state vector is

At this point we expand the state vector I'P(t)) in the
form

I+(t)&=c2(t)12&l(0)&+X I:~/(t)b,'l(0)&l~&

)&=X I:~,(»,'l(0)&l~)+P, ( )b,'l(oj&IP&]
l

(2.33)

After substituting Eqs. (2.16a), (2.16b), and (2.33) into Eq.
(2.15) it is a simple matter to show that

+ p, (t)b,'l(0)&l p», (2.27) 6 COJ
(E' '(r, t+~) E"1(r.t)) --=2

2
Ve'""i.l~/( )I'

J 2ePV
and, after some simple calculations, we arrive at the equa-
tions of motion for the expansion amplitudes, +

I p, (-)I'] (2.34)
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CO —CO21
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FIG. 2. Spontaneous emission spectrum S(cp) for the upper
level coupling case with Ap = 0 and (a) II p

=0.3, (b) Ap = 2.
FIG. 3. Spontaneous emission spectrum S(cp) for the upper

level coupling case with IIp=3 and (a) Ap= 1, (b) Ap=5.

Thus, in this case, the spectrum of the spontaneously emitted
light, after taking the infinite volume limit, becomes

(2.35)

where n(pp) and P(~) are given by Eqs. (2.32b) and (2.32c)
with 8~ replaced by 8'= ~ —co2i. It is then clear by inspec-
tion that S(cu) is the incoherent sum of two Lorentzian func-
tions each with the same linewidth and that no interference
effect is present.

III. DISCUSSION OF THE ANALYTIC RESULTS

Ic,.l'= g' (6o+ 6)
(

(8 + clio —Idol ) + —' (Do+ 8)

(3.1)

While greatly simplified in nature, the models discussed
in the preceding section contain the essential physical fea-
tures that we wish to emphasize in this paper. Thus, Eqs.
(2.18) and (2.14c) show that, even a very small amount of
coherent mixing of the atomic levels 2 and 3 in Fig. 1(a) is
sufficient to induce an interference effect between the spon-
taneous decay pathways of the dressed excited states. This
can be made even more transparent if we rewrite

I
C, „I

explicitly as follows:

Idol'4
A co = —

p/ 1—R 2
o

(3.3a)

into two parts. Two illustrative examples are shown in Fig. 2,
under resonance conditions, for two different values of the
driving field strength (note that in all the spectral displays,
for simplicity, we have set the coupling constant g I see, for
example, Eqs. (2.32b) and (2.32c)] equal to unity).

When the driving field is detuned away from the co32 tran-
sition frequency the emission spectrum is no longer fully
symmetric: the two side lobes continue to have the same
peak height, but they are centered at different values of the
frequency and have different widths. This effect is illustrated
in Fig. 3 for a fixed value of the driving field Rabi frequency
and two different positive values of the detuning parameter
60. This figure shows that, while the peak heights of the two
spectral components remain the same, an increase of
60)0 broadens the width of the right half of the spectrum
and narrows the width of the spectral component on the left
of the frequency origin (8=0). The situation is reversed,
relative to the origin of the frequency axis, if the detuning
parameter is negative. The derivation of an analytic expres-
sion for the two widths of the spectral components is, appar-
ently, a complicated algebraic chore. In the limit in which

Idol &&
I Aol, the full widths at half maximum of the right and

left peaks in Fig. 3 are given approximately by

~~=2r 1+ 2 +O(i&pl')
y/2 ' (3.2)

in the limit in which Idol(& y/2. Hence, it follows that in the
presence of a coherent driving field, even with an arbitrarily
small amplitude and detuning, the emission spectrum is split

Equation (3.1) shows by inspection that the spectrum of
spontaneous emission develops a dark line centered at
6= —Ao whose origin can be traced to the negative interfer-
ence of the two contributing amplitudes.

The structure of the spectral profile is especially simple to
analyze when the driving field is resonant with the 2-3 tran-
sition. In this case Eq (3.1) shows that the emission line is
split symmetrically around 6=0; the two side lobes have
equal heights and the maxima are located at 8= ~ Idol. Fur-
thermore, the full width at half maximum of each of the side
lobes is given approximately by

i&pl'
~~L=2r (3.3b)

sin 0 cos 0
s ~) 2 2+ 2 2 (34)(r/2)'+(~+ r.)' (r/2)'+(~+ rp)'

Each component, one centered at 6'= —P and the other at
6= —Xp, has a full width at half maximum, y. On reso-
nance the two lines have the same height, as illustrated in
Fig. 4, while out of resonance (Ao40) one of the lines be-

I the subscripts R and L in Eqs. (3.3a) and (3.3b) denote right
and left, respectively].

In the case of the lower level coupling IFig. 1(b)] it is
apparent by direct inspection of Eqs. (2.32) and (2.35) that
the fIuorescence spectrum is just the incoherent sum of two
Lorentzian lines, i.e.,
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FIG. 4. Spontaneous emission spectrum S(co) for the lower
level coupling case with Do=0 and (a) Go=0.3, (b) 00=2.

0 t

-5 0 15

FIG. 5. Spontaneous emission spectrum S(cu) for the lower
level coupling case with II0=3 and (a) Do= I, (b) Do=10.

comes progressively more intense relative to the other, as the
frequency detuning increases in magnitude (see Fig. 5).

When, under resonance conditions, the strength of the
driving field decreases and eventually approaches zero, the
frequency spacing between the dressed doublets also van-
ishes. It is clear that, eventually, the spectra in both the upper
and lower coupling schemes will have to approach the usual
Lorentzian distribution function. This is true, indeed, but
their approach to the Lorentzian shape is very different. In
the case illustrated in Fig. 1(a) the spectrum is always split
into two side lobes with a dark line in the middle, which
disappears only in the absence of the coherent driving field,
as suggested by curve a in Fig. 2. In the case of the lower
level coupling, as the Rabi frequency of the driving field
decreases, the dip that separates the two side lobes becomes
smaller until, eventually, it disappears when

~ Bo
~

becomes of
the order of a few tenths of y, for Ao =0 (see curve a of Fig.
4).

When the magnitude of the detuning parameter Ao in-

creases, the spontaneous-emission spectra are expected again
to approach a Lorentzian shape, as the effect of the driving
field becomes less and less pronounced. This continues to be
true in both cases, but the approach to the Lorentzian emis-
sion line is again very different for the two models.

This is already apparent from the results shown in Figs. 3
and 5, but it become especially obvious if we consider a
situation where the driving Rabi frequency is only a small
fraction of the spontaneous decay rate. An example is shown
in Fig. 6 for the case of the upper level coupling. Taken

FIG. 6. Spontaneous emission spectrum 5(co) for the upper
level coupling case with Go=0.5 and (a) 60=0.5, (b)
—2.5.

together, these results show that, for the configuration of Fig.
1(a) and for increasing values of the detuning, the width of
one of the side lobes becomes progressively narrower and
the radiated power under this lobe decreases, while the other
grows and eventually approaches the standard Lorentzian
value. These changes of shape occur with no change in the
height of the two components. In the second case the widths
of the side lobes remain the same regardless of the value of
the detuning, while the peak value of one spectral component
decreases and eventually approaches zero.

We must stress that these results apply, strictly speaking,
only to the idealized models analyzed in Sec. II, where we
have ignored the effects of the pumping mechanisms which
are needed to prepare the atoms in their initial state, and the
possible influence of additional competing decays, for ex-
ample the spontaneous decay of level 3. These effects will be
described in more detail in the following section.

IV. A MORE REALISTIC MODEL

It is surely not too realistic to expect that the atom can be
placed in its initial excited state just at it enters the interac-
tion region. What can be accomplished more easily in a prac-
tical setting is to let the interaction of the atoms with the
driving fields begin at some arbitrary time, for example when
an atom from an atomic beam enters the region occupied by
the driving fields, and then to monitor the fluorescence spec-
trum under steady-state conditions, as done typically in reso-
nance fIuorescence studies.

For this purpose we consider an extension of the models
illustrated in Figs. 1(a) and 1(b), which includes a second
coherent driving field, 0&, at or near resonance with the 1-2
transition and also an incoherent pump mechanism charac-
terized by a pump rate W&2. The reason for these modifica-
tions is to monitor explicitly the effect of the pumping pro-
cess on the pure interference effect. Furthermore, we also
include the remaining spontaneous decay processes at the
rates W, , where i is the starting and j is the terminal level
of the decay. The coherent driving field, which is already part
of the simplified models, continues to be applied to the same
pair of levels and to be denoted by the Rabi frequency 0,0.

It is no longer practically feasible to handle the extended
models by the Weisskopf-Wigner method (state vector
method). It is much easier, instead, to describe the atomic
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evolution by the standard master equation approach and to
derive expressions for the spontaneous emission spectra with
the help of the regression theorem [15].In the calculation of
the fluorescence spectra we adopt the procedure discussed in
Refs. [12(a)] and [12(b)] but with the help of more conve-
nient assignments of the variables which allow the three-
level cascade and V configurations to be described by the
same equations [16].The drawback of the increased gener-
ality of the models is that it is no longer possible to identify

by inspection the terms responsible for quantum interference,
although their presence is obvious from the final numerical
results.

We begin with the upper level coupling case. In the pres-
ence of a second coherent driving field connecting levels 1

and 2 of Fig. 1(a) the interaction Hamiltonian in the interac-
tion representation takes the form

where 60 is defined as in Eq. (2.7), and

~1 ~1 ~21 (4.2)

—% =L%+j,
dt

(4.3)

where

+1=P12 +2= P13 +3=P21 +4= P22 +S= P23

The calculation is based on the master equation and the re-
gression theorem along the lines of Ref. [12(a)].The relevant
equations of motion for the matrix elements of the density
operator (in the interaction representation) can be written in
the form

H)(t) = —65)aza2 —fi(b 0+ 61)a3a3+ i6(QPa3a2 +6 P31 +7 P32 +8 P33 (4 4)

flP a 2a3) + ill (fl i a2a 1
—0 1 a 1 a 2), (4 1) The matrix L has the explicit form

—r 12
—00

—r 13

A0

—2Q,

( W21+ W23+ W12) +0
A0~ —I 23 0

0 —A 1

( W32 —Wi2)
(4 5)

0 no

( W23 —W13) A0

n*, -r,*,

0 A,*
0

—(W32+ W»+ W»)

where tP, t 1
~~, t 1

—tP —= 7'~ 0, (4.10)

I 12 Y12+ lk1, I 13 Y13+ l(5 05+1), I 23
—y23+ leap,

(4 6)
where r is arbitrary. Following the same procedure as de-
scribed in Ref. [12(a)] leads to the result

3

q, ,= g (W,„+W„),
It=1

(4.7) I ")(.) = p'„"" ("')„+.(-)+("'),2+3(™)

with W;, = 0 (i = 1,2,3), and the inhomogeneous vector I has
nonzero components

8

+, dr'g (eL' ')),,I,'It3(~),
JQ j=1

(4. i 1)

I, =A,*, I,=A, , I„=W„, I8=W„. (4.8)
where

I & "(t, , t, ) =(p& )(t, )p&'(t, )), (4.9a)

The required spectrum is proportional to the Fourier trans-
form of the two-time correlation function

8

+( )= —X (L ),,I,j=1
(4.12)

where

p(+) — & p( —) —(p(+)]t (4.9b)

denotes the ith stationary matrix element of the density op-
erator, according to the notations introduced in Eq. (4.4).

After elimination of the coherent part, the spectrum of the
radiated fluorescence is given by

Equation (4.9a) must be calculated in steady state, i.e., under
the double limit S(p)) = ReI I„',),„(z)~, (4.i3)
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+ g N, ,{z—iso, )I,%'3(~),
J=l

(4.14)

and where

where 1 1„',',„(z), the so-called incoherent part of the Laplace
transform of I' ' (r), has the explicit form

rt„'&„(z)™„(z-',)W„( )™„(z-',)e, ( )

We note that, in the absence of a second driving field, we
must replace formally co1 with co21. Furthermore, if 01=0,
we also have %3(~)=0 so that the integral term in Eq.
(4.11) is absent, and no subtraction of the coherent Rayleigh
scattering is needed (of course).

For the case of the lower level coupling the interaction
Hamiltonian is given by

H, (t) = —A, h, a2a2 —A APa3a3+i A (APa3a1 —AP*a, a3)

M;, (z)=[(z L) —'];, ,

&;,(z)=[L '(z —~)

(4.15a)

(4.15b)

+ i6(n ta2a1 —nt a1a2). (4.16)

With the same assignment of the components of the vector
% as given by Eq. (4.4), the new matrix L takes the form

—r 12

0

0

0

0

-r 13

0

0

0

0

QQ
1

0

—2A*,

0

0

QQ

—0,0

(W21+ W23+ W12) 0

0

0

0

0

0

0

0

0

0

0

1

—200~

1

(W32 —W12)

0
(4.17)

0

no 0

0

0 0
0 0

0

-r*
13

—0 1

—I 23

—20,0

0

0 Ao 0 (W23 —W13) 0 QQ
0 (W32+ W31+ W13)

where

V12 Y12+lkl, V13—713+lAP, V23 Y23+l(51 —AP),

{4.18)

and the inhomogeneous vector I has nonzero components

cases. Also, the qualitative similarity with the results shown
in Figs. 2 and 4 should be immediately apparent, in support
of our previous claims to the effect that the inclusion of
additional complications should not alter the appearance of
interference effects to the point of making them unobserv-
able.

I1 —01, I2 —Ao, I3 = A 1

I4= W12, I6=AO I8= W13 (4.19)

With the chosen notations, the fluorescence spectrum is
given again by Eqs. (4.13), (4.14), and (4.15).

Of course, the inclusion of the additional driving fields
and decay pathways (and, possibly, also the incoherent pump
processes) changes the structure of the ideal spectra dis-
cussed in Secs. II and III, but the differences are mainly
quantitative unless the added decay rates become too large in
comparison with the Rabi frequency O, o. With a careful se-
lection of the atomic levels it should be possible to display
evidence of the essential differences between the upper and
lower level coupling, at least as far as quantum interference
effects are concerned. As an example we show the fluores-
cence spectra from two identical sets of atoms with the same
driving field Ap applied to the transition 2-3 of Fig. 1(a) and
1-3 of Fig. 1(b). In both cases a second weaker field is re-
sponsible for creating the initial state of excitation whose
spontaneous emission yields the calculated spectrum. The
results are shown in Figs. 7 and 8, respectively, and are cer-
tainly quite different from each other in spite of the fact that
all the parameters of the problem are identical in the two

V. DISCUSSION AND CONCLUSIONS

The fluorescence spectrum of a two-level atom can un-

dergo significant modifications in the presence of an external
driving field. This has been well known since the late 1960s

6

0-'
1

'
1

' I

6) —N 21

FIG. 7. Spontaneous emission spectrum S(co) for the upper
level coupling case with Ao= 0.5, A

&

= 0.03, 50= 5 ~
= 0,

W2g= l, W32 0.2, and W3)=0.02.
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Autler-Townes splitting of the upper state and the subsequent
spontaneous emission from either one of the resulting levels.
This argument ignores that the upper split states are phased
together by the driving field, so that interference is unavoid-
able, and the process should really be interpreted as the spon-
taneous decay from dressed states. The shape of the emitted
line and especially the appearance of a dark band in the
middle of the spectrum, and the width of the two components
(each half of which is predicted by the usual Weisskopf-
Wigner theory, at least under resonant conditions) are symp-
toms of the essential role played by quantum interference in
this spontaneous decay process.
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FIG. 8. Spontaneous emission spectrum S(co) for the lower

level coupling case with 00=0.5, A&=0.03, 60=6&=0 W3]
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from the work of several authors [17] who explored the ef-
fect of a coherent field tuned close to or at resonance with the
two-level transition of interest. In this work we have ana-
lyzed the effect of an external driving field which couples
either the upper or lower atomic transition to a third level in
the atom's energy-level structure. The main result of our
analysis is that, in the case of the upper level coupling, quan-
tum interference effects produce a "hole" in the spontaneous
emission spectrum, an effect which is absent (at least for
weak driving field Bo) in the case of the lower level cou-
pling where interference plays no role.

Quantum interference effects are the source of numerous
other observed spectral features in both the emission and the
absorption spectra of driven multilevel atoms. The predicted
and observed line narrowing in the spontaneous emission
spectrum of a three-level atom in a V configuration [12a] is
one such example. Another is the population trapping [7]
which can be made especially obvious in another kind of
three-level atom, the so-called A system. Although popula-
tion trapping shares common physical roots with the dark
line feature of the fIuorescence spectrum, it should not be
confused with the effect discussed in this paper.

Under population trapping conditions [we are thinking es-
pecially of a 8 system, such as discussed in Ref. [7(b)]],
there is no absorption from the lowest two levels to the top
excited state. Thus the excited state stays empty in steady
state, and no light is emitted spontaneously at any frequency.
Furthermore, the cancellation of absorption, a purely destruc-
tive interference phenomenon, is a coherent process which is
degraded by incoherent effects. In our case, instead, quantum
interference leads to the cancellation of spontaneous emis-
sion at certain frequencies; in addition the process is intrin-
sically incoherent in nature.

In a sense popu1ation trapping and the kind of quantum
interference effect described schematically in Fig. 1(a) are
complementary to one another; the former is the end result of
interference among coherent processes leading to a cancella-
tion of the absorption cross section, while the latter emerges
from the quantum interference of incoherent processes with
the cancellation of the radiated fluorescence at certain fre-
quencies and the appearance of a split spectrum.

We may also remark that, naively, one might interpret the
appearance of a spectral hole as just a consequence of the
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APPENDIX

I
p(r)& = X ~,(»b,'I4o)&l »+ ~(r) lio)&l ~&

+ p(r) lgo&)l p&

where

I ~) = (I»+ te"l3))
2

(A2a)

The purpose of this appendix is to outline an alternative
but equivalent approach to the one developed in Sec. II A for
the calculation of the fluorescence spectrum in the upper
level coupling scheme. By using dressed states as a basis,
instead of bare atomic states, the origin of the interference
effect becomes more transparent with only the minor draw-
back of some increase in computations. Furthermore, by
adopting more general initial conditions, we demonstrate an-
other surprising effect: it is possible to control the character
of the interference process during the spontaneous emission,
and force the system to display destructive or constructive
interference, or other intermediate configurations.

We find this result surprising because, in view of the in-
coherent character of the decay, one would be tempted to
assume that memory of the initial preparation should be lost.
In fact, this is not the case, and the results, in a sense, are
reminiscent of the double slit interference effect with a vari-
able phase lag inserted in one of the slits.

For simplicity, we limit our analysis to the resonant case
Ao = 0. The interaction Hamiltonian in the interaction picture
has the same form as given by Eq. (2.6); now, however, we
assume the state vector of the system at the arbitrary time t
to have the form



QUANTUM-MECHANICAL INTERFERENCE EFFECTS IN THE 4801

1
lP) = (I2)- ie"I3)),

2
(A2b)

are the eigenstates of the Ao-dependent part of the Hamil-
tonian (2.6) (with Do=0), corresponding to the eigenvalues
+A, lAol and —fi, lBol, respectively. The symbol y is the
phase of the driving field Ao as in Eq. (2.25c).

As done in Sec. II A, our objective is to solve the Schro-
dinger equation (2.5) with the state vector given by Eq. (Al).
For this purpose we must solve the coupled equations 0-

I

-1.5

tw,
~ ~ ~

-0.5

';(c)

i

~ ~I
~ ~

0.5 1.5

1

d C»(t) = — g, ""'Ln(t)+ P(t) ],dt

d 1—n(t)= —ilAoln(t)+ Q g, C,,(t)edt 2
(A3b)

Cil —M21

FIG. 9. Spontaneous emission spectrum S(ro) for the upper
level coupling case for different initial atomic conditions and

Ao =0.5 50 = 0 ' the three curves correspond to the following prob-
ability amplitudes for the atomic states 2 and 3: (a) C2=1,
Cs=0; (b) C2= C3=1/Q2; (c) C&=0, Cs= l.

1
p(t)=i—lIIolp(t)+ g g, C,,(t)e

' r', (A3c)
dt 2 j

1 gj
Ci,(taco) =

2 S1 S

S)
Xp S~+ E 8& S2+ E 6j/

subject to the initial conditions Ci, (0) =0, n(0) = no,
P(0) = Po, where no and Po are arbitrary comPlex numbers
constrained only by the normalization condition where

1 1—t l&ol &o
S i + E 6~ $2+ E 6~ /

(A7)

lnol + IPol (A4)
s= ——+ — —lAl'

4 i4

1/2

(Aga)

At this point we follow the same procedure outlined in
Sec. II; we solve formally for C,,(t), eliminate these vari-
ables from Eqs. (A3b) and (A3c), and apply the Weisskopf-
Wigner approximation. Furthermore, it is convenient to in-
troduce the new variables

1/2iy"
s, = ——— — —lII, l'

4 L4i. (Agb)

X(t) = n(t)+ P(t) (A5a)

I'(t) = n(t) P(t), - (A5b)
Xo=no+Po. I'o=no —Po (A9)

whose equations of motion take the simple form

dX(t) = - tin, l
I (t) —

—,
' yx(t),

dY(t) = —ilA lx(t),

(A6a)

(A6b)

Note that Eq. (A7) reduces to Eq. (2.14c) if no = po = Q2 and

Ao = 0. In general, however, the fluorescence spectrum which
is still given by Eq. (2.18) differs from the one calculated in
Sec. II A if one selects arbitrary initial conditions. In particu-
lar, for example, if the atom is excited initially in state l3),
the initial values of the expansion amplitudes n(t) and

P(t) are given by

where the damping rate y is given by Eq. (2.10c). It is now
a simple matter to derive an explicit expression for the am-
plitudes C, (t), whose form in the long-time limit becomes

E

~e '"= Po—(A10)

and the consequences of the quantum interference are very
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1
5(~ ~21) 2 .

l&ol
(A11)

different from before. We can check this statement at once if
we calculate the central component of the spectrum,
S(co= co2,), which in this case takes the value

Thus, depending on the strength of the driving field Ao, the
spectrum can exhibit a minimum or a maximum at the
atomic transition frequency co2&. Examples of the full spec-
tral profile are shown in Fig. 9 for three different initial con-
ditions and for the relatively weak Rabi frequency
&o= 7/4
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