PHYSICAL REVIEW A

VOLUME 52, NUMBER 6

DECEMBER 1995

Effect of scattered radiation on sub-Doppler cooling

G. Hillenbrand, K. Burnett, and C. J. Foot
University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, United Kingdom
(Received 10 January 1995)

In this paper we discuss the effect of scattered radiation generated by a gas of cold atoms on the temperature
of the gas. We show that by treating the reradiated field of the atoms as a fluctuating background field we can
derive a master equation for a single atom where the effect of the surrounding medium is included in an
effective relaxation operator. This relaxation operator is of second order in the interaction with the medium and
in the binary-collision approximation can be written as the sum of two-body interactions with a correlation
time equal to the natural lifetime of the atomic transition. The effect of the medium on the two most important
sub-Doppler cooling mechanisms, Sisyphus and motion-induced orientation cooling, is investigated analyti-
cally in a one-dimensional model. In this we restrict ourselves to the limit of low saturation, weak background
field and take the rate-equation limit for the collision operator. We find that both mechanisms are very sensitive
to such a background field and that the temperature increases approximately as the number of atoms to the

one-third power.

PACS number(s): 32.80.Pj, 42.50.Vk

L. INTRODUCTION

At the high densities that are now routinely produced in
magneto-optical traps, interactions between ultracold atoms
become important. These ultracold collisions can be divided
into two categories depending on whether or not the presence
of laser light during the interaction is critical. In optical traps
the type of collisions in which atoms are simultaneously
driven by the laser is dominant. (Collisions where both at-
oms are in the excited state or the ground state are usually
neglected in optical traps.) We shall assume that the colli-
sions are sufficiently long range that the resonant dipole-
dipole interaction is dominant rather than the higher-order (in
r~!) van der Waals interaction. The excited-state—ground-
state collisions that we are considering here can crudely be
divided into two regimes. The first one is a dynamic regime,
where the presence of the perturbing atom significantly
changes the dynamic evolution of the radiating atom during
the collision and therefore correlations develop between a
colliding pair of atoms. The second is a radiative regime,
where the atom-atom interaction is due to the exchange of
photons scattered from the laser beam (radiation trapping)
and the effect of the interatomic potential can be treated by
perturbation theory, i.e., correlations between the colliding
atoms can be neglected. In the dynamic regime, which is
restricted to interatomic distances r< X, the potential is de-
scribed by the highest-order term in 1/r, i.e., V< 1/r3. For a
laser detuned to the red of the atomic resonance transition,
the detuning is of the same order of magnitude as the shift
induced by the dipole-dipole interaction at some distance r
and there is a significant increase of the excitation probabil-
ity of an excited-state—ground-state pair. Once such a pair is
produced its movement is strongly affected by the large gra-
dient of the excited-state—ground-state potential surface
leading to a strong correlation between the colliding atoms
and it is therefore necessary to look in detail at the evolution
of the pair during the collision. Collision-induced heating
and trap loss in this regime occur through radiative escape
and through fine- and hyperfine-structure changing pro-
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cesses. Theoretical investigations of these mechanisms have
been carried out by Gallagher and Pritchard [1] and Julienne
and Vigué [2], and recently alternative approaches have been
developed, see, for example, Refs. [3—6] for some recent
work on this subject. Little work has been done in the inter-
mediate regime where the far-field approximation breaks
down but the separation of the atoms is not small enough to
concentrate fully on the 1/r3 term of the dipole-dipole poten-
tial. Smith and Burnett [7—9] have carried out simulations on
a pair of colliding atoms using the full dipole-dipole interac-
tion, but in their final result they average over a distribution
of nearest neighbors rather than taking into account the cu-
mulative effect of the interactions with all atoms in a gas in
a proper way by averaging over the whole gas volume. In the
radiative regime, we assume that the mean separation of the
atoms r is much larger than the atomic transition wavelength
r> X, and the interaction between a pair of atoms is propor-
tional to the lowest-order term of the dipole-dipole potential
between two driven atoms Vo 1/r and this is the regime we
focus on in this paper. Using a two-level model we showed
in a previous paper [10] that the photon-exchange interaction
in this regime not only produces radiation trapping forces,
which have been discussed by Sesko ef al. [11] and more
recently in a generalized treatment by Ellinger et al. [12], but
also gives rise to an extra heating term. In the regime of a
constant density this extra heating scales as the number of
atoms to the one-third power, when the average over all pairs
in the cloud of cold atoms is taken. However, because of the
restriction of that model to a two-state atom, we could not
investigate the effect of radiation trapping on the sub-
Doppler cooling mechanisms that rely on the multilevel
structure of the atoms. Recent measurements on trapped ce-
sium atoms by Drewsen et al. [13] and Cooper et al. [14]
show that the temperature depends on the number of atoms
to the one-third power. In this paper, we show that even
small intensities of scattered background radiation strongly
affect the efficiency of the Sisyphus and motion-induced ori-
entation cooling mechanism [15] and that the minimum tem-
perature increases nearly linearly as the number of atoms in
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the cloud to the one-third power. The physical picture we
develop is that of a medium of well localized atoms that
generates a background of scattered photons as part of their
response to the driving field. This field is then treated as a
fluctuating background field. (We note that we do not sym-
metrize the atomic wave functions as we assume that they
are spatially well separated.)

This paper is organized as follows. In Sec. III we use the
projection operator methods developed by Zwanzig [16] to
derive the master equation for a single atom, subsequently
referred to as the radiator, which is driven by a laser field and
interacts with a surrounding cloud of similar atoms. Such
projection operator methods have also been employed by
several authors to study collisional redistribution of light by
interactions with atoms of a different species that do not
interact with the driving field (foreign gas broadening prob-
lem). We shall for convenience refer to those by Burnett
et al. [17,18]. We derive a collision operator in which both
the radiator and the perturbers interact with the driving field
to all orders. We discuss the collision operator in the binary-
collision approximation (BCA) and decompose it into a sum
over two-body scattering events, each of which has the struc-
ture of a time integral over the product of two-time correla-
tion functions of the dipole of the radiator and a perturber. In
Sec. IV we discuss the rate-equation limit of the collision
operator and in Sec. V give an estimate for the coupling
strength of the background field to the radiator. The rate-
equation limit enables us to obtain analytical results for the
influence of the scattered radiation on the two sub-Doppler
cooling mechanisms that are most important in magneto-
optical traps: Sisyphus cooling and motion-induced orienta-
tion cooling. This will give us a qualitative insight into the
physical mechanisms leading to the reduction of cooling.
These calculations are done in Secs. VI and VII. Finally, in
Sec. VIII we summarize the results obtained in this paper
and discuss some of the assumptions made in deriving them
in conjunction with experimental data. Before we commence
with the derivation, we introduce our mathematical notation
in Sec. II.

II. NOTATIONAL MATTERS

In this section we briefly introduce our notational conven-
tions. The equation of motion for the density matrix of the
complete system, the radiator, the perturbers, and the vacuum
field modes, is given by

P ii ) 1
dtp_ ﬁ (t)P, ()

where L(7) is the time-dependent Liouville operator

L(np=[H(1),p]. 2

The time-dependent Hamiltonian for the full system is given
by

Ht)=H+Hp+V,  (1)+ Vg, 3)

where ﬁs is the free Hamiltonian for a system of N atoms

A

NS = )
HS:Z] m+ﬁw0Pi‘e N (4)

H g is the free Hamiltonian of the vacuum field
fIR=§ hwd] (5)

and f’i,e is the projection operator onto the excited state of
the ith atom. ﬁi,k and a, y are the photon creation and anni-
hilation operators for the vacuum field mode {\, k}. They
satisfy the usual commutation relation

[ﬁx,k,éif,k/]= 5k,k' é‘)\,}\,. (6)

\A/s_ (1) is the interaction of the atomic system with the laser,
ie.,

N
V(= ; Vie, ©)
with
Vir=—[D; E (ri0)]. (8)

The laser field is treated as a ¢ number and the dipole opera-
tor for the ith atom D; can be written as

ﬁiElD[ai~ )

Here | D] is the reduced atomic dipole moment and &l. is the
reduced atomic dipole operator for atom i. The coupling of
the ith atom to the quantized reservoir of the vacuum field
modes is given by

A . 27w\ A Lo
Vi,R=—lﬁ2 (,DI V W)(di'fx)[elkl‘ax,k
oA

—ay ke ™R, (10)
where V is the. normalization volume and we have
AN o

Vsr=2i=1Vir-

III. THE ONE-ATOM MASTER EQUATION

In this section we show how to derive the master equation
for the reduced density matrix of the radiator. The derivation
of the equation of motion of the reduced density operator
then proceeds in two stages. First the vacuum field is elimi-
nated by introducing the well known spontaneous decay
terms as well as giving rise to an atom-atom interaction that
is due to the exchange of scattered photons. This elimination
using projection operators is discussed in detail by Burnett
et al. in Ref. [17]. The Liouville space is divided into a sub-
space in which the density matrix factorizes into the density
matrix for the radiation field p; and the reduced density
matrix for the radiator and the perturbers (z)=Trg[p(¢)]
and its complement. The final result of this elimination pro-
cedure is equal to [cf. Eq. (2.28) in Ref. [17]]
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ZE&(’) =— %[£S+£s-L(t)+ V+816(¢). 11)

Here I:S and Zs, 1 (1) describe the free evolution of the atoms
and the atom-laser coupling, respectively. The Liouville
space operator S describes the decay of the individual atoms
due to the coupling to the vacuum field. It can be written as
the sum of the decay terms of the individual atoms
S =Zi§ ;. In the rotating-wave approximation the decay of
the individual atoms is described by the well known expres-
sion [32]

— 3 6=~ S TE 460+ 6@ &)

aQ .
+F; jm(di - €,)
Xe Mo Rg(1)ekoR(d} - g,). (12)

The operator V describes the coupling of the atoms of the gas
to each other via the exchange of scattered photons, which is
the dominant interaction for large interatomic separations.
The interaction V can be written as a sum over the photon
exchange mteractmns between all possible pairs in the cloud
V=33, j.j>iVij» where V is the interaction of the ith and
the ]th atom in the cloud. The interaction between a pair of
atoms comprises two contributions: the first one consists of
the dipole of atom i scattering photons from the laser field
that are absorbed by atom j; the second contribution comes
from the reverse process, i.e., atom i absorbing photons scat-
tered by atom j. The detailed expressions for the interatomic
potential are given in the Appendix.

In order to proceed further with the derivation of the one-
atom density matrix we now separate the Liouville operator
for the atomic system into the operator for the free evolution
of the radiator L, and the perturbers, L

L,=L,+L,. (13)

We will adopt the convention that quantities referring to the
radiator have a subscript ¢ and quantities referring to the
perturbers as a whole have a subscript p. Operators that refer
to individual perturbers are denoted with the letter j, where j
runs from 1 to N, N being the number of perturbers. Hence
we have

§=8,+5,, (14)

Ly () =Lyr()+L, (1) (15)
The two projection operators ﬁc and Qc are defined by

P6(1)=6,(1) ®Trpen 6(1) 1= G,(1) ® G ,(1),  (16)

0,=1-P,, (17)

where 7,(t) is the reduced density matrix for the radiator.
Note that in contrast to the derivation of the collision opera-
tor presented in Ref. [17] the factorized part of the density
matrix of the perturbers &,(¢) has the same time argument as
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the density-matrix of the radiator. This is due to the fact that
the perturbers still evolve due to the driving field, the cou-
pling to the vacuum modes, and interactions with each other.

The equation of motion for the factorized part of &(¢),
P_G(t), is found by projecting Eq. (11) onto the two sub-
spaces defined by P, and O, and substituting the formal
solution for QC&(t) back into the equation of motion for
P_&(1). This yields

d = .
—P.o(t)=—

a7 PIL,+ L, (t)+V+S,]P.6(1)

E

-t

+(_%) fdth (t,1)P.G(1;).  (18)

(1,10)0.6(ty)

The collision kernel Izc(t,tl) gives the full contribution of
the radiator perturber interactions to the evolution of the fac-
torized density matrix P.a(¢). It is defined as

kc(t’tl)EﬁcVQcﬁc(t’tl)Qc“}ﬁc’ (19)

where

U/t,t))=T exp{ z dt OJL,+L,  (t')+V+5]|,

(20)

where T is the time ordering operator (see Ref. [17]).

The term proportional to Q.6(¢,) in Bq. (18) gives the
contribution of initial correlations before the start of the col-
lision at time ¢, to the evolution of ¢ ,(t). These initial cor-
relations evolve from some distant time in the past r= —o0
according to

0.6(tg)=U(tg,t=—2)Q G(t=—)

to

- Ldn 010,10 VPG (1). (D)

We can now set the initial correlations at t=— equal to
zero. This can be justified as follows. Whether correlations
between the perturbers and the radiator in the distant past
influence the evolution of the combined system of the atoms
and the perturbers at time ¢, depends on the memory time of
the collision kernel kc(t,tl). We shall show below that this
time is of the order of the natural lifetime of the excited state
of the atoms. This means that we can safely neglect initial
correlations at = —c in the distant past.

The term proportional to P,VP_ in Eq. (18) gives the
contribution of the mean potential between the perturbers
and the radiator to the evolution of f’c&(t). The discussion
in the Appendix shows that this interaction has the nature of
an electromagnetic field that is a superposition of all the
fields generated by the individual perturbers coupled to the
dipole moment of the radiator. We will now argue that this
term can be neglected under certain circumstances. When the
average over the perturbers is taken, all terms in V that refer
to the interaction between two perturbers do not contribute to
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the average. The contribution of the mean potential to the
evolution of the density matrix is given by

P.VP.G(1)=6,(1)®[G,(1).d} -E} (1,R,)
+d, -E, (#,R,)]. (22)

E;(t,ﬁa) and E;(t,f{a) are the positive and negative fre-
quency parts of the mean electromagnetic field generated by
the perturbers as a response to the driving field. Formally
they are given by

E;(1,R,) = Trye ]; E*(R,,R)G,(n|, (23)

where ﬁ)i(f{a,ﬁj) are the positive and negative frequency
parts of the field generated by perturber j. The detailed ex-
pression is given in Eq. (A2) in the Appendix. It should be
noted that I:Zpt(t,f{a) is still an operator in the subspace ofA the
radiator due to its dependence on the position operator R,, .

The BCA, which is assumed to be valid in almost all
calculations involving collisions, has been discussed in de-
tail, for example by Burnett et al. [17]. In the BCA the den-
sity matrix for the perturbers can be written in a factorized
form

N
&p(t)=jI;[1 G,(1) (24)

and consequently the projection operator f’c can be written
as a product of projection operators of the form

PLO=G(1)® Tty perl O, (25)

i.e., P, factorizes according to
N

p.=I1 PL. (26)
j=1

The assumption of statistical independence of the perturbers
means that we do neglect superradiance effects that arise
because of transfer of coherence between the atoms of the
gas. Physically speaking, omitting this term is usually justi-
fied by the fact that the phase factors that occur in the terms
representing the coupling between dipoles of different atoms
in the sample tend to lead to a cancellation of the term when
averaging over a wide range of positions. This is sometimes
referred to as the random-phase approximation (RPA). The
only case for which the RPA is not fulfilled is the case of
scattering into the forward direction. In this case the phase
factors are all equal to unity and there is no cancellation of
the amplitudes in the average over the perturbers. Physically
these terms correspond to the refractive index and the ab-
sorption coefficient of the medium, i.e., their effect can be
incorporated into the driving field as a position dependence
of the phase and the Rabi frequency of the laser field. In the
low absorption regime this effect would be very small and
can be neglected. The effect of superradiance in the problem
of N-atom spontaneous emission is, for example, discussed
in Chap. 8 of Ref. [19]. In the following we will assume the
RPA to be fulfilled for our model. The effect of the refraction
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index on the propagation of light in a cloud of cold atoms
has recently been discussed by Morice er al. [20].

Because we assume the semiclassical approximation to be
valid we can also replace the position operators of the per-
turbers by their mean values r;. In this case the source field
due to all the perturbers, Eq. (23), can be written as the sum
of the source field contributions of individual perturbers, i.e.,

E-(1.R)= > (EX(1R,.r));, 27)

Jj¥Fa

where ( ); denotes the average over the jth perturber. In Ref.
[10] we showed that the interaction of the radiator with the
field generated by the second atom induced a momentum
change of magnitude ke,, where k is the magnitude of the
wave vector of the exchanged photon. As a result of the
Markov assumption, which has been made in the calculation
of interatomic potential [cf. Eq. (A7)], the magnitude of the
momentum transfer from the perturber to the radiator is
given by the wave vector of the atomic transition frequency,
i.e., k=kq. This means that in this approximation even the
frequency components centered around w; and 2w;— wg
will give rise to a momentum kick of magnitude k rather
than k; and 2k; —k, as they should. However, this presents
no real problem in our calculations as the difference between
ko and k; is negligible. Ef(Ra ,I;) can therefore be written
as

E*(1,R, 1) =e* o RE*(r), (28)

where I:Zf( r;) is the standard field amplitude for a radiating
dipole given by Eq. (AS5) and r; is the position vector of
perturber j relative to the radiator. The mean dipole of each
perturber is dependent on the position of the dipole in the
laser field. This position dependence arises because the mean
dipole moment is proportional to the optical coherences of
the density matrix, which in turn are proportional to the laser
polarization at the position of the atom. In laser configura-
tions that lead to sub-Doppler cooling mechanisms the polar-
ization of the laser field varies rapidly as a function of posi-
tion in the laser beam on a scale of the laser wavelength
A\ . For example, for motion-induced orientation cooling the
polarization rotates around the axis of the laser beams with a
period of \; [15]. In the far-field limit, where we keep only
terms to lowest order in 1/kgr;, the field amplitude of the
source field stays approximately constant over the range of a
wavelength. However, the direction of the electric field vec-
tor is varying rapidly on this scale due to its proportionality
to the orientation of the mean dipole. It is therefore reason-
able to assume that for an ensemble of randomly distributed
atoms the mean effect of the sum of this rapidly varying field
vector is equal to zero, except for a small contribution in the
forward direction, giving the refractive index of the cloud of
atoms. The mean separation of the atoms can be estimated by
7=(n)~ 3. For typical densities in Cs magneto-optical traps
where extra heating due to photon exchange processes is
observed, the densities are of the order of n=10" cm™3,
giving a mean separation of r=15.9X, where X has been
taken as the corresponding value for Cs. The far-field limit
that is necessary for the validity of the theory presented here
therefore holds well. For atom numbers of the order of
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N=10%, this would correspond to trap radii of the order of
1072-10"! cm being of the order of magnitude that has
been observed in atom traps. We can estimate the contribu-
tion of the mean field by replacing the mean dipole of each
perturber i by xE;(r;), where E;(r;) is the laser field at the
position of the perturber and y is the polarizability tensor. To
lowest order in the atom-atom interactions the polarizability
is independent of the atom number and density. The orienta-
tion of the mean dipole only depends on the local polariza-
tion of the laser field. If we now take the average over a large
number of randomly distributed perturbers we find that the
mean value of the field produced by all perturbers is propor-
tional to no L, where o is the scattering cross section for
the laser light and L is the trap radius. The mean field is
therefore given by the forward-scattering amplitude for the
laser light and as such gives rise to the refractive index of the
medium. In the low absorption regime this modification of
the laser field is small and can be neglected, or as mentioned
above, be incorporated into the driving field. In general, for
typical trap parameters the low absorption condition is well
fulfilled. Hence, in the following we take <ﬁ617ﬁc=0. It
should be noted that the above argument depends on the
density being sufficiently high that we can take the con-
tinuum limit in the average over the perturbers. However,
this does not present a problem as in this case the effect of
atom-atom interactions is negligible. This picture breaks
down if the densities are sufficiently high for binary colli-
sions between individual pairs of atoms to dominate the col-
lision dynamics. These strong binary collisions have been
considered by Smith and Burnett [8], but the density depen-
dence of the extra heating in this regime does not agree with
experimental observation, thus clearly indicating that strong
binary collisions are not important. Hence we do conclude
that we can safely proceed in the way we propose. Clearly
this picture breaks down in light lattices, where position and
polarization are linked. In principle, these effects could be
included in an extension of this method.

Substitution of Eq. (21) into Eq. (18) and taking

P_VP_.=0 yields

P.6(1)=— %ﬁc[iﬁia.m +81P.6(1)

i\2 e . ~
+<_%> f_mdthc(f,tl)Pc&(tl)‘ (29)

As a final step we now have to rewrite the last term in Eq.
(29) in terms of a collision operator £{(¢) and the density
matrix at time ¢,

i\2 e 5 . . .

- (g) J:mdthc(’»tl)PcO'(tl)= - g‘é”(t)Pccr(t),
(30)
It is sufficient to take only terms up to second order in the

interaction V because we restrict our calculation to the far-
field limit. This means we can neglect the contribution of

V in the exponent of U,(t,t,). The collision kernel to second
order in V is then given by

Izg(tstl):ﬁc‘.}Qc(}(c)(tvtl)Q"c‘?ﬁc’ (31)
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where

f/g(t,tl) =T exp

- ;L;Q"Cfttldt'[is+is_L(t')+§]}.
(32)

The evolution of the density-matrix &(¢) between ¢; and ¢ is
given by

i [t -~ ~ o~
a(t))=T exp[ % dt'[L,+L,_;(t")+S+V]|o(2).
t
(33)
Again we can neglect the contribution of V in the exponen-
tial because this would lead to contributions that are higher
order in V. Using the relations
P.L,=P.L,  (1)=P.S,=0 (34)
and

[P..L=[P..L,()]=[P..,5,]=0, (35)

it is easy to verify that

~ it .~ ~
P, exp[ - = | AL+ L)+ 81|60
t

=U%t,,t)P,5(1), (36)

where

~ it - - -
Ui(t,,t)=T exp[ - ?L-J’ 1a’t’[La-I—La_L(t’)-i—Sa]
t

(37

is the Green’s operator acting only on the radiator. We now
define the collision operator #{(t) by

?;ﬂ(t)E——%Jimdtllzg(t,tl)[]z(tl’t)’ (38)

The equation of motion for the reduced density operator of
the radiator ,(¢) can be obtained by tracing Eq. (29) over
all perturber states. Using Eq. (38), we obtain

— G (1) =— %[ia+ia-L(t)+§a+ Z(1)16,(1). (39)

Equation (39) gives the evolution of the reduced density ma-
trix of the radiator. The effect of the perturbers is now in-
cluded in the operator Z(t). It should be noted that S;Z(t)
includes the evolution of the density matrix due to the driv-
ing field to all orders. This means that we do not look in
detail at the evolution of the atom due to the driving field
during the collision, but we assume that the coupling of the
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driving field to the atoms is not modified due to the presence
of other atoms. We therefore neglect correlations between the
radiator and the perturber, which arise because the shift of
the resonance frequency due to the presence of the perturber
is large enough that it does alter the interaction of an indi-
vidual atom with the laser field (see, e.g., [17] and [18] for a
discussion on this matter). It was pointed out in the Introduc-
tion that these shifts only become important for mean inter-
atomic separations r=< X, and that for separations r> X, we
can safely neglect these shifts. This also means that we can
treat collisions between the radiator and the perturbers as
binary events because the only way a third particle could
influence the exchange of scattered photons between a pair
of atoms is by significantly shifting the emission lines of the
colliding atoms.

In the BCA the collision operator can be written as the
sum of individual two-body collisions, i.e.,

N
%)z% Zi(1), (40)

where the operator for the collision with the jth particle is
equal to
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Zi(1)=— gﬁwdthcVajUZ(t,tl)U’c(z,tl)
XQ .V, P.Ut, 1) 41)

One approximation that is frequently made at this point is to
neglect the projection operator QC between the two interac-
tions V,; [21,17]. We will not make this approximation and
show below that this term gives a physically important con-
tribution to the collision operator.

The integrand of the time integral in Eq. (41) can be
evaluated using standard Liouville space techniques. We
make the a priori assumption that the effect of frequency
shifts induced by the interaction of the radiator with the me-
dium is small and it is therefore consistent to neglect those
shifts in the evaluation of the collision operator. In thg RWA
we also neglect terms that contain pairs of operators d; and

A

d;' . In the case of a two-level atom this yields
> 2-level A — i ! pep A
Fr DG (=2 | dnlRP.6(1)

+R™P _G(1,)+R*P.5(1,)], (42)

where

RP.G(1)={[|UL(1.1))Go(1))d ™)) |dg e ™R H¥ (1,1, 1)) +|d; e Ra)) | Te(1,1)d, e~ 0BG (1)) H(tt,1;)]

—Lldg e~ Mo R [ T2(t,11)6 (1) A} ™Ry H* (1,1, )07 e Mo R (1)) o R H(r.t, )}

43)
RSP Gt =L D200 (1) )| Mo M) (et m) 410 e o)) 02,,)d;
X MR (1)) H* (1,111~ [|d] 0 Re))| T2, 60(11)d e %o Ry H (2,1, x,)
+Tr1)dF ™R, (1)) d; e~ o RV H*(1,11))1). (44)
and
BP0 =B ()10 o i) e oy A0 (L000)
() PLT% 01,6413 o Ry, 3 o Ry ST (01T (45)

Here we have adopted Liouville space notation for Hilbert
space operators, i.e., each Hilbert-Schmidt operator is
equivalent to a Liouville space vector A=|A)). The product
of two kets in Liouville space is interpreted in terms of a
product of two dyadics. For example, for two Liouville space
vectors |ab))=|a)(b| and |cd))=|c){d| their product is
given by |ab))|cd))=|a)(b|c)(d|. The functions
H(t,ty,x;) and G(¢,t1,r;) are defined by

|E(r)]?

G(t.t,. 1) =|E(r))[{d] (1,)d} (1)) —{(d} (t))){d} (D))],
(46)
H(r,tl,r,->s|E<rj>12[<3,~+<t1>3;(r>>—<c?,«*<r1>><3;<t)>(1. |
7

G(t,ty,r) and H(¢,t;,r) are the incoherent parts of two-time
correlation functions of the dipoles dj_(t) and d;r(t) [22].
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The subtraction of the coherent part of the correlation func-
tion is entirely due to maintaining the projection operator
Q. in the collision operator Eq. (41). The Fourier transform
of G(1,¢,,r;) gives the absorption spectrum of a driven atom,
the Fourier transform of H(t,t,,r;) corresponding emission,
i.e., the Mollow triplet. The term R*P_6(t,) is proportional
to the difference between the absorption and emission spec-
trum of the driven perturber. This rate is proportional to the
amplitude squared rather than the intensity of the scattered
field and therefore proportional to a phase factor. It follows
that this term is small compared to the first two terms in the
collision operator when the average over all perturbers in the
trap is taken. We will therefore neglect it in the collision
operator in the remainder of this paper.

The equivalent of Eq. (42) for a multilevel atom is ob-
tained by accounting for the vector operator nature of both
the dipole operator and the electric field generated by the
perturbers. The functions G(z,¢;,r;) and H(¢,¢,,r;) have to
be replaced by matrices. In a spherical basis with eigenvec-
torsu,, g=+1,— 1,0, their entries are

4769

G,q(t,1y ,rj)E<E;(rj,t1)l:?q_,(rj ,t))-—(é;;(rj,tl))

X(E_ (x;,1)), (48)

Hy o (t,t1,0)=(E; (x;,t)E,(x;,0)—(E; (r;,11))

X(E;,(rj,t)). (49)

The indices ¢ and g’ denote the possible angular momenta
of the photons absorbed and emitted. Matrix elements that
are off diagonal in g,q’ correspond to processes where the
radiator exchanges angular momentum Am=gq' — g with the
perturbing atom. The off-diagonal elements therefore stand
for Raman processes that change the internal state of the
radiator. The diagonal elements, on the other hand, leave the
total angular momentum of the radiator conserved.
R¢P_6(t,) and R™™P_G(t,) are replaced by

Ié;qzﬁc&(h)s{[l0Z(t,t1)5'a(t1)(a:‘“q)eiko'R“»l(a;'“;kr)e_iko.n“»H:,ql(t’tlvrj)

+|(d} - u,)efo Ryl U%t,t,)(d] - u;“,).e‘""O'Ra&a(tl)))Hq,q,(t,t1 .X;)

~[l(d; - u;‘,)e‘iko-i‘a>>| U%(2,2,)64(1)(d] -uq)eiko‘ka)>H;k!q,(t,t1 T;)

+2(,0) (@] - )e” o ReG, (1))@ -u)e™ BN H, o (1.11.1)]) (50)

and

R P.6(1)={[|UX(t.1,)6,(1))(d, - u,)e o Ry (dr - u;‘,)eiko'ka>>Hq,q,(t,t1 )

9

+](@; -u e o R Ta(n,1,) (@ - uF)e™oReG (1)) HE  (1.1,.1)]

— LI - uk)e™o Ry T9(n11)6(11)(d, - u)e "RV H, 0 (1,1.1)

+ T2, 1)(@ - uk)e™o R (1)) (A -ug)e R RYHE (£,21,1)1). (51)

Omitting é:xq, p_5(t,) the binary-collision operator is equal
to

=, D A i ' R¢ p 6
%“j(t)Pco(t)z_ﬁzf dnlR; o Po(t)
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+ R B 6 (1)), (52)

The time integral of the collision operator %}(z) is taken
over products of two-time correlation functions of the dipole
of the radiator and the dipole of the perturber. By virtue of
the convolution theorem this product is equal to the Fourier
transform of the convolution of the two functions in fre-
quency space. We interpret ﬁ;,q, as the part of the collision
where the perturber stimulates the radiator to emit a photon.

In the second term the order of (Aia+ and a; is reversed.
Ié:‘?;, therefore can be interpreted in terms of a stimulated
absorption process. The interpretation of the two parts of the
collision operator in these terms will become more apparent
in Sec. IV.

The total effect of the fluctuations generated by the inter-
action with the perturbers on the evolution of the radiator is
obtained by adding the contributions from all perturbers in
the cloud. We introduce the particle density of the cloud
n(r). The sum over all perturbers can then be converted into
an integral over the particle density. We obtain

()P .6(1)= —%E, fiwdtlf d*ra(0)[R; . (r)P (1))
9.9

+R® (1)P,6(1)], (53)
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where the position dependence of E;,q,(r) and Iéj’;,(r) re-
places the particle label j in Eq. (52).

Rather than continuing with the evaluation from a formal
point of view, we will now use some further approximations,
which enable us to obtain a qualitative picture of the effect of
radiation trapping on the two sub-Doppler cooling mecha-
nisms: Sisyphus and motion-induced orientation cooling.

IV. RATE-EQUATION LIMIT OF THE COLLISION
OPERATOR

The modification of the equation of motion for the re-
duced density matrix of a single atom in a laser field has
been derived in the preceding section and is given by Eq.
(53). The general structure of this equation is very compli-
cated, mainly due to the fact that the memory time of the
collisions is of the order of the natural decay time of the
colliding atoms. The memory time of the background field
generated by the perturbers is in general of the same order as
or greater than the time scale for the evolution of the reduced
density matrix of the radiator. Therefore the reduced density
matrix of the radiator evolves not only due to the free Hamil-
tonian of the atom but the coupling to the laser field and the
vacuum field modes will also contribute appreciably during
the memory time of the collision operator. The second-order
interaction of a pair will also have an effect on the distribu-
tion of the atomic populations in the different Zeeman sub-
levels. This occurs via second-order exchanges between a
pair of atoms where the perturbing atom emits a photon of
angular momentum g, which gets absorbed by the radiator.
The radiator then emits a photon of different angular mo-
mentum g’, which is reabsorbed by the perturber. The pre-
cise nature of these terms in the binary-collision operator
will depend on the relative orientation of the dipoles of the
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pair of interacting atoms. The total effect of transitions is
obtained by averaging over all possible pairs in the cloud.
Another complication arises because the source field emitted
by each perturber is not spherically symmetric but has the
angular dependence of a dipole radiation pattern.

For the purpose of the qualitative calculations in this pa-
per we want to take the rate-equation limit of Eq. (53). This
limit is obtained by assuming that the memory time of the
field generated by the perturbers is short compared with the
evolution time of the reduced density matrix of the radiator
in the interaction picture. In the Schrodinger picture this
means that the density matrix only evolves due to the free
Hamiltonian of the radiator. We also neglect all terms in Eq.
(53) that are off diagonal in the angular momentum indices g
and g’ of the exchanged photons. Physically this is equiva-
lent to assuming that there is no net exchange of angular
momentum of the radiator with all the perturbers in the
mean. We emphasize that this is not the same as assuming
that there is no exchange of angular momentum between
pairs of atoms in individual exchanges. It just means that on
average there is no exchange. In the limit where steady state
is reached in the presence of the driving field, the spectral
distribution functions for the perturbers H;" q,(t,tl ,r) and
H, ,(t,t1,r) depend only on the time difference 7=¢—1,
[23,22]. We define the Fourier transform thus:

Hq’q/(t,tl,r):f dwhq,q,(w,r)e_i“"‘ (54)

The spectral distribution function 4, ,/(w,r) is real. We now
make the substitution 7=¢—¢; in the time integral of the
collision operator Z(1). In the short memory approximation
we can now rewrite the first part of Eq. (53) as

fimdtlf dsrn(r)fé;,q(r)i)c&(tl)=&a(t)(a;-uq)(aa_‘u:;)f dwj- d3rn(r)J:dThq,q(w,r)e“i(“’_“’())T

+(&:-uq)(a;‘u;")6'a(t)f dwj d*rn(r) fo dThq,q(w,r)ei(“’_wo)T

—(&;-u;“)(jdwf d3rn(r)f0 dThy (@) @ 00T ko Rg (1)giko R,

+f dwf da’””(r)J'O d'rhq,q(w,r)e"(‘”“wo)’e“ikO'Rﬂ&a(t)eikO‘&)(&:-uq). (55)

If we now use

lim ————— = —i78(wy— @) +P

o Wo—wtie (56)

wo— W

and neglect the terms that arise from its principal parts, the
first term of the right-hand side of Eq. (55) may be written as

&a(t)(&:-uq)(&;-u;‘)fdwj d3m(r)j:qu,q(w,r)
X —i(wo—wy) T~ 2r A J+ - *
e =72 26,04 - u)(d; g, (57)

Here £, takes the role of a dimensionless parameter giving
the coupling strength of the part of the background field
having angular momentum ¢ to the radiator. §, is given by
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21 ;

&= P J d’rn(r)hy (wg,r). (58)
For an atom near the center of a magneto-optical trap it is
reasonable to assume that the density distribution of perturb-
ers is isotropic n(r)=n(r). We expect that an isotropic di-
pole distribution produces a field that also is isotropic. If we
average over the radial coordinate r along a fixed distance
we therefore expect that the integral

f rzdrn(r)hq!q( w,T) (59)
can be written in the form

|

(0> (&;-uq)(&;-u;)fdwf d3rn(r)f drh, (w,r)e (=) =#2T G (1)d] -d, .
q 0
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f rzdrn(r)hq,q(wo,r)=2 € €1 Xconst.  (60)
€le,

The angular integral of the sum over the polarization vectors
is of course independent of g,

87

k
dQﬂZe’ €€, = 5

(61)

Under the assumption of an isotropic distribution of perturb-
ers the coupling strength of the background field to the ra-
diator is independent of ¢, a result that can be expected for a
background field that is unpolarized. Setting §,= £ for all g,
we find

(62)

A similar calculation for the other terms in Eq. (55) and summation over g yields

S [ [ @R 0600 =1 S E@; 86,0+ 6,0 -4)1-wTe

x> (d] -
q

If we compare Eq. (63) with the term describing the coupling
of the atom to the vacuum field (12), we see that both of the
terms have the same structure. Equation (12) follows from
Eq. (63) in the limit £=1. We interpret this part of the col-
lision operator as a stimulated emission rate that is induced
by the background field. The parameter ¢ gives the mean
number of photons in the resonant component of the back-
ground field. Only the part of the background field around
the atomic resonance frequency contributes because we have
made a short memory approximation in our calculation. We
note that this result differs from that .obtained in Ref. [10],
where the diffusion coefficient comprises both the coherent

|

“koRig (e Re|(dF w).  (63)

*)( 2 f g /3eqeqe

I

and incoherent components of the scattered spectrum,
whereas in the collision operator Eq. (53) only the incoherent
part of the Mollow triplet contributes. In the limit ) <TI" the
elastic scatter is entirely due to the coherent part of the scat-
tered spectrum [22] and the second sideband, which is far off
resonance, can be safely neglected. The coherent part of the
scattered radiation gives the mean interaction between the
dipoles of the radiator and the perturbers, which gives a zero
average contribution in the RPA.

The second part of the collision operator (53) is evaluated
in exactly the same way and yields the result

t ~ ~ r A A A~
> f dtlf d3rn(r)R§,q(r)Pc&(h)=ﬁ25§'[(d2-dZ)ffa(tH&a(t)(dJ'dI)]HizTé’
q — o0

xg (d; - *)(2

The interchanged order of the dipole ladder operators (Ai;r and &;

£~ ko Ry (t)e’kﬂ (d; ‘u,).  (64)

ere 8/3qq

indicates that Eq. (64) gives the rate of stimulated absorption

due to the background field. The normalization convention of the Clebsch-Gordan coefficients implies

<em|(’i+ '&—|em>: 1,

+ —
(gnld™-d"|g,)= T

(65)

2J,+1
(66)
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From the relationship between the Einstein coefficients for stimulated absorption and stimulated emission it follows that &’
also has to be interpreted as the mean number of photons in the resonance mode of the background field, i.e., é&=§&'. We can
now combine Egs. (12), (63), and (64) to find the dissipative part of the evolution of the reduced density matrix of the radiator,

dt

r A A
(i&a(t)) :—E(l+§)[Pz&a(t)+&a(t)PZ]+F(1 +§)
R

aQ . . TR r2J,+1 . .
x> f—(d‘e Je Mo RiG (r)e™ o Ru(dy - €)— 5 57T E[ PG (1) + G ,(1)PE]
~ ) 8m3 e A 22J,+1° ¢ J
dQ ., ~iky- Ry 4 iko- Ry §—
+r§; J-m(da‘q\)e Yo Rug (t)eoRa(d - €,). (67)

Equation (67) gives the combined contribution of the fluc-
tuations arising from the coupling of the radiator to the
vacuum field and to the source field generated by the sur-
rounding medium of like atoms. We will refer to this term as
the atom reservoir coupling.

We note that we can obtain this result also by saying that
the perturbers generate a nonzero occupation number in
some of the previously empty vacuum field modes. The new
ground-state of the vacuum field is then no longer described
by a state with zero occupation number in all field modes.
Treating the vacuum field as Markovian, the derivation is
analogous to the derivation of the dissipative part of the evo-
lution of the reduced density matrix due to coupling to a bath
of harmonic oscillators. A description of this method can, for
example, be found in Ref. [24]. The expansion of the Liou-
ville equation to second order in the interaction of the
vacuum field with the atom then yields nonzero contributions
for the normal-ordered and antinormal-ordered expectation
values of the pairs of field commutators, thus giving rise to
an additional term proportional to the mean photon number
in the field mode at the resonance frequency of the atom.
This method of derivation also emphasizes the interpretation
of ¢ as a mean photon number. In the case of a thermal
background field with mean photon number &, the relation-
ship between I' and I'§ is exactly that found between the
Einstein A and Einstein B coefficients, further underlining
the interpretation of the effect of the medium in terms of
stimulated emission and absorption processes.

Equation (67) gives the correct result in the case of a
broadband background field where the number of photons
per mode is slowly varying as a function of w, compared to
the width of the atomic transition or in the case where its
width is extremely small compared to that of the atomic
transition. In our case neither of these cases is fulfilled and
the rate-equation limit therefore represents a rather crude ap-
proximation. We do believe, however, that the rate-equation
limit still yields qualitative results especially on the depen-
dence of the extra term on density and number of atoms. This
is because the variation with these parameters is independent
of the approximations discussed in this section. The rate-
equation limit primarily changes the outcome of the time
integration over the product of the two-time correlation func-
tions of the dipole of a perturber with the dipole of the ra-
diator. In the BCA where each pair is considered indepen-
dently this integration is independent of the spatial

integration over all the perturbers in the gas. The main effect
of the approximations made here will therefore be in the
dependence of the collisional term on the detuning and Rabi
frequency.

In the remainder of this paper we will drop the label a for
quantities referring to the radiator because the influence of
the perturbers is now included in the mean photon number

3

V. ESTIMATION OF THE BACKGROUND FIELD
STRENGTH

We now estimate the dimensionless strength of the reso-
nant background field &, using the Mollow formula [22] for
the resonant component of the scattered light in the far-field
limit, in the case of a weak field () <<I". The ratio of elasti-
cally scattered light to the total amount of scattered light is
given by

I 1 -
Iy+1yg 1+so (68)

inel

el

where s is the saturation parameter. We find therefore that
the fraction of inelastically scattered light is given by

IineI: SOIscat . (69)

Here I, is the total amount of scattered light that is propor-
tional to the total intensity of the laser light /; times the total
scattering cross section. To derive an expression for the
amount of inelastically scattered light produced by a per-
turber at a distance r from the radiator we have to multiply
the fraction of inelastically scattered light by the cross sec-
tion for the laser light divided by the surface area of a sphere
with radius r. Hence the resonant contribution of the scat-
tered light due to the perturber is simply

gL
Ires(r)=S04_ﬂ_r_21L’ (70)

where the scattering cross section for the laser light is taken
from Ref. [25] as

h(l)LF
TLT o0,

S0 - (71)
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FIG. 1. Mean number of photons on resonance in the back-
ground field as a function of the number of atoms N using Eq. (72).
The solid line gives the mean number of photons for 6= —6I" and
the dashed line for §= —81". The Rabi frequency in both cases is
Q=0.3TI.

This formula is valid only in the far-field approximation. For
separations of the order of X higher-order terms in 1/r must
be taken into account. The exact expression for the photon
exchange interaction to all orders in 1/r can, for example, be
found in Hillenbrand ef al. [10]. If we now average over all
atoms in a trap of radius L and constant density » and sub-

stitute Eq. (71) for o, Eq. (70) yields the intensity of reso- -

nant radiation (in the limit s¢<<1)

- hw,I’
IreSZan%( 2L )

(72)

The number of resonant photons per unit area is then
given by ires/th times the rate of spontaneous emission
I'/2. The mean number of photons that is actually reabsorbed
on resonance is found by multiplication with the resonance
Cross section o ~4mk, 2. Under the assumption of a con-
stant density Lo (N/n)', we approximate the mean number
of photons on resonance by

4ar
ga-f_. k_gn2/3s(2)N1/3' (73)

We note that this result is consistent with the definition of
£ in Eq. (58) when the low-intensity result Eq. (4.30) in Ref.
[22] for the spectral distribution function is used.

We can use Eq. (73) to find an estimate of the mean num-
ber of photons in the redistributed field, which is reabsorbed
on resonance. Thus & defines a mean coupling strength of the
background field to the radiator. Typical constant densities in
the magneto-optical trap are of the order of n=10"! cm™>.
For cesium this corresponds to densities of 0.0618 atom per
Ny, No being the optical wavelength of the resonance transi-
tion. Figure 1 shows a plot of the mean number of photons in
the background field as a function of the number of atoms N
for different detunings. The mean number of photons is al-
ways considerably smaller than unity. The steady-state solu-
tions for the excited-state populations in the absence of the
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laser field predict an increase of the population of the excited
state, which initially is linear in §. For these small values of
&, the low saturation approximation, which we will use in the
subsequent calculations, and the factorization assumption
Eq. (24) therefore hold well.

VI. SUB-DOPPLER COOLING IN THE linl lin
CONFIGURATION

In this section we will discuss the modifications of the
Sisyphus cooling mechanism by the presence of a back-
ground field of strength £ for a J,= 1/2 to J,= 3/2 transition.
The principle of Sisyphus cooling has, for example, been
discussed in detail in Refs. [15,26]. The efficiency of this
cooling mechanism relies on the correlation between optical
pumping, which transfers population between the different
atomic ground-state sublevels and the position of the atom in
the laser beam. The presence of a fluctuating background
field with a random polarization will weaken this correlation,
therefore leading to a diminished position dependence of the
populations in the atomic ground-state sublevels. We will
now calculate the modified friction coefficient and diffusion
coefficient for Sisyphus cooling as a function of the param-
eter £ introduced earlier.

A. Optical Bloch equations for a J,=1/2 to J,=3/2 transition

In this subsection we derive the optical Bloch equations
for a J,=1/2 to J,=3/2 transition. We assume that the driv-
ing laser field is weak so that we can neglect the excited state
in the equations of motion for the optical coherences. As
usual, we transform the density matrix into a rotating refer-
ence frame, so that

Ge,.8,)=0(e,.g,)e L,

G(gu.e)=0(g,.e,)e "L, (74)

and make the rotating-wave approximation. The atom-laser
interaction is given by
€ 1/2> (8- 1/2@

. Q
Gt(r)= ﬁ SiI’lkZ[ [63/2>< 81in

1
+ —

V3

Q
+ — coskz| |e _3p)

V2
1
+ —

><<8—1/2 75

The equation for the optical coherences is

6—1/2> <81/2|} (75)

d _ T A
50(8:1/2,%):'(5(35'*‘1)““15)0(8:1/2,%)

+i§ (8+172:8 )8l G (D)]e,),

(76)
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where we have already made the approximation
o(e,,e,)~0. The optical Bloch equation for the excited
state is given by

d _ [d .
Ea(e#,ey)— dto(e#,e,,) .

—12 {(e |GT(r)|g;)i(g;.e,)—G(e,.8))

X{(g,|G™(r)]e,)}. 77)

The part of the equation that is due to the coupling to the
reservoir is

d ~
(dt(r(e ))R=—r(§+1>o(e#,ev>

+TED,

2 )3 /3[d (I-n®n)-d], .,

X(CEFNY*Cr 1 G(g 4 g8 utgr)- (78)

The coefficients CZJ”’ are the Clebsch-Gordan coefficients
for the transition. The optical Bloch equations describing the
evolution of the ground state are given by

d _ d
a_to'(gy.’gv)— "Ea—(g,u.’gv) R

—i§ (g G (D)e;yi(e;,8,)— (g, e))

X{e;|G™(1)|g,)}, (79)

where the coupling of the ground-state matrix elements to
the reservoir is equal to

d
(Z&(g#,g,,)) =—2I¢é0(g,.8.)

R

dQ
+r(§+1)qEq, 5

X[d-(I-n®n)-d], ,,

XCUTICT ) *G(e g e yrg)).  (80)

B. Steady-state solutions

By adiabatically eliminating the optical coherences and
the excited-state in the equations for the ground-state matrix
elements as in Ref. [15], we can use Egs. (76), (77), and (79)
to find the steady-state solutions of the density matrix. This
procedure is justified in the low saturation approximation
because the ground-state matrix elements evolve on a time
scale that is much longer than the natural lifetime. The
steady-state solution for the optical coherences is given by

E,u,&(gII/Z’g,u.)<gy|év(r)}ev>
6—if(3¢+1) '

0(g+12:€,)= (81)

We now substitute this solution into the equations for the
excited-state density-matrix elements. This yields

1
&(ewev)zw[@ |CLT 126 (8 v g 8 vtq)
—i > e Gt (n)g;))o(g; e
j=*12

—&(eﬂ,gj><gj|é*<r>|eu>]]. 52)

Substituting this expressions together with the expressions
for the optical coherences into the ground-state equations
gives two differential equations of the form

EH1/2:a1+a2H1/2’

(83)
d

2 -1n=b1+ bl .

Il,, and II_,, are the ground-state population for

m;=+1/2 and m == 1/2, respectively, and the coefficients

a;,b;, which are dependent on detuning, Rabi frequency,
and the strength of the background field, are given by

r 5\? r )
a1=§sO(§)[ ( )§+2( )§(1+3§)

+(1+3&)(1—cos 2kz)], (84)

2T 5\? r\?2 )
a2=—750(§){ ( §+2( ) E(1+38)*+(1+38),
(85)

r 5\? r
b1=;so<§){ ( )§+2( )§(1+3§)2

+(1+3€)(1+cos 2kz)]. (86)

We also have assumed that to first order in £ the population
is completely in the atomic ground state. The coefficient b,
is equal to a,. so(§) is defined as

0
2 +T%4(1+38)%

so(é)= (87)

The steady-state solutions for the ground-state populations
are calculated from formulas (83) by setting the left-hand
side equal to zero. We hence find for the steady state of the
ground-state populations

1 s(O(1+38)
gl s age Ay 2k 6
! (O)(1+38)
= (1+ 4§S+0s0(g)(1 3 O 2kz>. (89)
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FIG. 2. Variation of I13, as a function of position in the beam
for Q=0.5T" and 6= —6.0I", corresponding to a saturation param-
eter so=0.0034. The solid line shows the oscillation of the popula-
tion for zero background field, the dashed line for a background
field £€=1.8X 1074, and the dot-dashed line is equivalent to
£=8.6X107%. At a density of 10'! cm™ this corresponds to 10°
and 10® atoms, respectively. The dotted line shows that at a back-
ground field strength £=0.01 larger than the saturation parameter
so the population depends only weakly on z/\, N\ being the laser
wavelength.

For £=0 we retrieve the familiar expressions for the steady-
state ground-state populations found in Ref. [15],

I3, =sin® kz,
%, ,=cos® kz. (90)

To obtain a better physical grasp of the effect of the back-
ground field, we first discuss the steady-state solutions for
the ground-state populations.

C. Dependence of the steady-state ground-state populations
IT%,,, on the background field

Figure 2 shows a plot of the steady-state population
IT§, as a function of z over the laser wavelength \ for dif-
ferent £&. The dependence of the population in the ground-
state sublevels m,= * 1/2 on the position in the beam dimin-
ishes very rapidly, and in the case where the background
field strength is significantly larger than the saturation pa-
rameter the population depends only weakly on the position.
For example, a background field of strength £=0.01, a Rabi
frequency of 0.5T", and a detuning of —6I" (corresponding to
50=0.0034) will lead to an oscillation of only *0.04 around
the mean value of 0.5, whereas for £=0 we have a variation
between the values O and 1. The background field of strength
¢ introduces transition rates between the two ground-state
sublevels that are independent of the position of the atom in
the laser beam. If these processes are strong enough to com-
pete with the optical pumping processes induced by the laser
photons, the efficiency of the latter processes is reduced.

The peak to peak amplitude of the position-dependent os-
cillations of the two ground-state populations given by Eqgs.
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(88) and (89) can be characterized by the parameter
1+3
_ so(€)( 3] . ©1)
4&+50(E(1+38)

This factor can be interpreted in the following way. The
steady-state solution for the excited-state population I}, in
the presence of a background field inducing transitions at a
rate I' ¢ and without the laser field is given by

(92)

The total excited-state population induced by the background
field is obtained by summing over all the excited-state sub-
levels. As the population in Eq. (92) is independent of the
magnetic quantum number, the total excited-state population
is the number of sublevels times Eq. (92). For a J,=3/2
excited state the total population is therefore 4117, . At the
same time the total excited-state population induced by a
weak laser field is approximately given by 3s,. Rearranging
Eq. (91) slightly, we find that f can be written as the ratio of
the fraction of the excited-state population induced by the
laser field over the total excited-state population induced by
the background and the laser field, i.e.,

750(£)

¢ 1
45(—1+—35+ 750(€)

93)

If the number of transitions induced by the laser field is
much less than the number of transitions induced by the
background field, the ground-state populations will be almost
independent of z.

We have to keep in mind that in any case we have to
restrict ourselves to £€<€1, so that we can still assume that the
ground-state population is equal to unity. In this case it is
valid to set 1+3&=~1. It is interesting to consider the two
limiting cases of 4&>s, and 46<<sy. For 4£>s, we can
expand f in terms of the small parameter €;=s7/(4§). To
first order in €; we find

=——s, N '°. 94)
Here we have already substituted the expression for &, Eq.
(73), into Eq. (91). We can rewrite the condition €;<<1 as

4T o enL>T'sy ' (95)

In the second case we expand in the small parameter
e,=4¢&/s,. To first order this yields

f=1=(16mky *n?3)soN"3, (96)

with the condition
4T o nL<Tsy . 97)
We interpret the conditions (95) and (97) as follows. Condi-

tion (95) states that the pumping rate due to the source field
is larger than the optical pumping rate induced by the laser.
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Since the source field is unpolarized, the stimulated emission
and absorption processes caused by the source field are in-
dependent of position and tend to distribute the population
equally among the sublevels. In the limit of condition (95)
this process is dominant over the optical pumping processes
caused by the laser field and the Sisyphus cooling is de-
stroyed. In the limit of Eq. (97) optical pumping between the
ground-state sublevels is still stronger than the pumping pro-
cesses induced by the source field. Equation (96) shows that
there is, however, a decrease of the peak to peak amplitude
of the oscillations that is proportional to the density, the satu-
ration parameter, and the number of atoms to the one-third
power.

D. Force in the lin L lin configuration

We will now discuss the dependence of the friction coef-
ficient on the background field. The equation for the force in
the lin L lin configuration is given by

F(&)=—3%tikSso(&)sin(2kz)[ T, 10(€) —T1_15(&)].
(98)

In order to find the friction coefficient we have to solve the
set of differential equations given by Eq. (83). We rewrite the
differential equations in the form

dIl .
%(g):hrﬁ(g)[nt1/2(5)—1_[21/2(5)]. (99)

Here we have defined the optical pumping rate as a function
of the background field strength

Iy () =5Tso(E)(1+386)f 7" (100)

so(&) is the saturation parameter defined in Eq. (87) and f is
defined by Eq. (91). IT%,,,(£) are the steady-state solutions
for the ground-state populations defined in Egs. (88) and
(89). The differential equations for the ground-state popula-
tions can be solved analytically by assuming that the ground-
state populations contain no explicit time dependence. Their
solutions are found to be

_1_1cos 2kz+[v/v (€)]sin 2kz
Hil/z(Z’f)*§+‘2‘ 1+[U/UC(§)]2

(101)

The critical velocity v (§) gives the capture range of the
Sisyphus cooling force. It is defined similar to Ref. [15] in
terms of the optical pumping rate (100) as

L8
2k

v(§)= (102)

It is thus dependent on the background field through the &
dependence of I',(§). The expression for the force in the lin
L lin configuration as a function of the background field is
then given by

cos 2kz+[v/v (&)]sin 2kz
1+[v/v.()]

F(&)= ~§ fik 6sy(€)sin 2kz
(103)
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FIG. 3. Sisyphus friction coefficient as a function of N, nor-
malized with respect to its value at £= 0. The nonlinear behavior of
@ as a function of N is clearly visible. Note also the strong de-
crease of a from about 67% of its value for £=0 to only about
25% at N=10%. The dashed line shows the diffusion coefficient Eq.
(112). The friction decreases at a faster rate than the diffusion co-
efficient leading to a net increase of the ratio of the two. The pa-
rameters chosen were =0.5I" and §=—6I at a density of
n=10" cm™3

If we average the force over a wavelength we find the fric-
tion force to be given by

N a(év
O™ o o7 1o
and the corresponding friction coefficient a(§) is
a(é)= —3hk2(—11—3ﬁf2. (105)

If we now expand f in terms of the parameters €; and ¢,,
respectively, and keep only the lowest-order terms in those
parameters, we find that in the case described by condition
(95) the lowest-order term is quadratic in the expansion pa-
rameter €;, whereas in the case of condition (97) the friction
coefficient can be written as

5
a~— 3ﬁk2F[1 —2(167ky *n??)s,NY]. (106)

In the case of large detuning the reduction of the friction
coefficient due to the background field scales as
(Q2/8)N'3. However, the region where a linear expansion
in terms of 4¢/s is accurate is quite small. For example, for
a Rabi frequency (1=0.5T" and §=—61I", 5,=0.0034, and
n=10" cm™® we find that the expansion parameter
€,=4¢/s is in the range 0.2—1 for numbers of atoms be-
tween N=10% and 108. In this regime the first-order expan-
sion in €, is no longer valid. Figure 3 shows the friction
coefficient for these parameters as a function of N'? for atom
numbers between 10° and 10%. The nonlinear behavior with
respect to £ is clearly visible. The friction coefficient is nor-
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malized with respect to its value at £=0. It drops from about
67% of its initial value (for £=0) at N=10° to only about
25% at N=108.

E. The equilibrium temperature in the lin | lin configuration

To calculate the equilibrium temperature we have to work
out the momentum diffusion coefficient for this configura-
tion. The method used is similar to Ref. [27]. The main part
of the momentum diffusion coefficient arises from the fluc-
tuations of the dipole force Eq. (98) due to the atom jumping
back and forth between the two ground-state sublevels. Its
contribution can be calculated using the formula

Dpzf:dr{ﬁ(ﬂr T)F(1)—F(1)%}, (107)

where F(t) denotes the dipole force at time ¢. The two-time
correlation function can be evaluated using [15,27]

F(t+DF()= 2 2 FF;P(i,t;j,t+7).
i=*1/2 j=*x1/2

(108)

Here P(i,t;j,t+ 7) represents the probability of being in the
state i at time ¢ and in state j at time ¢+ 7. F ., are the
force contributions acting on the individual sublevels
|m ). From Eq. (98) we find

F.1p="F5hkdsy(£)sin2kz. (109)

Assuming that the system is invariant under time translation,
we get

F(T)F(0)=4F1,I15,(&IIY 5 (&)e TrOT

+2F2{[(T35(£)) 2+ [T 5(£) 12— 1}
(110)

This yields the momentum diffusion coefficient as

D, (2) =[5k>8so()1°T ,(£) " '[(1—f?)sin*2kz

+ f2sin*2kz]. (111)
We now have to average this term over the distance of a laser
wavelength to get the average diffusion coefficient, i.e.,

2

—_— &
Dp(§)=(ﬁk)2m:so(§)[f‘ i1 (112)

D,(§) is the part of the momentum diffusion due to the
dipole force fluctuations _only. The dashed line in Fig. 3
shows the scaling of D, with N, for §=—6I and
Q1=0.5T". The diffusion coefficient decreases at a slower rate
than the friction coefficient, leading to a net increase of the
ratio of the two. The total momentum diffusion coefficient is
obtained by adding the contributions due to fluctuations in
the momentum carried away by the fluorescent photons and
the fluctuations in the number of photons absorbed from each
laser beam. It was pointed out that in the case £=0 this term
can be neglected as it is much smaller than D,(§) in the
regime where |8|<T [15]. Apart from numerical factors due
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FIG. 4. Plot of temperature vs number of atoms to the one-third
power in the case of Sisyphus cooling. The temperature has been
normalized with respect to the temperature that would have been
obtained for £=0. The dotted line corresponds to 1=0.5T" and
&=—6I, and the dashed line to 1=0.5I" and 6= — 8T, when only
D,/ a(§) is used to determine the temperature. The solid line shows
the temperature increase when (D, + D)/ () is used instead. The
parameters for the solid line are the same as for the dotted line.

to the angular momentum of the atomic transition this term
can be modeled by the diffusion coefficient obtained from a
two-level model. A simple estimate gives

DP(§)=3hKT[s50(€) + €]

[the contribution due to spontaneous emission].

The equilibrium temperature is given by the ratio of the
averaged momentum diffusion coefficient and the friction
coefficient. Taking only the induced part of the momentum
diffusion coefficient, we find in the limit of large detuning

_AQ%[1 1
SIS 77

The variation of the temperature given by Eq. (114) as a
function of N is shown in Fig. 4. The parameters for the
density and the Rabi frequency are the same as in Fig. 3. The
dotted line corresponds to D, (§)/a(§) at a detuning of
8= —6TI" and the dashed line gives the same quantity but for
a detuning of §=—8T". The effect of including D;P(§) is
depicted by the solid curve. The parameters are the same as
for the dotted line. The maximum error that is made by ne-
glecting D;Y(§) is about 5%. The temperature varies by a
factor 2 or more even for very small values of §; see Fig. 1
for the magnitude of &.
From Eq. (91) we obtain, for 1/f,

(113)

(114)

! =1+ 4¢ (115)
f s5o(£)(1+3¢)
and by substituting Eq. (73) for the background field
1
7= 14 (167ky 2n?3)s N5, (116)
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In the limit of Eq. (97) we can expand f according to (96).
Also, in the large detuning limit s,~€?%/(26%). Combining
Egs. (96) and (116) with Eq. (114) yields

2

0?2 Q
1+%(167rk0'2n2’3)(——2)N”3]. (117)

“sT 518

20

We have noted above that the expansion of f in terms of
&/so breaks down very quickly in the parameter range inves-
tigated. This is not so for the temperature because 1/f in-
creases linearly with &/5s,. For small numbers of N, where
the expansion is valid, the temperature will increase accord-
ing to Eq. (117). It will then go through a small transition
region where it is slightly nonlinear. For large numbers of
atoms f tends to zero and the dominant term is 1/f so that the
temperature again behaves linearly with respect to N'. A
comparison of Egs. (114) and (117) shows that in the param-
eter range investigated the difference between the two ex-
pressions never exceeds 2%. Equation (117) suggests that
the excess temperature depends on the detuning approxi-
mately as 1/673, assuming that the density is independent of
detuning (which is not physical [14]).

VII. THE o .-0_ CONFIGURATION

In this section we discuss the influence of the background
field on the motion-induced orientation mechanism [15]. As
in Ref. [15], we solve the optical Bloch equations (OBE’s)
by transformation into a reference frame rotating with a fre-
quency kv. As usual, we make the rotating-wave approxima-
tion and transform the density matrix according to Eq. (74).
In the low saturation approximation we also take o(e,,e,)
to be zero to first order in the Rabi frequency. The OBE’s for
the optical coherences, the excited-state matrix elements, and
the ground-state matrix elements are hence given by

d _ r o
T6(gue)=—| 3138+l 5+ kv(u—v)]

7 a(gu-ey)

+i§ 6(8,.8)(8,|Z(D)]e,), (118)

d

- ) - d .
Ea’(e#,e,,)—~—zkv(,u,—V)a'(e#,e,,)Jr(—EU(e#,ev))R

—12 {{e | & (D)]g)o(g;.e,)—F(e,.8))

X{g,| & (r)]e} (119)

d . . - d .
2798 u-80)=—ikv(u—7)6(g,.8,)+ (Ea(g#,gu))R

=i {(8ul T (D)le))G(e;.8,) = (8 une))
J

X(e;| T (1)|g,)}- (120)

Here .Sf}”t(r) denotes the atom-laser coupling. The coupling

to the vacuum field and the background field is found from
Eq. (67) as
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P =-T(¢+1)6 +TED i
dt O-(e,u,’ev) R_ (6 )0'(6#,61,) gq,ql 8 w/3
X[d-(I-n®@n)-d], ,, (CLTI)*
XC:+q,&(g;L+q 7gv+ql)a (121)
i =—IT¢6 +T(E+1), da
dt O-(g,u.!gll) R—' 3 go-(g,u,’gv) (g )q,q/ 87/3

X[d-(I-n®n)-d], ., Ch™?

+ ~
X(C: q,)*a(e#+q aev+ql)'

In the low saturation limit the optical coherences and the
excited-state matrix elements can be eliminated adiabatically
from the ground-state equations and we obtain a set of four
coupled equations for the ground-state matrix elements.

A. Steady-state solutions for the ground-state elements in the
low-velocity limit

The ground-state equations in their general form are still
too complicated to allow an analytical solution of the prob-
lem. In the remainder of this paper we want to restrict our-
selves to the low-velocity limit kv <I'. In this limit, we can
obtain analytical solutions for the ground-state density-
matrix elements. Neglecting terms of order 2 in kv/I" and of
order sokv/T", we find

14¢ 5)
= — ———_8——_-_+- Hg_l
3(1+58&)s0(¢) ©
( 13¢ 3)
+ -—_8—_+_ Hg
3(1+58)s50(8) 2
¢ 1) 26
o T30 ——Ci.
3(1+58)s0(¢) © r(1+%¢)
(122)
3 13¢ 3
0= —————+- |8 +| —————— + |1}
(3<1+%§>so(§> 6) ! (3(1+%§)so<g> 2)7°
_(___ﬁ____i_i) éli_lcr.{___z_ﬁ__ci’
3(1+88)s0(8) © I(1+%¢)
(123)
1=T1% |+ TI§+11¢, (124)
0= 3118+ 31§+ § 11§ — Okv [1+ ¢ }C»
- O T+ sl 1HET
_[LL}C (125)
4 401+58)s00|
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4T (1+58)s0(&) 4T (1+358)s0(8)
§+ 13¢ }Ci
4 4(1+38)s0(8)
. 6kv [1+ 3
T(1+38)s0(8)| 1+¢

where C, and C; are the real and imaginary parts of the
ground-state coherence 6(g_;,g;), defined by

c, (126)
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&(g—l’gl)ECr+iCi» (127)

and the background-field-dependent saturation parameter is
given by

0?2
S+T24(1+5¢)%

so(é)= (128)

The solution of this closed set of linear equations is straight-
forward and we obtain the steady-state solutions for the
ground-state matrix elements as

I1(&)=3[1-TI§(&) 1+ 1 Ap, (129)
I8, (&)=3[1-TI§(&]1— 741, (130)
13&+4(1+£6)s50(€)
I5(¢)= ,
) e 1701+ £ 50(8) (131)
5(1+%8)s0(£)
C = s 132
ol 78E+34(1+38)s50(8) (132)
60T kv (1+5 SE+(1+8
Co= T f)s()(g)[ T } - - e +3§2s°(§) - —., (133
396+ 17(1+538)so(&)L 1T EIET?[656+38(1+58)s50(£)]+55(£)[46+5T2(1+56)%]

where Ap(£) is the population imbalance between the two
stretched states

An(®)= 5| 1 Tre

AR
559 i(€).

24k
0 [ ¢ (1+5¢)

5T
C(O- =5

(134)

In the following subsections we use this set of solutions to
find analytical expressions for the low-velocity friction force,
the momentum diffusion coefficient, and the temperature as a
function of the mean number of background photons &.

B. The mean force in the low-velocity approximation

The mean force is calculated from the gradient of the
atom-laser interaction by taking the average over the internal
atomic states. In the low-velocity approximation, where we
can neglect the Doppler term in the saturation parameters of
the beam, we find

3 s
F(H=——(0+ ié)sO(f){ s[IL{(§) —11,(§)]

26

+— 135
3T(1+%¢) (135)

Ci(f)}-

Using the solutions for the ground-state density-matrix ele-
ments, Egs. (129)—(133), we obtain a force that is linear in
the atomic velocity. For £=0 formula (135) coincides with
the expression of the motion-induced orientation force de-
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FIG. 5. Dependence of the friction coefficient on the number of
atoms N to the one-third power. The Rabi frequency is equal to
Q=0.5T" and the detuning to §=—8I". The solid curve shows a
plot of the friction coefficient for the total force Eq. (135), the
dashed line shows the friction coefficient obtained from perturba-
tion theory, and the dotted curve gives only the contribution of the
dissipative part of the force.
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rived in Ref. [15]. Figure 5 shows the dependence of the
friction coefficient for motion-induced orientation cooling on
the number of atoms to the one-third power. The parameters
chosen are n=10"" cm™3, §=—-8T", and Q=0.5T. Each
curve is normalized with respect to its value at £=0. The
solid line represents a plot of the normalized friction coeffi-
cient, a(£)/a(0); the dotted line shows the variation of the
friction coefficient, which is due to the dissipative force only.
It is noticeable that the dissipative force decreases stronger
than the total force because the reactive part of the force
initially increases as a function of &.

The decrease of the force as a function of the number of
photons in the background field can be understood as foi-
lows. For an atom at rest the coupling of the atom to the laser
field leads to the production of an alignment in the atomic
ground state and it is the coupling of this alignment to the
fictitious magnetic field that produces the force. The back-
ground field introduces additional transition rates between
the different Zeeman sublevels, which reduces the atomic
alignment and hence leads to a corresponding reduction of
the motion-induced orientation force. In order to verify this
argument we have calculated the force using perturbation
theory as described by Dalibard and Cohen-Tannoudji [15]
and Steane ef al. [28]. For an atom at rest the steady-state
populations in a basis set quantized along the direction of the
local laser field polarization (the y basis) and a basis set
quantized along the direction of propagation of the laser
beams (the z basis) are related by a unitary transformation
U. We can therefore use the ground-state solutions for
kv =0 and retransform into the y basis to get the populations
in the states [+ 1,), [—1,), and |0,) as a function of £. The
calculations show that for the parameters used in Fig. 5 the
population in the central state m,=0 decreases from
9/17=0.53 at N=0 to 0.48 at N= 108y and the population in
the stretched states m,=*1 increases from 4/17=0.235 to
0.26, clearly showing the weakening of the alignment by the
background field. We can use the populations in the y basis
to estimate the force in the perturbative limit assuming that
the only effect of the background field is a change in the
equilibrium populations for an atom at rest. In particular, this
means the light shifts of the ground state remain unaffected
by the background field. The effect of the atomic motion on
the populations in the y basis can then be included in exactly
the same way as in Refs. [15,28] using a perturbation expan-
sion in terms of kv/A, where A again denotes the light shift.
For the motion-induced population imbalance in the z basis
this yields

_ bkv o ) )
(I, =TI _)(&) = A [21157 (&) —1T177(&) -T2 (&)].
(136)

The normalized friction coefficient obtained from the pertur-
bation treatment is shown in Fig. 5 by the dashed curve. In
Ref. [28] we noted that the perturbation calculation only
gives the dissipative part of the motion-induced orientation
force. The variation of the perturbative result and the dissi-
pative part of the force with £ are in agreement with each
other to within a few percent, indicating that the decrease in
the motion-induced orientation force is indeed due to the
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destruction of the alignment by the background field.

C. The momentum diffusion coefficient

The momentum diffusion coefficient is calculated for an
atom with zero velocity that still exchanges momentum with
the laser field. For a sample of laser-cooled atoms the mean
momentum is equal to zero and the momentum diffusion
coefficient can be found from

1
DPIE

| &

(p?). (137)

I

t

The mean of the momentum squared is given by the sum
over the expectation values of p? for each individual internal
atomic state so that we can rewrite its rate of change as

d . . .
7P =(P’TI{(p) +(p°1I§(p)) +(p°II% | (p))

+(p2II5(p))+{(p2II{(p)) +(p*IT5(p))
+(pI () +(p*IT ,(p)).

To calculate the rates of change for the second moments of
the momentum distribution we start by setting up the equa-
tions of motion for the density matrix including photon recoil
using the momentum family approach [29,30]. The only part
of the optical Bloch equations that can redistribute atoms
among different momentum families is the dissipative part of
the optical Bloch equations describing the coupling of the
atom to the vacuum field and the background field Eq. (67).
The coupling of different momentum families by spontane-
ous emission in the limit of zero background field has, for
example, been discussed by Castin et al. [29] for the case of
a J=0—J=1 transition. We now introduce the notation

(138)

6(iysjy,p)=(iy,p+ phklélj,.p+vhk), (139)
H;(p)=<e'u,p+,uﬁk|5'|eﬂ,p+,uﬁk>, (140)
N8 (p)=(g,.p+ uhk|Glg,.p+uhk)y,  (141)

o(g-1.81.p)=C,(p)+iCip), (142)

where w# v and i,j=g,e. For conciseness we have omitted
the argument ¢ indicating the dependence of these elements
on the background field. As before we adiabatically eliminate
the optical coherences in the equation for the excited- and
ground-state density-matrix elements. We then find, for ex-
ample, for the equation of motion for IT§(p),

. r
Ii(p)=5(1+ %é)s()(f)l —§II§(p)—5C(p)

N 3T(1+4¢) Ci(p)}

+T(1+ §){s I (p+Ak)+31T}(p)

+IL(p—#ik)} — €L TI(p). (143)
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The overlined quantities give rise to coupling between different momentum families by spontaneous emission, and absorption
and emission of background photons. They are defined in a similar way as in [29] by

— ik
II; (p—qhk)= f

0
. dp'N,(p")IL,(p—qhik+p'). (144)
0

The factors N,(p') are the projections of the photon momentum p’ =#k cos 6 on the z axis for the three possible polarizations
q=*1,0[29]

3 p/ 2
(p=—|14+|—] |
Naa(p') 8ﬁko{l (ﬁko) }
(145)
, 3 pl 2
woe )= aa| - |
The equations of motion for the first and second moments of p are found by multiplying Eq. (143) and the respective equations
for the other density-matrix elements by p and p?, respectively, and averaging over p. Using Eq. (143) we find for

(P*TL(p)),

(PP (p)) = =(1+ -§-§>so(§>[ — HpTI(p))~ Hp2CL(p)) + e (p?Cip))
2 3T (1+5¢)

+T(1+ O{5(p* I (p +1ik)) + £(p°IT{(p)) + (P II5(p — ik))} — 3 €T p*1L{ (p)). (146)

The terms containing the coupling between the different momentum families can be simplified by using the formulas

272

—_ k . .
(PIL,(p)) = —5— (1L}, (p)) + (P IL,,(p)), (147)
- 2025\ . .
(pzﬂin(p—ﬁk)>=(ﬁ2k2+ G )(Uin(p)>+2ﬁk(pH;(p))+<P2Hin(p)>, (148)
(P, (p—Aik))=| A2+ == [(IL},(p)) — 28k(pTL,,(p)) +(P*TT,, (), (149)

with i=e,g and m=0,1,2. Similar relations apply for the excited- and ground-state coherences. We can now simplify Eq.
(138) by substituting the equations of motion for the second moments of p. The idealized steady-state momentum distribution
of laser-cooled atoms, which is a Gaussian, is independent of the direction of p and we therefore require the first and second
moments to be invariant under inversion of the z axis. This symmetry immediately implies

(pII§)=0, (150)
(rC,)=0, (151)
(pI,)=—(pIIL,) (152)

and after some cumbersome but straightforward algebra we find

d
2P =TI (p)) +(T§(p)) ]~ FA(IT(p) } + T (1+ H{K*[3(TI5(p)) + (T (p)) +2(TI5(p))]

k2
+2k[(pII§(p))+2(pTI(p)) I+ T (1+£) T H(I5(p)) +3(I{(p)) + 4(IT5(p))

k2
+ T2 LI(IT(p)) +8(IIE(p))]. (153)

Here we have deliberately kept apart terms proportional to k, k2, and k%. The terms proportional to k and k> give the
contribution of the fluctuations in the number of photons absorbed from each laser beam; the terms proportional to k% give the
contribution from spontaneous emission. This is a slight improvement over the method suggested in Ref. [15] to calculate the
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two contributions to the momentum diffusion coefficient. We also note that d{p2)/dt is independent of the second moments of
p and it is sufficient to solve for the first moments and the momentum averaged populations only.

For a stationary distribution of (p) we can solve for the first moments in steady state. Multiplying Eq. (143) and the
corresponding equations for the other density-matrix elements by p and taking the average we get, for example,

. r ; . 6
(PI(p)) =5 (1+38)50(&){ = &(PTT§(P)) = 5(PC/(P)) + m(pci(zﬂ»
+T(1+O{5(pII5(p +2k)) + 3(pT1{(p)) +{pII5(p —k))} — : ET (pTI5(p)). (154)
The p averages containing overlined quantities again can be simplified using
(pIL,(p£#k))=(IL,,(p)) * ik(IL,,(p)), (155)
(PIL,(p))=(IL,,(p))- (156)
The solution of the set of equations for the first moments of p is lengthy, but poses no particular problem. We obtain
£ 1+3¢
(PTI5(p)) = T LPTH ()~ KIS ()] + 5055 5o O(PTT (), (157)
PITE(P) = 57 (P P) ~ KT (159)
—26s5¢(§)
Cp))= 4(p)). (159)
e e e smen
(pII§(p)) is equal to
fik 26! 2
(PTI§(p))= - f 1+ 2 so(6)]
56+ (1+38)s0(8) [136+5(1+38)s0(E)I[5E+(1+38)s0(8)]
X{(1+ [ 12(T5(p)) — 2(TL5(p)) 1= EL12(TT (p)) + 3(TI§(p)) 1} (160)

The p-averaged density-matrix elements are the solutions of
the optical Bloch equations (118)-(120) for the case
kv =0. The excited-state elements can be found by substitut-
ing the steady-state results for the optical coherences into the
solutions for the excited-state matrix elements. The two
excited-state populations (II5(p)) and (II5(p)) that are
needed in Eq. (160) are

3

(161)

. 1+ £
(I15(p)) = mSo(ﬁH T+¢ (I§(p)),

+5¢

+5¢
1+§S°(§)+1+§

<H0(P)>_ (Hg(p)>+6 T ¢ so(£)

2
X(C,(p))+ 3(1—f§)<n‘é(p))- (162)

The ground-state elements are found by setting kv =0 in
Egs. (129)—(133).

The laser-induced part of the momentum diffusion coeffi-
cient in terms of the ground-state matrix elements is equal to

T (#k)?
-— ~ KM (p)) -

5(C.(p)))

T(hk)?
2

[(1+38)s0(&) +2€1(=(ITf(p))

4<H (P)>+ 18 <Cr(P)>)

+AKT[(1+38)s0(&)+2€KpTT§(p)) (163)
and the contribution due to spontaneous emission is
SPr ¢\ — I (n 0)2 43 32 /1718
Dy(6)=75 (I (p)) + S(II§(p)) — 5(C,(P))]

+[(1+38)s0(8) + 21 (T (p)) + H{TE(P))
+3(Cp)]. (164)
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In the limit of no background field we retrieve the results
obtained by Dalibard and Cohen-Tannoudji [15] for the in-
duced and the spontaneous part of the momentum diffusion
coefficient.

In the limit of £=0 the laser-induced diffusion coefficient
has been discussed in detail in Refs. [15] and [31]. The laser-
induced induced momentum diffusion is due to the fluctua-
tion in the number of photons absorbed from each laser
beam. For transitions with ground-state angular momenta
J=1 this part of the diffusion coefficient is strongly peaked
around 6=0. Castin and Mélmer [31] attribute this increase
to a correlation between successive steps in the random walk
of the atom in momentum space. This correlation is de-
stroyed when processes are present that redistribute the
population between different ground-state sublevels at a rate
faster than the optical pumping rate. When no background
field is present this redistribution happens through temporal
oscillations at a frequency equal to the light shift between
adjacent m states, which is of the order of ds,. Hence these
oscillations are of the order of the optical pumping rate when
6~TI". With a background field present there are additional
processes that can destroy the correlations between succes-
sive steps in the random walk. Consider, for example, an
atom in the state m,=1 of a J=1 ground state. The prob-
ability of absorbing a o, photon is six times larger than the
probability to absorb a o photon, which for £=0 gives rise
to a strong correlation between successive steps in the ran-
dom walk. In the case {+ 0, excitation can occur not only by
absorption of a laser photon but also by a background pho-
ton. This has two effects, both of which lead to a weakening
of the correlation in successive steps of the random walk.
The first one is an absorption-emission cycle, which puts the
atom back into the initial state, and the second possibility is
a redistribution process, which actually changes the initial
state. Since the momentum transferred to the atoms by the
background photons is of a random nature, these processes
destroy the correlation between successive random walk
steps and lead to a decrease of the laser-induced diffusion for
small detunings. This is shown in Fig. 6, where we have
plotted D;‘d( &) as a function of detuning for several values
of N. The Rabi frequency was 1=0.1T" to ensure that the
low saturation approximation was fulfilled even at zero de-
tuning. In this case the maximum number of photons in the
background field was ¢=0.03, corresponding to N=10% and
6=0. The proportion of atoms in the excited state was less
than 3.5% so that the low saturation approximation was well
satisfied. We see that the laser-induced momentum diffusion
is decreasing sharply as a function of the number of atoms.

Most experiments on magneto-optical traps and optical
molasses are performed in the limit of large detuning
|8|>T [14]. In this regime there is no enhancement of the
laser-induced momentum diffusion coefficient. The value for
£=0 zero is then of the order of the value calculated for a
J=0—1 transition [31]. The presence of the background
field then leads to an increase of the momentum diffusion
coefficient. This is shown in Fig. 7. The parameters chosen
were (1=0.5T" and 6= — 6T for an estimated atomic density
n=10" cm™3. This increase is due to the extra fluctuations
introduced into the evolution of the momentum distribution
by the random nature of the background field. The relative
increase of the laser-induced momentum diffusion coefficient

0.050 T T T T T T T T T

0.045
0.040 |
0.035 |
0.030 |
0.025 |

0.020

laser-induced diffusion

0.015 |
0.010 |
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0.000 > >
-0 -8 -6 -4 -2 0 2 4 6 8 10

detuning &

FIG. 6. Plot of the laser-induced momentum diffusion coeffi-
cient Dj,"d( &) as a function of § for different values of N in units of
(%k)?T". The solid line is the diffusion coefficient for N=0, the
dashed line corresponds to N= 108, the dotted line to N= 107, and

the dash-dotted line to N=108. The Rabi frequency in all cases was
O=0.1T".

with respect to N'* (dashed line) is smaller than the increase
of the momentum diffusion coefficient due to spontaneous
emission (dotted line). The change of D, with respect to
N3 is linear in the regime of experimental interest.

D. The equilibrium temperature

The equilibrium temperature as a function of £ is given by
the ratio of a(£)=F(£)/kv and D,(£§)=Dr(&€)+DP(E),
but because of its complexity we do not give an analytical
expression in this section. Instead we write the temperature
as a function of ¢ in the form

0.003 — ———————, :
0.0025 - j
£ 0002 | 1
8
o]
g
8 0.0015 | .
o .
s -
s
g —

5 0001 F 1
0.0005 | e 1
ol
O 50 100 150 200 250 300 350 400 450 500
1

N

FIG. 7. Variation of the momentum diffusion coefficient for
o,.-0_ molasses as a function of N3 in units of (k)?I". The
parameters chosen were (1 =0.5I" and §= —61I" at a density of at-
oms n=10" cm™3. The solid line gives the total momentum diffu-
sion coefficient, the dashed line the laser-induced part Dip“d( &), and
the dotted line represents D,P(§).



4784 G. HILLENBRAND, K. BURNETT, AND C. J. FOOT 52

2.5 T T T T T T T T T

2.0 + J

normalized temperature

1.0

. . L n \ . L - .
0 50 100 150 200 250 300 350 400 450 500
N'?

FIG. 8. Temperature for motion-induced orientation cooling as a
function of N'. The Rabi frequency was ©=0.5T, the detuning
8=—6T", and the constant atomic density in the trap was n=10"!
cm~3. The increase is almost linear in N7,

kpT(§)=kpTo[1+0O(8)], (165)
where kT, represents the temperature for motion-induced

orientation cooling in the absence of any background pho-
tons, given by [15]

Q%[ 29 254 T%4
kBTO‘TaT 300 75 S+T4) (166)
The function ®(§) gives the excess temperature due to the
background field and varies with detuning as approximately
1/6%. The dependence of the temperature on detuning is
therefore proportional to approximately 8> for a fixed den-
sity (which is unphysical). Figure 8 shows the variation of T
with respect to N'3. We have normalized the graph with
respect to kzTy. The parameters chosen were 6= —6I" and
Q=—0.5T and the density in the trap was n=10'" cm™3.
We again see that for numbers of atoms in the range 105 —
10® the temperature increases almost linearly with N3, For
the parameters used here the interaction with the background
field leads to a temperature increase by a factor of about 2.

VIII. CONCLUSION

In this paper we have used projection operators to derive
a master equation for the reduced density matrix of an atom
that is driven by a laser and interacts with a gas of similar
atoms through the exchange of scattered photons. This inter-
action is included into a collision operator that under the
assumption of a zero mean of the fluctuating field produced
by the medium is of second and higher order in the photon
exchange interaction. In the BCA the collision operator is a
superposition of two-body collisions. In the far-field limit
this is justified because the presence of a third or more atoms
becomes important only if the frequency shifts due to the
perturbers significantly alter the evolution of the radiator in
the laser field. The collision operator has a memory time that
is of the order of the natural lifetime of the colliding atoms.

To obtain some analytical results we have taken the rate-
equation limit of the collision operator. We emphasize, how-
ever, that this is an approximation that is not strictly valid
because of the similar time scales for the evolution of the
perturbers and the radiator. Although taking this limit does
affect the scaling of the collision strength with respect to the
detuning and the Rabi frequency, it does not change the de-
pendence on the density and the number of atoms. Keeping
those restrictions in mind, we have shown that the Sisyphus
and motion-induced orientation cooling mechanisms are very
sensitive to the effects of a fluctuating unpolarized back-
ground field. In both cases we found that even a very small
background field arising from photons scattered out of the
laser beams by the cold atoms can lead to a significant rise in
temperature. Therefore this effect is important even when the
cloud is optically thin. The temperature increase predicted by
our model is of the same order of magnitude as observed
experimentally and the nearly linear dependence on N'/* was
verified. Within the present accuracy of the experimental
data any nonlinearity would not be detectable. The depen-
dence of the temperature rise on detuning can be described
by a factor 1/6 7, where B is a positive number. In the
present model B8~3 for both polarization gradient cooling
mechanisms when a constant density is assumed. Experi-
mentally the density was found to increase slightly with in-
creasing detuning (approximately %), but even taking this
into account the measured dependence of the temperature
increase on detuning (approximately & ! for one-
dimensional o*-0~ molasses and approximately 6 ! for
one-dimensional Sisyphus cooling) was much less than pre-
dicted [14]. Measurements in three-dimensional sub-Doppler
molasses give a temperature increase proportional to & 1.
This disagreement is hardly surprising, bearing in mind the
simplifications made at the onset of the calculations. How-
ever, by making those simplifications we were able to gain
some physical insight into the effect of the background field
on the two cooling mechanisms.

In the case of Sisyphus cooling the presence of the back-
ground field leads to a position-independent transition rate
between the different ground-state sublevels. This transition
rate causes the position dependence of the population in the
ground-state sublevels to decrease. This position dependence
is fundamental for the functioning of the cooling mechanism
and the background field therefore destroys the cooling. In
the case of motion-induced orientation cooling it is the align-
ment in the atomic ground state that is reduced by the back-
ground field. Although this reduction is small, it is sufficient
to lower the efficiency of the cooling mechanism. An addi-
tional source of heating common to both cooling mecha-
nisms is the extra heating because of the random direction of
the momentum of the background photons.
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APPENDIX: INTERATOMIC POTENTIALS

In this appendix we briefly discuss the expressions for the
atom-atom interaction that arise from the elimination of the
radiation field from the full master equation. The interaction
of a pair of atoms can in principle be calculated in the same
way as the single-atom spontaneous decay term Eq. (12), as
discussed in detail in Ref. [24]. An alternative approach,
which starts from the equations of motion for Heisenberg
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operators, can be found, for example, in [9]. We note, how-
ever, that the result derived therein is valid only in the spe-
cial case of an operator that acts on a single atom. In the
more general case we have to use operators that act on all
particles simultaneously. The final step consists of converting
the operator optical Bloch equations into equations of motion
for the density-matrix elements. The part of the interaction
that is due to photons scattered by atom j being reabsorbed
by atom i is given by the expression

i i n aron oA i o a A Ao
-3 Vo)== & E* (R, R)6(1)+ 7 6(Nd- E"(R;.R))

3|5 e

‘&) R (e R(d; €,)

] -

where H.c. denotes the Hermitian conjugate of the first term
in the curly brackets. The expression for the reverse process
\7(2) the absorption of photons scattered by atom i by atom
j, 1s found from Eq (Al) by exchanging the indices i and j.
E*(R,, ;) and E- (R,, ;) are the quantized field ampli-
tudes for the photons scattered by atom j. They are given by
the relation

A A Al . _
Ei'(Ri,Rj)=(:i—2—q)(Ra, )+V(R,,R)) j+’
(A2)

where @(ﬁi ,ﬁj) and V(ﬁi ,ﬁj) are defined as
A A daQ
cp(Ri,Rj)Ef g /3(1 n®n)eko™ R~ ikon R, (A3)

and

37Tﬁr)

4’k k k
2k;

2m)3\k—kg * k+kq

X(I—n®n)eik'ﬁfe—ik'ﬁf. (A4)

n is the unit vector along the direction of the wave vector
k. Making the substitutions R;—R; and R;—r;, we find the
semiclassical limit for Eq. (A2),

34T Pf dk k N
2k} (2m)3 \k—k,

kfko (d; -€)e” KR () ok R, €) +Hc} (A1)
[
ﬁj(r)=—3ﬁrl(1 e,®e,)—— !
4 kolr|
~(1-3¢,0¢,) 2—2+—31—3-H
kolr|*  kglx|
X exp[ % ikol|r|1d7 , (A3)

where r=r;—r;. In the far-field limit we restrict ourselves to
the lowest-order term in 1/|r|. When the expectation value
for the reduced dipole operator d‘ is taken we find that
(E (r)) resembles exactly the ﬁeld produced by a classical
oscillating dipole [33]. E*(R;,R ;) corresponds to a spherical
wave moving away from its scattermg center, atom j, and

(R, ,R ) is the corresponding incoming wave. In the case
where we can factorize the density matrix &(¢) into a part
&j(t), which commutes with all operators referring to atom
i, and another part &;(¢), which commutes with all operators
referring to atom j, we can rewrite \7,(}-1) in the simpler form

VE}):[&i'I’;:+(ﬁi’ﬁj)&j(t)’&i(l)]

+16;(0d B~ (R,,R)),6:(1)] (46)

and a corresponding term for the case where atom i acts as
the source of the photons. We will return to the issue of
factorization when we separate the atomic system into a ra-
diator and a bath of statistically independent perturbers,
which acts as the source of the background field.

In the more general case when a factorization is not pos-
sible, V; T (/,(})+ Vg? can be written in the form
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i

h

- . r . . PO A A AL oAl
-7 Vijo-(t):—5{[U(t)7d;—'®(Rist)'dj ]++[O'(t)’d;'q)(Ri’Rj)'di 14}

i A A A oA R A A A oAl
+ E{[U(t)»dj'V(Riij)'dj ]+[U(t)’d;'V(Ri’Rj)’di 1

aQ . oo A A . A
+F; fm{(df~e,\)e_’kO'Rié'(t)e’kO'Ri(d;-ex)+(dj_~ex)e"ko"‘jé-(t)e’ko'l‘i(df6)\)}, (A7)

where [G(¢),], denotes the anticommutator. The rotating-wave approximation has been made in this equation.
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