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Atomic motion in light beams possessing orbital angular momentum
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A theory is developed that leads to the description of the internal and gross motions of an atom in-

teracting with an arbitrary light field. The general results are then applied to the case of a Laguerre-
Gaussian (LG) mode, one of a class of modes of electromagnetic radiation that possess orbital angular
momentum. A number of effects are predicted, notably, an azimuthal shift in the atomic resonance, a
modified radiation pressure force, and an associated torque on the atom. It is pointed out that the effects
originate in the processes of the transfer of linear and orbital angular momentum from the field to the
atomic gross motion. The strengths of the effects are assessed in relation to the normal axial Doppler
shift and the linear light pressure force. The motion of atoms and ions subject to the LG pressure force
is studied by solving the classical equation of motion. Trajectories clearly exhibiting the effects of orbital
angular momentum are displayed for a free atom and for an ion in a two-dimensional trap and in a Paul
trap.

PACS number(s): 42.50.Vk, 32.80.Pj

I. INTRODUCTION

It has long been known that light exhibits interesting
and potentially exploitable radiation pressure efFects that
are associated with its energy-momentum properties
[1,2]. In fact, since the basic mechanisms were first
reconsidered [3], light pressure phenomena have been un-
der intensive study by both theory and experiment [4]. It
is only relatively recently, however, that many of the
effects involving radiation pressure on the gross motion
of atoms have been observed [5].

Most theoretical treatments of radiation pressure
effects on atoms have used a plane-wave approximation
of the light; any light field can, in principle, be decom-
posed into a superposition of plane waves. However, in
some situations, such as the case we consider here, this
decomposition can be very complicated and can obscure
interesting effects. In the theoretical development we dis-
cuss, we need only assume that the light belongs to a
well-defined mode of the radiation field. Thus the de-
tailed form of the mode is left general until the results of
the theory are applied to the specific case of interest.

Recent advances in the theory of nonuniform light
have demonstrated that light beams can possess orbital
angular momentum and that this angular momentum
should be transferrable to material objects interacting
with them [6]. This orbital angular momentum is distinct
from the spin angular momentum associated with circu-
larly polarized light and can occur in modes that are
linearly polarized. The orbital angular-momentum
equivalent of Beth's famous experiment [7], which used
circularly polarized light to rotate a birefringent plate
and so transfer angular momentum from a light beam to
a macroscopic material, is in progress [8].

The purpose of this paper is to present a theory for the

motion of a two-level atom in an arbitrary light field and
apply the general results obtained to the case where the
light field in question is a Laguerre-Gaussian mode.
Laguerre-Gaussian modes belong to a class of readily
producible laser modes characterized by their orbital
angular-momentum properties. In addition to the in-
teraction with such modes the motion of the atom is also
subject to spontaneous emission effects that occur due to
the interaction with an infinite reservoir of vacuum
modes. Spontaneous emission efFects are not taken into
account ab initio in our treatment, but can be included
later using some simple and straightforward arguments.
The procedure will lead to results that can be widely ap-
plied.

The paper is organized as follows. In Sec. II we define
the Hamiltonian of the system and demonstrate how it
can be used to determine the time evolution of variables
pertaining to the light and of the internal and gross
motions of the atom. The procedure yields general ex-
pressions for the reactive and dissipative forces on the
atom for an arbitrary field distribution, which are then
shown to produce the well-known results characteristic of
a linearly polarized plane wave in the appropriate limit.
In Sec. III the theory is applied to the case of a two-level
atom interacting with a Laguerre-Cxaussian (LG) mode.
Here significant results relating to the shift of the atomic
resonance and to a torque on the atom are presented and
compared with the predictions for the same atom in-
teracting with a plane wave [9,10]. In Sec. IV we consid-
er the numerical solution of the equation of motion for
atoms and ions under the inhuence of the LG radiation
forces. We show how this leads transparently to the pre-
sentation of atomic trajectories in a number of experi-
mentally viable contexts. In particular we present trajec-
tories for a free atom, an ion in a two-dimensional poten-
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tial well, and finally an ion in a Paul trap. Section V con-
tains our comments and final conclusions.

II. THEORY

Our model is defined as a two-level atom or ion, hence-
forth referred to as the atom, interacting with light whose
frequency is denoted co but whose spatial distribution is
initially unspecified. The atomic excitation frequency is
denoted by co0 and the atom is assumed to be interacting
with the light via its dipole moment vector d. The atom
may be subject further to a trapping potential U(R),
which acts to confine its motion in one, two, or all three
dimensions. The Hamiltonian operator appropriate for
this model is written as

tion, G corresponds to a position-dependent Rabi fre-
quency. It is convenient to express the interaction in
terms of G and 6 rather than f. The Hamiltonian (1) now
becomes

p2H= + U(R)+A'co m a+A'a)a a
2M 0

G(R) ' ' ' —G(R)

The time evolution of the system is derivable from the
Heisenberg equation of motion. For an operator 0 this is

[O,H],

which can be formally integrated to give

H= +U(R)+i)tco m rr+Acoa a —d E(R) .
p2

2M 0 O(t)=O(0)+ f [O(t'), H(t')]dt',
iA 0

(10)

E(R)=i [a Z(R) —C'(R)a (2)

It is convenient to express 8 in terms of a real amplitude
function e(R) and a phase factor involving a real func-
tion 6(R). Thus we set

g —(R) i6(R) (3)

We also represent the dipole operator by the familiar ex-
pression

d=D, ~(m+m ),
where D&2 is the dipole matrix element between levels 1

and 2. We can then write the electric-dipole term in the
Hamiltonian in the form

d.E=iA'j~ af(R) —f*(R)a vrJ,

where

f(R ) =G (R)e'e(R)

with G(R) given by

G(R)= —D -e(R).12

For a plane wave 6 corresponds to the Rabi frequency Q
and is real for linearly polarized light. In the present case,
where e is the amplitude for an arbitrary field distribu-

Here P and R are the momentum and the position vec-
tors of the atomic, center of mass. The operators m and

and a and a are, respectively, the lowering and the
raising operators for the atom and the light. The Hamil-
tonian (1) is correct only to leading order in the interac-
tion (electric-dipole approximation) between the light and
the atom and we have dropped all zero-point energies.
Other convection-type effects, such as those arising from
the motion of the electric dipole in the laser field, are con-
sidered small and therefore not included. For example,
we ignore the Rontgen interaction [11,12], and this has
the simple consequence that the canonical and the
mechanical momentum of the center of mass are identical
[13]. The quantized electric-field operator E(R) can be
expressed in terms of a general normalized mode function
A(R) as

I

rr(t) =e vr(0)+ f dt'e [2m'(t')vr(t') —1]
0

Xa (t')G(R, t')e' (12)

The evolution of the field annihilation operator a turns
out to be in the form

a(t)=e ' ' a(0)+ f dt'e'"'G(R, t')e ' ' ' m()t')
0

(13)

Expressions for the raising operators are obtainable as
simply the Hermitian conjugates of Eqs. (12) and (13).

Finally, we need the time evolution of the amplitude
G (R, t) and the phase B(R,t) characterizing the interac-
tion. We confine ourselves to the leading order in the in-
teraction while making use of the Heisenberg equation of
motion (9). We find

where 0 (0) denotes the initial value of O.
The linear momentum associated with the atomic gross

motion is the dynamical property of the system whose
evolution with time is initially of relevance. Evaluating
the commutator in Eq. (9) for P using Eq. (8) we obtain

P(t)=P(0) —f VU(R)dt'
0

+iaaf

dt'[rr (t')a(t')V[G(R, t')e' ' ' ']
0

—V [e 'o(R' 'G(R, t')]a (t')~(t')] . (l l)

In order to derive the time evolution of the momentum
from this result, we need to determine the explicit depen-
dence of the operators within the integral sign of the last
term of Eq. (11) followed by a direct evaluation of the
time integral. We seek expressions that are valid up to
second order in the coupling, which amounts to evaluat-
ing terms to order ~G~ . We consider first the time evolu-
tion of the operators within the integral sign in the last
term of Eq. (11).

The evolution of each of the atomic and field operators
is also based on the Heisenberg equation of motion. For
the atomic lowering operator we obtain
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VG(RO) P
G (R, t) =G (Ro)+

M
(14)

atomic momentum (P ) is formally obtainable by direct
use of the Heisenberg equation

and

i(R &)
' 0 ibt

F(r) =
dt

[P,H] . (23)

where 5 is given by

5= (P.V6+V8 P)1

2M 0 (16)

The same procedure leading to Eq. (19) may be used to
derive the average force. We have verified by explicit cal-
culation that the results thus obtained coincide with the
classical assignment

Throughout, the label zero denotes operators at the ini-
tial time t =0. The second term in Eq. (14) has a direct
interpretation; it describes the effects of the change in
amplitude with position while, as we argue below, the
term involving 5 represents a Doppler shift in the reso-
nance frequency.

We use the notation

(F(r)) = (P(r))
dt

(24)

so that the average force can be found simply by
difFerentiating the right-hand side of Eq. (19). This yields
a force that can be written naturally as a sum of three
components, namely, the confining force —VU plus two
radiation pressure forces. These forces will be identified
as a reactive force and a dissipative one

&P(r) &
=

& +IP(r) l+& (17)

to denote the expectation value of the momentum opera-
tor in a well-defined state ~%') of the system, at time t
The state ~%) need only be characterized by the initial
average photon number nk of the mode and occupation
number nz of the upper atomic level 2

nk = (%~at(0)a (0)~%), n2= (%~mt(0)n(0)~%') . (18) XG(R)VG(R)

ht
sin

(F)= —VU(R)+(F)„„,+(F);„;
The first (reactive) force is given by

(F)„„,= —4iri[nk(2n2 —1)+nz]

(25)

(26)

The occupation number n
&

of the lower state of the two-
level system is determined trivially from the normaliza-
tion condition n

&
+n 2

= 1.
The evaluation of (P(t) ) now follows straightforward-

ly, albeit laboriously, by direct use of Eq. (11),making use
of Eqs. (12)—(15). Throughout the calculation we retain
terms only up to second order in the coupling, that is,
second order in Go. We find after much algebra

(P(t))=P(0)—f VU(R)dt'
0

+iiri[n„(2n~ —1)+ n2]
X [GOVGOIi(t)+iVBOG()I2(t)] . (19)

For ease of notation we shall drop the label zero in all
subsequent expressions of this section so that, unless oth-
erwise stated, the functions 6 and 6 refer to those evalu-
ated initially. The time dependence in the last term is
contained entirely in the functions I, (t) and I2(t), which
are given explicitly by

ht'
sin

and the second (dissipative) force by

(F)z;„; = —2iri[nk(2n2 —1)+nz]

X G (R)V8(R) (27)

(28)

The reason for the emphasis on the dissipative nature of
the force will shortly become clear.

The formalism has so far dealt with the interaction of
the atom with only one radiation mode and account
needs to be taken of the effects of spontaneous emission
from the excited state to the ground state. This can be
introduced from the outset, as we plan to show in a forth-
coming paper [14], but in order not to obscure the main
thrust of the argument here, we have chosen to simplify
the treatment. As we now show, we can use arguments
leading to equally valid results. Denoting the decay rate
of the excited state by I, we define the availability of the
excited state as the survival rate dp /dt at time t by [15]

and

I,(t)=4i f0

2f ~sin(At') d,
0

dt' (20)

(21)

As the force is due to transition from the excited state the
time averaged force is

&F&= fdp&F&

where 5 is the effective detuning

(22) = f (F)re r'dr .
0

(29)

with 5 given by Eq. (16).
The average force on the atom ( F ) associated with the

On substituting from Eqs. (26) and (27), we find that we
only need to evaluate standard integrals and we are led to
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write, for the time-averaged reactive force,

( F )„„,= —4iri[nk(2ni —1)+n2 ]6(R)VG (R)1

ht
sin

2
X f ™dre-"'

0

= —4A'[nk(2nz —1)+n2]G (R)VG (R)

(30)

1

6+I (31)

These results are strictly valid at low field intensities.
For high intensities, we need to introduce the effects of
power broadening. This may be achieved by adding a
term in the denominators of Eq. (30) and (31) in such a
way that the correct saturation behavior is reproduced
[16]. We emphasize that this is fully justified, as will be
demonstrated in full optical Bloch equation treatment
[14]. Furthermore, we assume that initially the atom is in
its ground state, corresponding to setting n2=0. The ex-
pression for the reactive force then becomes

Similarly, we find for the time-averaged dissipative force,

(F)d;„;~= —4iii[ni, (2n2 —1)+ni ]G (R)VB(R)I

r, sin(b, t)dte
0

= —4iri[nk(2n2 —1)+ni]G (R)VB(R)I

8(R)=we k'"e (34)

where X is a normalization factor. Thus we have

ND&2 ekG(R)= (35)

B(R)=k R . (36)

is the same as that in the opposite direction. The direc-
tion of absorption is well defined, so there is a net
momentum change per absorbed photon of magnitude
iii~VB~, wher." averaged over a large number of photons.
As the maximum rate at which an atom may spontane-
ously emit photons is I, the maximum dissipative force
on the atom is ail VB ~.

Finally, we note that the strength of the reactive force
can, to the approximations used, increase without limit as
the field intensity, or field gradient, increases. In con-
trast, the dissipative force is limited to a maximum value,
as we have seen. This means that the reactive force
would dominate in sufficiently intense fields, as, for exam-
ple, strong static fields that have significant field gra-
dients and little phase gradient. In the applications dis-
cussed in this paper, the typical intensities of the laser
light used would render the reactive force negligibly
small compared with the dissipative force.

Before proceeding to consider the main application of
this paper to the case of atoms and ions in Laguerre-
Gaussian beams, it is instructive to consider first the fa-
miliar simple case of an atom interacting with a linearly
polarized plane wave of wave vector k and polarization
ek [18].The expression appropriate for this case is

(F)„„,=2iiiGVGnk
g2+ kG2+I 2 (32) It is then readily shown from Eq. (16) that 5 contains

the familiar Doppler shift as well as the recoil shift

and that of the dissipative force Ak6=k V+
2M

(37)

(F)d;„;p=2fini, G VB g2+ nkG2+I 2
(33)

It is the proportionality to I in this expression that
signifies the dissipative nature of this force and its associ-
ation with spontaneous emission. Equations (32) and (33)
are the main results of this section. In the forms given,
these forces are due to a general field distribution.
Despite the generality of the results it is possible to draw
some conclusions about the characteristics of the forces.

First, it is not difficult to see that, by virtue of its pro-
portionality to 6 and to VG, the reactive force would at-
tract the atom to regions of intense field when the laser is
tuned below resonance and repel the atom from these re-
gions when tuned above resonance. It is this property of
the reactive force that is frequently exploited in atom
trapping experiments [17].

The dissipative force, on the other hand, contains the
factor AVG, which corresponds to the momentum im-
parted by the light to the atom, which then reradiates
spontaneously in a random direction. The probability of
spontaneously emitting a photon along a given direction

(F)d;„;@=A'kl 1+2+(5, /I )

where J is a saturation parameter defined by

7=2nkG /I

(38)

(39)

The result (38) agrees with results by other authors [4,5].
In the saturation limit corresponding to J—+ ~, we ob-
tain the well-known result for the maximum dissipative

where V =P /M is the atomic velocity. The main
inhuence of this effect is to change the detuning parame-
ter from Do=co —~0 to 6, where A=ho —6. Further-
more, we will ignore the recoil shift on the grounds that
it is practically negligible for an atomic mass M and for
wave vectors corresponding to visible light, although for
low mass and ultracold atoms this may not always be the
case [19,20].

The reactive force defined by Eq. (32) for a plane wave
is identically zero, which follows trivially from the fact
that VG =0. The dissiptive force, Eq. (33), on the other
hand can be written succinctly in the form
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force on the atom

(F)„„„=eIr . (40)

III. ATQMS IN LAGUERRE-GAUSSIAN BEAMS

The dissipative force due to a plane wave produces
zero torque on the atom about an axis parallel to the
direction of propagation. This property stems from the
uniformity of the plane wave, which precludes the pres-
ence of nonaxial forces on the atom. In contrast, as we
pointed out at the outset and discuss in detail in Sec. III,
there exists a class of light beams that are readily repro-
ducible and have nontrivial inhuence on the nonaxial
atomic motion.

For a typical beam this component is small relative to the
transverse component. If the atom is isotropic then the
atomic dipole can rapidly align with the direction of the
local-field polarization. The phase gradient of the z com-
ponent of the field is the same as that of the x component
and so has no impact on the direction of the dissipative
force. For these reasons it is sufhcient to regard the beam
as linearly polarized in the x direction. Once we have
made this assumption, we can define functions 6 (R) and
e(R) appropriate for a dipole interacting with a
Laguerre-Gaussian mode. We have

1
C' r&2

(1+z'/z' )'" w (x)

Laguerre-Gaussian modes have recently featured
prominently after it was realized that they possess orbital
angular momentum [6] about the beam axis. Other forms
of light also exhibit this feature, such as the Bessel modes
of cylindrical waveguides. The analysis that follows is
often simpler for Bessel modes, but it is more useful to
consider Laguerre-Gaussian modes as they are readily
produced in the laboratory [8]. It should also be recog-
nized that the orbital angular-momentum eA'ects due to
intense focused beams may also be possible. It has been
shown [21] that appropriate modes possessing orbital an-
gular momentum may exist outside the confines of the
paraxial approximation in which the beam aspects of this
work have been couched. Within the parazial approxi-
mation [22], we have for a Laguerre-Gaussian beam trav-
eling in the +z direction and polarized principally in the
x direction [23]

XI I ~ —f(I /N (Z)]2p 2 2

w (z)
(43)

and

In the above C' is an overall factor incorporating the ap-
propriate field normalization factor and the dipole matrix
element.

The general results of Sec. II can now be used to de-
scribe the motion of an atom in a Laguerre-Gaussian
beam. Equation (16) enables a direct evaluation of the
Doppler shift, which we deal with first, while Eqs. (32)
and (33) leads to the forces acting on the atom.

e(R)= +lg+(2p+l+1) tan '(z/z )+kz .
2(z +z~ )

(44)

~ au, , lÃ(R)=ice u ix+ — ' z e'"',
Bx

(41)

C r&2
( 1 +z 2 /z 2

)
i /2 w (x )

where the function u~ I may be written in cylindrical
coordinates as

A. Doppler shift

On substituting for the function e(R) using Eq. (44)
we straightforwardly obtain from Eq. (16) the Doppler
shift 6

krz IV

z'+z'R

—[r /~ [xi]2I' 2 2

w (z)

kr
2(z +z~ )

2z21—
Z2+Z2R

ikr z
Xexp, , e'&

2(z +z~ )

(2p + I + 1)z~+ +k -V, ,
Z +ZR

(45)

Xexp[i(2p +1+1)tan '(z/zii )], (42)

where zz is the Rayleigh range and w (z)
=2(z +zz )/kzz is the beam width at distance z from
the beam waist. The integer variables l and p are quan-
tum numbers characterizing the mode and C is a normal-
ization factor given in Ref. [8].

A common feature of modes possessing orbital angular
momentum is the phase factor e'~. It is this term that is
responsible for the azimuthal Doppler shift and the
torque that these beams will be shown to exert on atoms.
Another characteristic feature specifically of a Laguerre-
Gaussian field distribution is that at any given point the
electric-field vector has a component along the beam axis.

where V„V&, and V, are the components of the atomic
velocity in cylindrical coordinates and the recoil terms
have been ignored. The Doppler shift divides naturally
into four types of contribution: an axial contribution
along the z direction, a contribution due to the Guoy
phase, a contribution due to the beam curvature, and
finally an azimuthal contribution. We write

~axial+ ~Guoy+ ~curve+ ~azimuth

We now discuss these in turn. The axial component sim-
ply corresponds to a Doppler shift that would arise from
a plane wave traveling along the beam axis

axial =k Vz



W. L. POWER, L. ALLEN, M. BABIKER, AND V. E. LEMBESSIS 52

This is normally the dominant shift provided the atom
has a substantial velocity component along the beam axis.
The shift caused by the Guoy phase is

(2p + I + 1)z~
(48)

z +zR

It is easily seen that, as typically zR ))wo, the Guoy shift
is very small for practically all Laguerre-Gaussian beams.
The shift arising from the beam curvature is given by

2 2krz kr 2z
cUfvc P+ Q

1'

2( P+ P
)

2nkG (R)
p2

(53)

Then the dissipative force takes the form

&F-& fil 2
[1+7+6, /I ]

T

krz I
2+ 2 rR

Note that the 5 appearing in the above expression
correctly incorporates the Doppler shift appropriate for a
Laguerre-Gaussian beam. We may now introduce a
position-dependent saturation parameter S(R) by

IV~
~azimuth

=
r (50)

This is a sum of contributions due to the spreading of the
beam in the radial and axial directions. These contribu-
tions are well understood from work on optical cavities.
They have the same origin as corresponding shifts in con-
ventional (0,0) mode Gaussian beams [4,17] and arise
from the curvature of the wavefront. They may have ob-
servable consequences in certain circumstances.

Finally, the azimuthal Doppler shift is

2 2kr 2z

2(z +z~) z +z~

(2p +l + 1)z~+
z2+zR

This can be written as a sum of four contributions

& F &„„;,= & F &.„;„+& F &.„„,„+& F &,„,„,+ & F & „,„.

(54)

(55)

The important features of this azimuthal shift are that it
is directly proportional to the orbital angular-momentum
quantum number I of the Laguerre-Gaussian mode and
that it is inversely proportional to the radial atomic coor-
dinate. The shift occurs for motion that is azimuthal to
the overall beam propagation.

The azimuthal component in the Doppler shift is just
one of the manifestations of the orbital angular-
momentum effects of nonuniform beams. As we argue in
Secs. IV and V, it is a potentially observable characteris-
tic of the internal motion of the atom arising from its in-
teraction with the LG beam. In the next subsection we
consider the radiation forces and an associated torque
due to such beams. These, in contrast, are measurable
properties of the gross motion of the atom. A different
approach to the distinction between internal and gross
motion in atoms due to fields possessing orbital angular
momentum is that of van Enk and Nienhaus [24].

8. Atom dynamics in LG beams

The first term is a contribution along the axis of the mode

ark'
[1+2+5, /I ]

(56)

and is seen to be identical to the dissipative force due to a
plane wave of wave vector k traveling along the axis. This
is the dominant component of the dissipative force. The
second, or azimuthal, term is

[1+2+6, /I' ]
(57)

This force component, whose consequences will be dis-
cussed more fully, is seen to be proportional to I/r and
acts on the atom in an azimuthal sense. It thus arises
principally because of the angular-momentum properties
of the LG mode.

The third force component is

fikr2
[1+2+6, /I ]

The dissipative force acting on the atom due to interac-
tion with the Laguerre-Gaussian beam is

2Ank I
&F&„„,,=. . .6'(R)Ve, (51)

+2nk 62+/
where Ve is obtained in the form

X. rz rz2+z2R
2

+
2(z +z~ )

2z21—
z +z

Z 0 (58)

krz l
z'+z'

R

kr 2 2z21—
2(z +z ) z+z

(2p +l + 1 )z~+
2

-+k .Z.
z +ZR

(52)

(2p +1 + 1)ZR
&F z[1+2+6, /I ] z +z

(59)

This force is negligibly small for practically all LG

This has a radial part and an axial part, both of which are
attributable to beam curvature. It can be seen that such
effects are, in most cases, small in comparison with the
axial force. The last force arises from the Guoy phase
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beams.
Finally, we consider the reactive force as given by Eq.

(32). On substituting for G we discover that the reactive
force is similar to that for an atom in a (0,0) mode, except
that it is sensitive to the particular intensity distribution
of the LG beam. Although it has a dependence upon I, it
has no azimuthal component. For typical field intensities
the reactive force is negligible.

The azimuthal component &F„; „,h& is the only force
that is responsible for a torque on the atom about the
beam axis. The torque is given by

&T&=&rXF.„„,„&, (60)

where r is the radial position vector of the atom. We ob-
tain explicitly, using Eq. (57),

&T& =Irr z
[1+J+b, /I ]

(61)

In the saturation limit J~~ the torque reduces to the
simple form

The azimuthal force and the torque together with the
associated azimuthal Doppler shift are all manifestations
of the angular-momentum attributes of the Laguerre-
Gaussian beam when it interacts with an atom immersed
in it. They constitute the main results of this paper. The
effects can be regarded as due to the transfer of Ifi of an-
gular momentum per scattered photon. The excited
atoms spontaneously emit isotropically and consequently
the reradiation has no impact on the average momentum,
although it will cause Auctuations in the force.

Both the azimuthal shift and the light-induced torque
are physically related to the nature of the Poynting vec-
tor at any point in the field. At any radius r the vector
winds in a helical fashion about the beam axis [6]. Conse-
quently, the Poynting vector is a tangent to a helix. The
wave at this point may be regarded as a local plane wave
with its wave front normal to the Poynting vector. The
azimuthal component of this local plane wave gives rise
to both the azimuthal force and its consequent torque, as
well as the azimuthal shift in resonance. This is precisely
analogous to a plane electromagnetic wave propagating
in the z direction, producing a light pressure force pro-
portional to the wave vector k and to a Doppler shift
along the z axis.

eluded in &F(R(t)) &. We should point out that the clas-
sical nature of this law conceals the quantum-
mechanically evaluated expectation value of the force as
a function of time and position. Solutions of the above
equation of motion are sought for three distinct situations
corresponding to different forms of the confining poten-
tial U(R): (i) when the atom is free as in an atomic
beam, (ii) when the atom is trapped in a two-dimensional
potential well, and finally (iii) when the atom is trapped in
a three-dimensional well, as is appropriate for a Paul
trap.

In the simulation we have included only the effects of
the dissipative force because the reactive force is practi-
cally negligible in the regions of the beam considered.
The dissipative force is a position-dependent quantity, so
the program had to involve an adiabatic updating of the
atomic position, velocity, and force from an initial set of
quantities at t =0 in small intervals of time up to a final
time t =T,„.The parameters that are essential for the
simulation are chosen as follows.

As our two-level ion we have chosen Mg and the tran-
sition 3s S,&z ~3p P3/2 The Mg atomic mass is
M =3.98X10 kg and the transition corresponds to a
wavelength X=280. 1 nm. The choice is inAuenced by
the fact that Mg and this transition have featured in
many experiments in laser cooling and trapping [17]. We
therefore assume that this is the wavelength 2~/k of the
LG mode. The lifetime of the excited state is
I =2.475X10 s ' and for an average laser intensity
I =103 W m this means a Rabi frequency Q=&10I .
The detuning parameter Ao is chosen equal to I, that is,
ko co Q)o I . The LG beam is characterized by a
waist no=10 m and a Rayleigh range z~ =1.1X10
m. Finally, for illustration, we concentrate on the LG
beam characterized by I = 1.

In Fig. 1 we display the trajectory of a Mg ion irradiat-

Z

ling

IV. ATOMIC TRAJECTORIES
AND POSSIBLE EXPERIMENTS

O'R tM = —VU(R(t))+ &F(R(r)) &,
Bt

(63)

where only frictiona1, velocity-dependent, forces are in-

In order to explore the inAuence of the Laguerre-
Gaussian pressure force on atoms and ions we have car-
ried out a simulation program based on the above predic-
tions for the force. The expressions found for the forces
are applied to the classical equations of motion for an
atom. Essentially, this involves solving Newton's law

&o

FIG. 1. Trajectory of a free Mg atom with an initial velocity
vector V = ( —0.58,0,0) ms ' in a Laguerre-Gaussian mode
with I =1, an intensity corresponding to Q/I =&10, and de-
tuning Ao =I . The total time of the trajectory is
T,„=1.2X10 s. The dot marks the initial position of the
atom and the arrow indicates the direction of motion.
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ed by an I =1 LG beam. The atom is assumed to be ini-
tially positioned at the point Ro=(8.2, 8.2, 0), where dis-
tances are measured in units of wavelength A, and the ori-
gin of the Cartesian system coincides with the center of
the radial LG distribution, conforming to Eq. (42). The
initial velocity of the atom is taken to be directed along
the negative x axis with a value v, (0)= —0.58 ms
The figure shows the trajectory from an initial time 0 up
to a maximum time T,„=1.2X10 s. During this in-
terval the atom is seen to have covered a distance of 2000
wavelengths along the beam axis, but only about 50
wavelengths along x and y. This is a consequence of the
dominance of the axial pressure force. However, the
twisting due to the azimuthal component of the force is
manifest. The inhuence of the other forces due to the
beam curvature and the Guoy phase are too small to lead
to any significant changes in this region of the beam, al-

though they have been accommodated, as has the azimu-
thal Doppler shift.

In Figs. 2(a) and 2(b) a Mg ion irradiated with a LG
beam is also subject to a two-dimensional trapping poten-
tial, which confines its motion in the x-y plane. We have
taken U to have the form

U(R)= —'MQ r

where r is the radial coordinate and Q is equal to 1.0
MHz. The trajectory shown corresponds to T „
=1.2X10 s. It is seen that the ion is influenced by
both the axial pressure force and the confining force. The
effect of the azimuthal force is apparent in that the atom
spirals outwards and appears to approach a constant or-
bit in the x-y plane. This spiraling out is seen more clear-
ly in Fig. 2(b), which displays a projection of the motion
in the x-y plane.

Finally, we have considered confined Mg+ ions in a
Paul trap with U given by

4
g gx10

[a)
U(R)= ,'MQ—[r+4z ], (65)

gx]0

) o«o

5 ox10

15

(b)

10

-15
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FIG. 2. (a) Trajectory of a Mg+ ion initially at rest inside a
two-dimensional potential. The ion is irradiated with an I =1
Laguerre-Gaussian mode and the trajectory time is
T,„=1.2X 10 s. (b) Projection of the trajectory shown onto
the x-y plane. Dots mark the initial position of the atom and ar-
rows indicate the direction of motion. A11 the other parameters
are the same as those of Fig. 1.

where Q is the same as in Fig. 2 and the total time
T „=1.2X10 s. The motion of the ion is rather com-
plicated when seen in three dimensions, as in Fig. 3(a). In
Fig. 3(b) we show the projection of the motion in the yz
plane and in Fig. 3(c) the projection in the xy plane. Fi-
nally, in Fig. 3(d) we display the corresponding projection
in the xy plane when the sign of the angular momentum
of the LG beam is changed from 1=1 to —1. This has
the effect of producing a change of the sense of the ionic
motion from counterclockwise in Fig. 3(c) to clockwise in
Fig. 3(d), as expected. This change in handedness in I is
readily achieved experimentally [8].

The results of the simulation presented in Figs. 1 —3
immediately suggest the experimental contexts for the ob-
servation of the main predictions of this paper. The az-
imuthal Doppler shift is particularly amenable to experi-
mental measurement for the case of ions in a two-
dimensional trap, as illustrated in Fig. 2. It is possible to
argue that at any point of the trajectory, the ion can be
considered for very short times as being kept in a circular
path of radius r with a constant velocity V&. In this very
special case the azimuthal shift can be given a transpar-
ent albeit nonrigorous interpretation. The relevant phase
factor of the Laguerre-Gaussian mode e'~ becomes

il(P+ v&t/r)
e ~ after time t has elapsed, due to a change in
the phase angle by an amount equal to the arc length V&t
divided by the radius r. This phase factor yields the az-

'1$+ I „timuthal shift when written in the form e " with
co, = V&/r. In the case of atoms in a Penning trap the ve-
locity V& is such that co, is typically up to a few
megahertz. The azimuthal shift is then several
megahertz, which is sufficiently large for experimental
detection.

It is also reasonable to suggest the detection of the
torque using a Paul trap. As we have explained in Fig. 3,
ions that are initially at rest in the trap should experience
a torque about the axis of the beam causing them to ro-
tate. However, there are ways by which the rotational
kinetic energy may be converted into heat and a full
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analysis of the practical limitations of such an experiment
needs to be conducted [25]. Other contexts in which the
effects of orbital angular momentum are likely to be en-
countered include crossed-beam experiments and optical
molasses, but such situations will not be considered here.

experiments. It could indeed play a role in atom inter-
ferometry. It appears that these effects should be observ-
able in a variety of atomic experiments. Further theoreti-
cal work will include the analysis of radiation pressure
using the optical Bloch equations, which will more for-
mally include the efFect of spontaneous emission and oth-
er relaxation mechanisms [14]. Consideration of the
effects of convection currents will become important
when specific experiments are considered.

V. COMMENTS AND CONCLUSIONS

The we11-defined orbital angular momentum of the
photon present in certain kinds of mode can be
transferred to atomic systems through resonant interac-
tions. Unusual Doppler shift properties and a torque are
found to occur. We have quantified these effects and com-
pared them with effects arising from the interaction of
the atom with modes not possessing orbital angular
momentum. It is anticipated that the torque should play
an important role in interactions between atoms and
standing light fields [5], in crossed beams and trapping
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FIG. 3. (a) Trajectory of a Mg+ ion initially at rest inside a Paul trap. The ion is irradiated by an l =1 Laguerre-Gaussian mode,
the trajectory time is T,„=1.2X10 s and all other parameters are as in Figs. 1 and 2. (b) Projection of the trajectory in the y-z
plane. (c) Projection of the trajectory onto the x-y plane. (d) Projection of the trajectory onto the x-y plane corresponding to I = —1

for the same T,„and with same parameters. Dots mark the initial position of the atom and arrows indicate the direction of motion.
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