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General atomic response to resonant, phase-fiuctuating fields in the adiabatic limit
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Though the interaction of a two-level atom with a field undergoing some arbitrary pattern of phase
variation may be obtained by a numerical solution of the density-matrix equations, theory has proven to
be problematic in providing a general, intuitive picture of the atom s response to a phase-varying field.
The convolution picture of the Auctuating field-atom interaction, known to spectroscopists for decades,
is only valid in the regime of weak fields. Here we discuss a complementary intuitive view that is valid in
the regime of strong, resonant fields. Specifically, when an atom's response to a phase-varying field is
considered in the instantaneous frame, the Bloch-vector trajectory always traces out a "figure-
eight" —type pattern, reminiscent of a Lissajous figure. This observation is demonstrated for a number of
fields whose phase-varying patterns span a broad range {i.e., sinusoidal, two-frequency quasiperiodic,
chaotic, stochastic), and analysis of the Bloch-vector equations then reveals the complete generality of
this response. The analysis also reveals that the temporal variation of the atomic population to phase
Auctuations in the strong, resonant field regime is nearly proportional to a simple product of the field's

phase and its first derivative.

PACS number{s): 42.50.Hz, 42.50.Ar, 32.SO.Rm

I. INTRODUCTION

The response of quantum systems to resonant, phase-
Auctuating electromagnetic fields is germane to several
areas of current interest in atomic physics. In quantum
optics, phase-modulated fields generate the Rabi-
resonance phenomena [1,2], and stochastic phase fiuc-
tuations are known to alter some of the qualitative as-
pects of the field-atom interaction [3]. Further, atomic
interactions with phase-fluctuating fields have been sug-
gested as a means of producing supersonic light-induced
gas streams [4], and increasing the gain coefficients asso-
ciating with Lasing-Without inversion [S]. From an ap-
plied standpoint, an atom's response to a phase-
modulated field is an important factor in a number of
technologies, including, but not limited to, atomic fre-
quency standards [6,7], optically pumped magnetometers
[8], and laser frequency stabilization [9]. Our general in-
terest in this topic stems from a desire to better under-
stand the various factors that define and limit the perfor-
mance of atomic frequency standards. In these devices a
phase-modulated microwave field is often employed to
generate the error signal used in locking a crystal
oscillator's output frequency to an atomic hyperfine reso-
nance, and future applications will require the locking to
be stable at the level of a few parts in 10' .

Though the interaction of a two-level atom with a field
undergoing some arbitrary pattern of phase variation
may be obtained by a numerical solution of the Bloch
(i.e., density-matrix) equations [10], the theory has prov-
en to be problematic in providing a general, intuitiUe pic-
ture of the atom's response to the phase-varying field.
The convolution picture of the fluctuating field-atom in-
teraction has, of course, been known to spectroscopists
for decades, . i.e., the field s phase variation is associated
with some specific field spectrum, and a description of the

II. DESCRIPTION OF SYSTEM UNDER ANALYSIS

The system under investigation is that of a two-level
atom subjected to a resonant, phase-varying electromag-
netic field. The Bloch equations for this system, under
the assumption that the transverse and longitudinal re-
laxation rates are equal (y, =y2=y), may be written as

= —yX' —Q cos[8(t) ]Z,dX
dt

(la)

field-atom interaction is obtained by convolving this field
spectrum with the atomic response (i.e., line-shape) func-
tion. However, the convolution picture is only valid in
the regime of weak fields, and there are a number of
field-atom interaction topics where the assumption of
weak fields is not justified. Consequently, the ultimate
goal of our investigations, only partially achieved here, is
the formulation of a general, intuitive picture of the fluc-
tuating field-atom interaction that is valid in both weak
and strong fields.

The starting point for the present studies is the analysis
of Bloch-vector trajectories derived from a direct solution
of the relevant differential equations. We find that under
adiabatic conditions (adiabatic implying that the atomic
Rabi frequency is much larger than the phase-modulation
frequencies and atomic relaxation rate) there exist
characteristics of an atom's response to a resonant field
that are independent of any particular pattern of phase
variation (stochastic or deterministic). As will be shown
below, the physical explanation for these invariant
characteristics derives from the Bloch equations when
they are written for a coordinate frame that rotates at the
field's instantaneous (fiuctuating) frequency. Then, under
adiabatic conditions, simple, general expressions relating
the atomic response to the phase-modulation pattern may
be derived.
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dY
dt

= —y Y—csin[8(t)]Z,

dz== —y(Z —ZNF)+0 cos[8(t)]X+0sin[8(t)] Y .
dt

(lb)

(lc)

In these equations Q is the Rabi frequency and X, Y, and
Z are the coordinates of the Bloch vector in the rotating
coordinate frame [11]. ZN„ is the Z value in the absence
of any electromagnetic field, and 8(t) is the time-
dependent phase of the field. If 0 is constant, or varies
extremely slowly, then under steady-state conditions the
Bloch vector precesses about an effective field, whose
orientation in the XY plane is given by 0. The inclusion
of relaxation terms in the Bloch equations, beside mim-
icking realistic physical systems, ensures that after
sufficient time any transient effects associated with the
field's "turn on" will disappear.

In order to uncover general characteristics of the
atom's response to a phase-fluctuating field, we have in-
vestigated four distinct phase-modulation patterns that
span a broad range of characteristic types. The first two
are relatively simple: (i) a pure sinusoidal phase modula-
tion [Eq. (2a)], and (ii) a two-frequency quasiperiodic
phase modulation with the two frequencies taken to be
incommensurate [Eq. (2(b)]

much less than a/2m and an output whose Fourier com-
ponent amplitude falls as f for frequencies much greater
than a/2'. o s is the standard deviation of phase, and its
value of 60 was selected in order to keep the amplitude
of the phase variations consistent among the various
phase modulation patterns. The procedure used here in
the implementation of the digital filter is the same as that
applied by Camparo and Lambropoulos [13] in their
study of stochastic fields and multiphoton processes. Pa-
rameter values for the various modulation patterns were
selected so that the principal frequency components of
each occurred at similar frequencies. Figures 1(a) and
1(b) display the amplitude of the Fourier components for
the chaotic and stochastic phase-variation processes, re-
spectively.

8s(t) =m sin(toit),

8Q p( t ) = rr si n ( ro, t ) +m sin( rIi 2 t )

(2a)

In these equations co, is set equal to 15 and co2 is set equal
to coi multiplied by five times the golden mean [golden
mean = ( &5—1 ) /2]. The third modulation pattern is
associated with nonlinear chaos, and is produced by the
solution of the nonlinear Duffing equation with its pa-
rameters chosen to yield chaotic variations [12]. The
Duffing equation solved in this study takes the form

dP dP+I A ——'A (1 P)P =F3 c—os(Acct), (3)
dt dt

with I =0.09, F =0.16, co=0.833, and A =80.0. (A is
introduced as a simple time scale factor into the Duffing
equation, in order to keep the various modulation pat-
terns somewhat consistent. ) The solution of the Duffing
equation produces a phase variation 8D(t) given by

8D(t) =~P(t)/10 . (4)

The final phase-modulation pattern considered here is
stochastic. It is produced by passing unit variance,
Gaussian distributed white noise through a digital filter.
The transfer function for the filter element, H (f) is
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with f the Fourier frequency and a =25.0. (This particu-
lar value of a was chosen in order to make the power
spectrum of the random-phase variations reasonably
similar to the power spectrum of the chaotic phase varia-
tions. ) Transmission of white noise through a filter
defined by Eq. (5) produces a white output for frequencies
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FIG. 1. Fourier transform of the phase variations generated
by (a) chaotic, and (b) stochastic processes.
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In the present study y was taken as 0.5 and ZN„was
set equal to —1. The Bloch equations for each phase-
modulation pattern were solved using a fourth-order
Runge-Kutta algorithm with adaptive step size. For the
chaotic phase variations, Eq. (3) was written as two first-
order equations, combined with the three Bloch-vector
equations. The resulting system of five equations was
then solved simultaneously. In all cases, Runge-Kutta
step size was controlled by requiring the relative error in
the computation of any Bloch-vector component, as well
as P and dP/dt for the case of the Duffing oscillator, to
be less than 10 ' at each step. The initial conditions for
the difFerential equations were X(0)=0, Y(0)=0,
Z(0)=1, P(0)=0, and dP(0)/dt=0. To ensure that
field turn-on transients had died away, the solutions were
propagated to t =40 prior to analyzing the results.

III. RKSUI.TS

We have found that the Bloch-vector trajectories re-
sulting from our calculations are most informative when

reviewed in the instantaneous frame described by Avan
and Cohen-Tannoudji [14]. In this frame, the X'""axis is
taken along the direction of the effective field in the stan-
dard rotating frame (i.e., X'""X"'=cos[8(t)], where
X" is a unit vector in the direction of the rotating frame
X axis). For the case of a resonant field, the rotating
frame and instantaneous frame are related by a simple
time-dependent rotation in the XY plane. Previously, we
found that quasiperiodic phase modulation produces a
relatively simple atomic response when viewed in the in-
stantaneous frame, as long as the Rabi frequency is
sufficiently large to ensure adiabatic conditions [2]. This
pattern and the phase modulation producing it are shown
in Fig. 2. Extending our studies to the chaotic phase
variations produced by the Duffing equation we observe
the Bloch-space trajectories shown in Fig. 3. While
differences in detail are observed, a general similarity is
obvious: trajectories composed of two principal lobes are
apparent in both cases. This is surprising given the
differences in the modulation patterns, the amplitudes of
phase variations [viz. , compare Figs. 2(b) and 3(b)], and
their concomitant differences in statistical and spectral
properties.

Further numerical calculations have shown that this
similarity of adiabatic atomic response remains valid over
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FIG. 2. (a) Bloch-space trajectory in the three-dimensional
instantaneous frame resulting from quasiperiodic phase varia-
tion with Q = 1000 (sufhcient to ensure adiabatic atomic
response) ~ (b) Phase variation as a function of calculation time
producing the Bloch-space trajectory of (a).
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FIG. 3. Same as Fig. 2 except a chaotic phase variation is
employed.
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dX'"" d 0~~inst+ Yinst ~Z
dt dt

dY'n";n, O
+ Yinst ~inst

dt dt

dz
dt

= —
1 (z —z )+nx'"" .NF

(6a)

(6b)

(6c)

Note that the Z component is unaffected by the transfor-
mation, since the transformation is just a rotation in the
XY plane. Further, it is to be noted that the transformed
equations contain products of d 8(t) Idt and Bloch-vector

a wide range of phase-variation conditions. To highlight
the similarities in the atom's response to different phase-
modulation patterns, we project the three-dimensional
trajectories onto the Y'"" and Z axes. In Fig. 4, the pro-
jected trajectories are shown for sinusoidal, quasiperiod-
ic, chaotic, and stochastic patterns of phase variation. In
all cases the two-lobed, "figure-eight-like" pattern is ob-
served. For simple sinusoidal modulation the pattern is
reminiscent of a Lissajous figure [15], in which the fre-
quency of the vertical component is twice that of the hor-
izontal component. It is this general figure-eight pattern,
observed under resonant, adiabatic conditions, that we
refer to as a general atomic response to phase-varying
fields.

To understand the origin of this general atomic
response, the Bloch equations in the rotating frame, Eqs.
(la) —(lc), may be transformed into the instantaneous
frame yielding

=F(Q) . (7)

Linearization consists of expanding F(Q) in a Taylor
series, and dropping terms of order Q and higher. The
resulting linear approximation is then given by

F(Q)=—J Q, (&)

with J the Jacobian of F defined by

BI';
J; =

aQ, q=q,
'

and Qo the equilibrium point. For the equilibrium values
of 0 and dO/dt we consider their limit as the Auctuating

(9)

components. Thus, the complete system of differential
equations, the Bloch-vector equations plus the 8(t) and
d8(t)Idt equations, display a nonlinear character in the
instantaneous frame. (This observation was also made a
number of years ago by Allen and Eberly [10].) The ex-
istence of nonlinearities suggests that techniques often
employed in the analysis of nonlinear differential equa-
tions might be fruitfully applied in the present analysis.
Specifically, Eqs. (6) can be linearized in the vicinity of
their equilibrium point, and the dynamics within this
linear approximation investigated [16].

Taking X'"", Y'"", Z, 8, and d 8ldt as the components

Q of a vector Q, and F a function of Q, Eqs. (6) along
with any functional information concerning 8 and d 8ldt
may be rewritten as
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inst
+eq p pZNF ~y+Q
@inst

eq

r'
eq 2 2 ZNFy+0

(10a)

(lob)

(10c)

The Jacobian may be evaluated using these values, and
the resulting linearized Bloch equations then become

amplitude of 0(t) becomes infinitesimally small, and
without loss of generality these can be taken as zero. That
I9eq 0 is simply a recognition of the fact that the phase
variations of interest here fluctuate about a central value
which may be taken as zero. Setting (dBldt), =0, how-
ever, has more physical justification, and is related to our
focus on resonance conditions: any component of the
phase variation that continuously increased or decreased
would be considered a frequency offset, and its presence
would not be consistent with resonance. For the equilib-
rium values of the Bloch-vector components, simple ma-
nipulations thus yield

Z(t)= V NF d6
(F2+~2)2

(14)

0.0008

The accuracy of these results may be tested by compar-
ing the approximate values for Yt"'"(t) and Z (t) with the
exact results obtained by the numerical solution of the
Bloch equations. In Fig. 5, for the case of chaotic phase
variation and a Rabi frequency of 1000, the exact F'""
and Z component values are compared with the approxi-
mate values produced by Eqs. (13) and (14). The agree-
ment is very good, confirming the validity of the lineari-
zation approach used here. The approximate result for
Z(t) is particularly useful, as it is not restricted to either
the instantaneous or rotating frames; the population vari-
ations it predicts will be those observed in the laboratory.

With the analytical results in hand, the origin of the
general figure-eight Bloch-vector trajectory becomes ap-

d~inst
L = —yX'""—QZ (1 la)

d @111St
L

dt
y.j11St+

' V NF d 0QZ
2+ Q2

(1 lb)

dZL
Z +~ yinst

dt
(1 lc)

The principal advantage of this process is that the linear-
ized form of Y'"", Eq. (11b), is uncoupled from the X'""
and Z components, and may be related directly to the
phase variations. If we assume that the phase varies rap-
idly compared with the relaxation rate, which is the con-
dition of most interest, then formally integrating Eq.
(lib) and then integrating by parts yields the approxi-
mate result,
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To proceed, it is illuminating to now insert Eq. (12)
into the full instantaneous frame Bloch equations for X'""
and Z, Eqs. (6a) and (6c). These equations form a set of
two first-order, coupled difFerential equations in X'""and
Z, which may be written as a single second-order
differential equation for Z:
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with Z'=Z —Z, . Equation (13) is simply that of a
driven, damped harmonic oscillator. As a result of the
relative size of the Rabi frequency with respect to the
other constants in the problem (i.e., the adiabatic condi-
tion), it is apparent that the harmonic oscillator is far
from resonance and that its "spring" is stiff. Consequent-
ly, we expect the Z' response to simply be proportional to
the product of 0(t) and d 6(t) ldt The result of this .adia-
batic approximation is then

-3 x 10-5
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Calculation time (s)

FIG. S. Comparison of approximate values {dashed lines) of
Y'""(t) [(a)] and Z(t) [(h)] with the exact values (solid lines) re-
sulting from numerical solution of the Bloch equations. In this
example the Rabi frequency is taken to be 1000 and chaotic
phase variations are employed.
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parent. For any generally fluctuating pattern of phase
variations, 8(t) and hence Y'""(t) will cross zero. Since
Z(t) is proportional to Y'""(t), as Y'""(t) approaches
zero so too must Z(t), producing the observed node in
the ZY'"" plane. Within each of the lobes, the trajectories
are defined by the specifics of the particular pattern of
phase variation. The analytical results also give insight
into the Lissajous pattern observed with single-sinusoidal
phase modulation. In this case, Y'""(t ) oscillates as
sin(toit), while Z(t), proportional to the product
cos(co, t) sin(co, t), oscillates at twice the frequency of
Yinst( t )

The final point to be addressed concerns the atomic
response to the stochastic field shown in Fig. 4(d). Super-
imposed upon the general figure-eight trajectories are os-
cillations whose frequency matches that of the Rabi fre-
quency. The presence of Rabi oscillations in the Bloch-
vector trajectory indicates that some of the phase
changes occur abruptly, so that the system is not adiabat-
ic with respect to them. From an examination of the sto-
chastic phase variation s Fourier spectrum, it may be in-
ferred that the figure-eight pattern results from adiabati-
city with respect to those Fourier components accounting
for the largest spectral density (i.e., f ( 10). The Rabi os-
cillations superimposed on the figure-eight pattern derive
from nonadiabaticity associated with the high-frequency
components of the Fourier spectrum. Note from Eq. (14)
that the amplitude of the figure-eight pattern decreases as
a function of Rabi frequency in the adiabatic regime.
Consequently, for broadband noise an increase in Rabi
frequency does not necessarily decrease the amplitude of
the Rabi oscillations compared to the size of the figure-
eight pattern. Interestingly, in calculations using sto-
chastic phase-variation patterns where the high-
frequency Fourier components fell more slowly (i.e., f
and f ), the adiabatic, figure-eight responses were com-
pletely overwhelmed by the nonadiabatic Rabi oscilla-
tions. These observations point out the significance of
adiabaticity in the general atomic response to phase vari-
ations discussed here. Moreover, this highlighted role of
adiabaticity clarifies why the chaotic phase variations
produce such a well defined figure-eight pattern, even
though they too have a broadband Fourier spectrum.
Note that the Fourier spectrum for the chaotic phase
variations falls off extremely rapidly at high Fourier fre-

quency, so that it is possible to achieve a Rabi frequency
where the spectral density at Fourier frequencies higher
than the Rabi frequency is negligible. This issue of simul-
taneous adiabatic and nonadiabatic atomic responses for
broadband phase variations will be explored in a future
paper.

IV. SUMMARY AND CONCLUSIONS

In this paper we have investigated the response of a
two-level atomic system to phase-varying fields under
adiabatic conditions for a wide range of phase-variation
patterns. Here, adiabatic means that the Rabi frequency
is larger than the atomic relaxation rate and the phase-
variation rate. Under adiabatic conditions we find that
there is a general atomic response to the phase-varying
field that is i'ndependent of the particular form of phase
variation. This response is most apparent when Bloch-
vector trajectories are observed in the instantaneous
frame, and this frame is also found to be most appropri-
ate for investigating the origins of the atom's general
response. Analyses performed in this frame lead to a sim-

ple relationship between the two-level atom's population
and the field's phase variations. We have also found that
care must be exercised in defining what is meant by adia-
batic when the pattern of phase variations displays a
broadband Fourier spectrum. In this case, one might be
tempted to term an atomic interaction adiabatic if a large
enough Rabi frequency was achieved (e.g., so that a
significant portion of the phase variation's spectral densi-

ty occurred at Fourier frequencies smaller than this Rabi
frequency). However, for broadband phase variations
there will be some amount of spectral density at Fourier
frequencies higher than this Rabi frequency, and these
will give rise to a nonadiabatic response from the atom.
The relative importance of these nonadiabatic contribu-
tions to the general atomic response discussed here likely
depends on the specific shape of the Fourier spectrum at
high Fourier frequencies.
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