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Influences of ac Stark shifts on coherent population trapping in the atom-field coupling system
via Raman tvt o-photon processes
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By means of adiabatically eliminating the upper level or levels of a A-configuration atom coupling to a
two-mode quantized field, we have studied the influences of ac Stark shifts on the atomic coherent popu-
lation trapping in two important atom-field coupling systems via nondegenerate Raman two-photon pro-
cesses. The states of the field that trap the atom in its two nondegenerate lower levels are obtained„and
the important roles of ac Stark shifts and properties of the atomic upper level or levels in the states of
the trapping field in two Raman-coupling systems are also analyzed.

PACS number{s): 42.50.Hz, 42.50.Ar, 32.80.Fb

I. INTRODUCTION

The coherent population trapping phenomena in the
system of a A-configuration atom interacting with two
coherent fields have been extensively studied because of
applications in a number of different contexts such as
laser cooling [1], lasing without inversion [2], and elec-
tromagnetically induced transparency [3]. Recently,
Agarwal [4] investigated coherent population-trapping
states in the system of a A-configuration three-level atom
interacting with a two-mode quantized field, and showed
that in the resonant case the quantized field, which keeps
the atom initially in its semiclassical coherent
population-trapping state from evolving in time, must be
a two-mode photon statistically matched field. Eliminat-
ing adiabatically the upper level in a A-type three-level
atom-field coupling system and neglecting the effects of
ac Stark shifts, Deb, Gangopadhyay, and Ray [5] pointed
out that, for an atom prepared in a coherent superposi-
tion of two nondegenerate lower states, population trap-
ping occurs when the two-mode field is either anticorre-
lated or correlated, depending on the initial atomic state.
In the limit of large total photon number, this field can be
identified as an eigenstate of a two-mode phase difference
operator.

On the other hand, under certain conditions, a mul-
tilevel atom interacting with a quantized field can be
identified as a two-level system with ac Stark shifts by
means of an adiabatically eliminating method [6,7]. Zhu
and Scully [8] and Boone and Swain [9] have studied the
properties of nondegenerate and degenerate two-photon
lasers. They found that the photon distribution, the
linewidth, and the frequency shift depend strongly on the
detailed atomic structure because of the effects of ac
Stark shifts. Brune et al. [10] showed that the ac Stark
shifts may be proposed to realize the quantum-
nondemolition scheme to measure the number of photons
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stored in a high-Q cavity. Also, the quantum properties
of an atom-field coupling system, such as the collapses
and revivals of atomic inversion [11—15], the atomic
transition line [14], atomic emission spectra and atomic
dipole squeezing [16,17], the squeezing of field [15], and
the phase properties of the field [18], can be changed
drastically due to the inAuences of ac Stark shifts. In
particular, Cirac and Sanchez-Soto [19] pointed out that,
in the degenerate two-photon Jaynes-Cummings model in
the presence of ac Stark shifts, the field which traps the
atom in the linear superposition of its two levels must be
a single-mode squeezed vacuum field.

In order to reveal the trapping-field dependence on ac
Stark shifts and detailed atomic structure, here we exam-
ine atomic coherent population trapping in two popular
but important atom-field coupling systems via nondegen-
erate Raman two-photon processes. In Sec. II, our atten-
tion is focused on the inAuence of ac Stark shifts on
atomic coherent population trapping in a system of a A-

type three-level atom interacting with a two-mode quan-
tized field. We find that the ac Stark shifts play an im-
portant role in the trapping field. For the case including
the ac Stark shifts, the trapping field is a two-mode SU(2)
coherent field [20], whose partition parameter is depen-
dent on the initial atomic state and the atom-coupling
constants, and the maximum possible photon number &
is arbitrary. When the ac Stark shifts are neglected, the
probability amplitude of the trapping field is not related
to the atom-field coupling constants. Section III is devot-
ed to investigating population trapping in a system of a
two-mode quantized field coupled to a A-type atom with
two nondegenerate bound levels and a Aat continuum of
levels. If the intensities of ac Stark shifts are chosen ap-
propriately, then under the interaction of an appropriate
two-mode SU(2) coherent field with a similar formula as
obtained in Sec. II, except that Ã is fixed by the atom-
field coupling parameters, the atom initially in a linear
superposition of its two bound levels can be trapped corn-
pletely and not ionized. But if the effects of ac Stark
shifts are ignored, the trapping field cannot be found.
The above results indicate that the properties of the de-
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tailed atomic structure have strong eAects on the trap-
ping field. Finally, our conclusions are summarized in
Sec. IV.

II. STATE OF TRAPPING FIELD
IN A TWO-LEVEL SYSTEM

VIA RAMAN TWO-PHOTON PROCESSES
IN THE PRESENCE OF STARK SHIFTS

First we consider a three-level atom of A type (Fig. 1).
The three atomic levels are denoted as ~1), 2), and ~3)
with corresponding energies co&, co2, and ~3, respectively.
The dipole-allowed transitions ~1)~ 3) and ~2)~~3)
are mediated by photons of the two diA'erent modes of the
two-mode quantized field, which are characterized by the
photon operators a and b with corresponding frequencies
co, and cot, . Following Refs. [6,7, 11,12,15], one can adia-
batically remove the upper level 3 ) when the one-photon
detuning ~b,

~
is much larger than the Rabi frequency of

the oscillation between ~3) and 1) (~2)), where
co3 co ] 07 c03 c02 cob so that the e6'ective Ham-

iltonian of the system including the ac Stark shifts is writ-
ten in the rotating-wave approximation as [12—18]

and the field is

n1, n2

then the initial state of the system can be written as

e(0) &= ~+„(0)&e e,(0) &

(3)

= g [cos(8/2)F„& „+,~2, n, —1,n &+ 1 )
Pl l, n2

FIG. Ij. Diagram of a A-configuration three-level atom cou-
pling to a two-mode quantized field.

+sin(8/2)e '~F„„~1,n „nz ) ] . (4)

H=co, ata+cobbtb+(co2 —co, )S, + ata ~1)(1g&

+ 'b'bl2)&2+ ' '(abtS +a bS )(A'=1) —.

In the interaction picture, the state vector of the system
at time t evolves into

0'1(t)) = g sin(8/2)e'~Fo „ l, o, nz)
n2=0

Here g, (g2 ) represents the coupling strength for the
dipole-allowed transition 3)~~1) ( 3)~~2) ), and S+
and S are the atomic raising and lowering operators be-
tween levels

l
2 & and

l
1 &.

If the atom is initially in the coherent superposition of
its two nondegenerate lower levels

~
1) and ~2) as

0'z (0) ) =cos(8/2) ~2)+sin(8/2)e'+ 1 )

(0&8&~, 0&p&2~) (2) with

+ g cos(8/2)F„O~ 2, n „0)
n1=0

+ g [A„„~1 n„n )2
n1=1
n2=0

2g&g2+n &(n2+ 1)
(t)= C)Pl 1, Pl 2 —6n1'B2n1'll2

exp [i(5„„—P„„)t /2]
——C-

2

exp[i(5„„+P„„)t/2]

p„„+5„
2

.exp —i n] t

2

8„&„+~=IC&exp[ —i(5„„+/3„„)t/2]+Czexp[i(P„„—5„„)t/2]]exp i (n2+—1)t

28,g2cos(8/2)F„, „+,(P„„—5„„)+ Q ( n+n21)sin(8/2)e'~F„

C2= 1

n l, n2

cos(8/2)F„, „+,(P„„+5„„)— Qn, (nz+1)sin(8/2)e'~F„
2g, g2

5„„=- n i
— (n2+ 1), P„„=+5„„+4g&gzn &

(n2+ 1)/b, (10)
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Explicitly, P„„ is the generalized Rabi oscillating fre-
1~ 2

quency of atom and 6„„represents the detuning due to
1' 2

the ac Stark shifts.
Let us now study population trapping in the two-level

system described by Eq. (1), i.e., a persistent probability
of finding the atom in its level

~
1) or 2) in spite of the

existence of the two-mode quantized field. Evidently, if
the state vectors I ~

l, n„n2) [ and I ~2, n, —l, n2+1) I are
stationary vectors, atomic coherent population trapping
occurs. This demands that C, or C2 in the probability
amplitudes A„„(t)and B„,„+,(t) must be equal to

zero. Hence, according to Eq. (8) or (9) we can obtain the
trapping condition as, for C1=0,

F i + icos(8/2)(/3 |i )

Qn, (n2+ 1)sin(8/2)e'~F„

related to the atom-coupling system, and the probability
amplitude F„N „ is only decided by the parameters 0
and y describing the initial atomic state and is not con-
nected with the parameters describing the atom-field cou-
pling constants, such as g, and g2. That is to say, when
the ac Stark shifts are neglected in Raman-coupling two-
level systems with different coupling strengths, if the
atoms are prepared in the same state, then the fields trap-
ping the atoms are in the same state.

B. Considering the eÃects of ac Stark shifts

If we consider the effects of ac Stark shifts in Eq. (11),
the recurrence formula is written as

1/2
X—n+1F„~ „=cot(8/2)e Fn —1,N —n +1

gi n

or for C2 =0,

F„ i „+icos(812)(/3„„+5„„) Using the normalization condition, we obtain the state
function of the driven field as

2g1g2
Qn, (n 2+ 1 )sin( 8/2)e '~F„ (12)

From the above Eqs. (11) and (12), we can find that the
recurrence formula of the probability amplitude F„„of1' 2

the initial two-mode field is only related to F„1n +1,
1 ' 2

i.e., the total photon number X=n 1 +n 2 of each two-
mode number state ~n„n2) is a constant. This means
that the initial state of the driven field [described by Eq.
(3)] must be expressed as

I+F2(0)) =Fo,~ X
n=0

Here

cot( 8/2 )e
gi

' 1/2

n!(X—n)!

—N/2

n

n, N n) . —

(17)

N

(0)) = y F„„~n,X —n ) .
n=0

(13)
Fo ~= 1+ cot (8/2)

gi

Here, we assume n, =n and n2=X —n. The reason is
that the two-mode photon sum operator %=a a+b b is
a motion constant of the system, i.e., [X,H] =0. In or-
der to exhibit the effects of the ac Stark shifts on the
atomic coherent population trapping, we first consider
the case of neglecting the ac Stark shifts.

A. Neglecting the inAaaence of ac Stark shifts

1/2
1 —cot (8/2)

1 —[cot (8/2)]
N

X g [ —cot(8/2)e '"]"~n, K n) . —
n=0

(15)

The properties of the initial field described by Eq. (15) are
given in Ref. [5]. From Eq. (15), we known that the total
photon number N is an arbitrary constant which is not

When the inhuence of ac Stark shifts is neglected, i.e.,5„„=0,Eq. (11) is simplified as

F ~ = cot( 8/2 )e F
Solving the above equation, we obtain the normalized
state vector of the two-mode field as

It is clear that ~%'~2(0)) is the two-mode coherent SU(2)
state [20] whose maximum possible number of photons is
X and the parameter describing the partition of photons
is —(g2/g, )cot(8/2)e '~. It is easy to verify that the
two modes are anticorrelated. From Eq. (17), we find that
the probability amplitude Fn N „ is dependent not only
on the initial atomic state but also on the atom-field cou-
pling constants g, and g2. This means that for Raman-
coupling two-level systems with different coupling
strengths, the fields which trap the atoms are in different
two-mode SU(2) coherent states even if the atoms are
prepared in the same state.

In this section, by means of adiabatically eliminating
the upper level 3) of a A-configuration three-level atom
coupling to a two-mode quantized field, we obtain the
states of the trapping field in a Raman-coupling two-level
system in the absence and presence of the ac Stark shifts.
As we see, the inAuences of the ac Stark shifts play an im-
portant role in the states of the trapping field. However,
if the upper levels of the A-type atom are continuum
states, for example, in the Raman-type photoionization
system of a A-configuration atom with two lower bound
levels and a Aat continuum of levels driven by a two-
mode quantized field, then what is the trapping field? We
answer this question in the following section.
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III. EFFECTS OF THK AC STARK SHIFTS
ON THE STATE OF TRAPPING FIELD

IN A RAMAN-TYPE PHOTOIONIZATION SYSTEM
DRIVEN BY A TWO-MODE QUANTIZED FIELD

As we know, a stronger laser can embed a low-lying
atomic state into a Bat atomic continuum to produce a
tunable resonance of adjustable width. This process is
termed the laser-induced continuum structure (LICS),
[21—24] and has drawn much attention both theoretically
[21,23] and experimentally [24], due to its possible appli-
cations in laser isotope separation [21] and new photo-
detecting devices for nonclassical fields [22]. Describing
the two driven lasers classically in a LICS system involv-
ing Raman-transition process and neglecting the e6'ects
of ac Stark shifts, Knight and his co-workers [21] found
that, if the intensities of two driven laser fields and the
nondegenerate two-photon detuning satisfy an appropri-
ate condition, the atom initially in the semiclassical
population-trapping state cannot be ionized, and in this
case the atomic coherent population trapping of two
bound states occurs. Because this result is obtained based
on semiclassical theory, it cannot completely reveal the
coherent population-trapping properties in a Raman-type
photoionization system. Since the atomic coherent popu-
lation phenomenon in this atom-field coupling system
plays an important role in the electromagnetically in-
duced transparency proposed by Harris and others [3], it
is necessary to investigate this phenomenon in detail.
Thus we study this by means of the full quantum theory
in the following.

The model to be considered here, shown in Fig. 2, con-
sists of a two-mode quantized field coupling to a A-
configuration atom with two bound states

I
1 & and I2&

and a fiat atomic continuum of states I le&]. The one-
photon transition processes I1&+-+Is& and I2&~ls& are
driven by the mode a and the mode b, respectively. In

l2&

the rotating-wave approximation, the total Hamiltonian
of this system is given by

H =Ho+ V (A'= I),
~o=~ Il && ll+~ 12&&21+f «ale&&sl

+co,a a+cobb b,
I = f«g„~'ll&& le+ f«g2, btbI2&&eI+H c.(19)

(20)

where g „(g2, ) is the atom-field couphng constant which
is related to the one-photon processes Is&~II&
(I & I2&).

If the system is initially in the state described by Eq.
(4), then in the interaction picture the state vector of the
system at time t develops into

FIG. 2. Diagram of the A-type photoionization system
driven by a two-mode quantized fie1d.

IVI(t) &
= g A, (t)l l, n„n2 &+ A2(t)I2, n, —l, n2+1&+ f dc, A, (t)le, n, —l, n2 &

n) =1
n&=0

+sin(8/2)e'~ g Fo „ I1,0, n2 &+cos(9/2) g F„OI2,n„0& .
n2=0 nl =0

(21)

i A, (t)= Qn, f—d g„sA, (t)e
dt

i A2(t)= —Qnz+I fdeg2, A, (t)e
dt

(22)

(23)

i A, (t) = g„+n, A, (t)e-
dt

Bringing the Schrodinger equation into the interaction
picture, we obtain

d
dt

Ai=—y, +i5,
2

niA,

+i Qn, (n2+1)A2(q+i )e
2

y, +i52
dt 2 2 2 2(n +1)A

given in Ref. [21],Eqs. (22) and (23) are modified as

(25)

—g,2+n2+ 1 A, (t)e (24) +i Qn (in& +1) A(qi+i)e' ', (26)

Here 4i, =c,—a), —~i and 52, =c.—cob —~2 are the one-
photon detunings. Following a method similar to that

where 5=hi, —62, is the nondegenerate two-photon de-
tuning, and y; and 5; (i =1,2) are the parameters related
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to the decay rates and the ac Stark shifts, due to the tran-
sitions shown in Fig. 2, for levels

I
1) and I2), i.e.,

y, =2~f d el g„I'5( e—co. —co, )=2m lg,.I',

y2=2~lg2b I', (27)

5, = F—fd. (28)

y =Qy &y2 represents the nondegenerate two-photon
coupling constant and q is the constant related to the
Fano parameter [21—24],

25 qyz z
( +1)

+5
n) n2 (35)

In the general case, from Eqs. (31}—(33) we see that with
the time development the atom which is initially in the
state I'P~(0)) can be ionized because the exponential
functions e' —~" in A, (t) and A2(t) contain decay fac-
tors. In order to trap the atom in its two bound levels, the
decay factors in e' ==~" must disappear. This means that
the complex functions a+P must be reduced to pure
imaginary functions. Fortunately, when the detuning 5
and the photon number n &, n z satisfy

dE,
0 E —(co, +cob+co, +co2)/2

(29) a+P are simplified as

It is clear that the Raman-coupling system described by
Eqs. (25) and (26) can be described by the effective in-
teraction Hamiltonian in the interaction picture,

a+P= ——(qy, +5, )n, ,
2

a —P= —,' [y,—n,+y2(n 2+ 1)]

(36a)

V'„=——'y, a'a
I

1 ) & ll ——'yP'b I2& &2I

+ ' a'a
I
1 & & 1 I+ '

b "b I2& &2I
2 2

+i (1 iq)(a b—ll)&2le ' '+ab 12)& lie' ').
2

(30)

eat(B ePt+B e Pt) (31)

Here we see, if the upper levels of a A-type atom which
are a Aat continuum are adiabatically eliminated, the
effective Hamiltonian for the Raman-coupling two-level
system is non-Hermitian and different from the case in
which the upper level is a bound state.

Considering the initial condition Eq. (4), Eqs. (25) and
(26) are solved analytically to yield

(qy, +5, )(n)+n2+1)

n, — (n~+1) . (36b)

It is evident that the function e' +~~' in A &(t) and A2(t)
does not decay with time development. So in this case
the atom initially in I+„(0)) cannot be completely ion-
ized and can be partially trapped in its two bound levels.
This means that when the photons between the mode a
and the mode b of the driven field have the correlation
shown in Eq. (35) the atomic coherent population trap-
ping may occur in the Raman-type photoionization sys-
tem. Furthermore, we discuss the effects of ac Stark
shifts on the states of the trapping field in a Raman-type
photoionization system when qy, +5,=+(qyz+52).

(1) When qy&+5, = —(qy2+52), Eq. (35) is reduced to
Az = e'e' '—[B,(P—a')e~' Bz(P+a—')e ~'],~ s~

where

(32)
ni+n2+1= =%+1 .

25

qXi+5i
(37)

(33a)

5~(n2+ 1)+5,n,n= ——5+
2 2

y2(n2+1)+y, n,

(33b)

$5( n2+1) 5]n$ y—2(n~+1) —y]n]
cz' =—5+ +

2 2 4

Because the photon numbers n„n2 must be 0, 1,2, . . . ,
X must be a positive integer. So the total number of pho-
tons for both modes is a constant 1V, which is fixed by 5,
y&, 5„and q. In this case, the initial state of the driven
field can be written as Eq. (13).

However, in order that the atom in the initial state
I
4 ~ (0) ) can be completely trapped in its two bound

states, A, (t) and Az(t} should not contain the function
e' ~". This requires that 82 =0, i.e.,

F= —y Qn, ( +n21), P~=a' +F
1B(

= [Fcos(8/2)F„

+(P+ a' )sin( 8/2) e '+F„„],

(33c)

(34a)

F cos(8/2)F„, „+,—(/3 —a')sin(8/2)e'~F„„=O .

(3g)

Substituting Eqs. (13) and (37) into the above equation,
the probability amplitude F„& „must satisfy

1
Bz = [Fcos(8/2)F„& „+&

—(P—a')sin(8/2)e'~F„„] . (34b)

F„~ „=—cot(8/2)e

X
g2b X—n+1
gia

1/2

n —1,Pf —n+1 (39)
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Here we have assumed (y2/y, )' =g2b/g„. Comparing
Eq. (16) with Eq. (39), the only difference is that in Eq.
(39) the total photon number N is fixed by Eq. (37), but in
Eq. (16) N is arbitrary. The cause leading to this
diS'erence is that the A-type atom in the Rarnan-type
photoionization system has a fIat continuum of levels, so
that the atom driven by the field may be ionized. Al-
though under the interaction with a two-mode radiation
field, the fIat continuum of atomic levels can be adiabati-
cally eliminated and the atom-field coupling system can
be identified as the two-level system described by Eq. (30),
the atom in its two bound levels can be damped (ionized).
In order to avoid this damping, the total photon number
N of the driven field must be fixed by Eq. (37). So, if the

parameter related to the atom-field coupling character
satisfy qy, +5,= —(qy2+52), the field which traps the
atom in its two bound levels is the two-mode SU(2)
coherent field, in which the maximum possible number of
photons is N, fixed by 6, yi, 5i, and q, and the parameter
describing the partition of photons is —(gib /
gi, )cot(8/2)e '+. That is to say, the phenomenon of the

ni =n2+X+2 (40)

Inserting Eq. (40) into Eq. (38), the probability amplitude
of the driven field obeys

grab

F„+~+, „——cot( 8 /2 )e
g&a

1/2
n+1

n+X+2 Fn +++ in+ i , (41)

Therefore the initial state [Eq. (4)] of the atom-field cou-
pling system is modified as

atom being trapped completely in its two bound levels
occurs only in some special Raman-type photoionization
systems, and only in these systems may the electromag-
netically induced transparency phenomenon [3] happen.

(2) If the amplitudes of ac Stark shifts in the system
satisfy qy, +5,=qy2+52, Eq. (35) reduces to

lq'(0) &
= g cos(8/2)F„+&+i „+, l2, n+N+ l, n &—

n=0

n+1
g&, n+N+2

' 1/2

ll, n+N+2, n & (42)

It is evident that Eq. (42) cannot be expressed as
l %~ (0) & S l +z(0) &. In this case, the trapping field
which traps the atom. completely in its two bound levels
cannot be found. This means that when the intensities of
ac Stark shifts satisfy qyi+5i =qy2+52, the atom driven
by an arbitrary field can certainly be ionized and be par-
tially trapped. Meanwhile, there appear a series of peaks
that are very sharp in the steady photoelectron spectrum.
We refer to this phenomenon as "comb coherent
confluence" [25] as Leonski and Buzek [26] show in Pano
autoionization system driven by a single-mode quantized
field.

Employing the semiclassical theory and neglecting the
ac Stark shifts, Knight and co-workers [21] pointed out
that in a Raman-type photoionization system, if the atom
is initially in its semiclassical trapping state and the in-
tensities of two classical fields are chosen appropriately,
then the atom cannot be ionized and can be completely
trapped. But, if the ac Stark shifts are ignored, i.e.,
52=6, =0, and the two-photon detuning 6=0, then ac-
cording to Eq. (42) the initial state of the atom-field cou-
pling system is reduced to

le(0) &= e'& y F„,„[ll&in+1, ~ &

n =0

—I2& ln, n+I&] . (43)

Here we have assumed yi=y2 and have chosen 0=m/4
according to the normalization condition. Explicitly, al-
though the atomic initial state

lq „(0)&
= .'~(l2& —ll &)

1

v'2

is the semiclassical trapping state [21], the trapping field

which can completely trap the atom in its two bound lev-
els cannot be found. This result is clearly difterent from
Ref. [21]. The reason inducing this difference is that in
Ref. [21] the condition leading to atomic coherent popu-
lation trapping only restricts the relation of the intensi-
ties of the classical driven fields, but here the photons be-
tween two modes in the quantized driven field have a
strong correlation dependence on the parameters 5, 6&,

S„y„y„and q.

IV. CONCLUSIONS

In conclusion we have studied the influences of ac
Stark shifts on atomic coherent population trapping in
two important Raman-coupling systems which may have
wide applications. The results show that in the system of
a A-type three-level atom coupling to a two-mode quan-
tized field, if the ac Stark shifts due to the transitions
3 &~l 1 & and 3 &~l2& are neglected, the field which

traps the atom initially in
l
% & (0) & must be in the state

l %~i(0) & [Eq. (15)], whose maximum photon number N is

arbitrary, and the probability amplitude is only depen-
dent on the atomic initial state. But for the case includ-
ing the ac Stark shifts, the trapping field must be a two-
mode SU(2) coherent field i+F2(0) & [Eq. (17)], whose
maximum photon number X is also arbitrary, but the pa-
rameter describing the partition of photons is related not
only to the atomic initial state but also to the atom-field
coupling constants gi and g2. In the Raman-type photo-
ionization system consisting of a two-mode quantized
field interacting with a A-type atom with two bound lev-
els and a Aat continuum of levels, in order to keep the
atom initially in

l
4 z (0) & unionized, the values of ac
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Stark shifts due to the transitions I ~
e ) ) ~~ 1) and

I~a, )]~~2) must satisfy qy, +5,= —(qyz+52) and the
field must be in the state ~+F2(0) ) except that N is fixed
by Eq. (37). When the ac Stark shifts are neglected, the
trapping 6eld cannot be found even if the atom is initially
in its semiclassical trapping state. These results indicate
that the ac Stark shifts play an important role in atomic
coherent population trapping, and the properties of the
detailed atomic structure have a strong effect on the trap-
ping Geld.
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