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Excess photon ionization and harmonic generation through an autoionizing resonance
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We analyze above-threshold ionization through an autoionizing resonance and show that this process is

strongly enhanced when the photon is tuned near the minimum of the primary photoionization peak; the

enhancement occurs also when the free-free transitions are taken into account. , We demonstrate that this

property can be exploited to enhance the harmonic generation.

PACS number(s): 32.80.Dz, 32.80.Fb, 42.50.Gy

I. INTRODUCTION

It is well known that destructive quantum interferences
lead to a minimum in the photon absorption [1] near an

autoionizing (AI) resonance. Much theoretical and experi-
mental work in laser spectroscopy has been centered around
this subject in the last three decades. One type of application
aims at generating short-wavelength radiation, either by am-
plification or by harmonic generation. In particular, the har-
monic generation through a three-photon resonant AI state
has been explored [2,3]. Recently, for instance, it has been
shown that third-harmonic generation is enhanced apprecia-
bly through the combination of population trapping in the AI
state and electromagnetically induced transparency for the
generated harmonic radiation [4].

Another example of applications is to resonantly enhance
the excitation to an AI resonance through the absorption
minimum of another intermediate AI state [5]. Closely re-
lated to this is the recent experimental investigation of
excess-photon detachment through AI resonances of alkaline
negative ions [6,7]. In this work we present a theoretical
analysis of a similar process, the above-threshold ionization
(ATI) through an autoionizing resonance, and we show ana-
lytically that the destructive interference giving rise to the
absorption minimum at the AI state leads to a maximum in
the next ionization step. Thus, the ATI process is enhanced,
not only because of the presence of the intermediate reso-
nance, but also because of the presence of the minimum. The
second ionization peak has its maximum when the photon is
tuned not on resonance with the AI state, but at the absorp-
tion minimum.

Here we combine these two ideas and show by explicit
calculations that these processes are eminently suitable to
enhance the third-harmonic generation in a system that is
two-photon resonant with an AI state: the fact that the mini-
mum of the two-photon ionization probability coincides with
the maximum of the three-photon coupling amplitude opti-
mizes the third-harmonic generation, while the loss due to
ionization is kept at a minimum.

The main reason to study two-photon resonant third-
harmonic generation through an AI resonance is to search for
more efficient ways of producing short-wavelength radiation.
Of course, third-harmonic generation in neutral atoms
through intermediate bound states is a well-known efficient
method [8], but the wavelength is necessarily restricted to be
in the optical range (except in strongly bound atoms like He).

This restriction can be lifted by using doubly excited states
in two-electron systems, which may be above the ionization
threshold, as intermediate resonances. As mentioned above,
third-harmonic generation through a three-photon resonant
AI state has been investigated, but using two-photon resonant
AI states in principle allows one to go even higher in energy.
Since the AI state not only resonantly enhances the third-
order nonlinear susceptibility, but also reduces the ionization
at the two-photon level, this scheme has definite advantages
over third-harmonic generation through pure continuum
states.

This analysis is also related to the interest in understand-

ing the role of the electron-electron correlations in ATI spec-
tra of two-valence electron atoms under intense laser fields,
and to the question of double ionization (for recent experi-
ments and discussions see, e.g. , Refs. [9—11]).Compared to
previous theoretical work on excess photon ionization of AI
states [12], we include the continuum-continuum (C-C) cou-
pling, and show that this inclusion leads to modifications of
the photoelectron spectrum and of the ionization profile.

II. THEORY

We consider an atomic system whose level scheme is
shown in Fig. 1. In order to describe this system, we employ
the resolvent operator formalism, which has been applied
before to single [13] and multiphoton [14] autoionization
(see also [15] where the radiative coupling between two
manifolds of AI states in Sr is discussed). Details of the
derivation will be given in the Appendix. Here we will only
discuss the main assumptions and ingredients, and we give
analytical results for several quantities of interest.

A. Basic assumptions

There are basically two assumptions we make. First, we
assume a Fano-type parametrization for the coupling to the
AI resonance and its associated continuum. This is correct as
long as there is only a single AI state in resonance with the
light field. Apart from this, we do not make any assumption
about the form of the C-C coupling. Second, we treat the
C-C coupling in a perturbative way: we do not consider mul-
tiple transitions between the two continua. This assumption
is correct for sufficiently low intensity, a condition which
will be specified below. At higher intensities, when these
multiple transitions would be important, other continua, both
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which depends explicitly only on e, i, and where p,,2ci and

q, 2, 1 are intensity-independent atomic parameters, with

q, 2, i defined analogously to (2),
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FIG. l. Energy level scheme of the model system. Left: in terms
of a doubly excited state la) coupled by the configuration interac-
tion V to the pure continuum Ic,). Right: equivalent model, in
terms of a structured continuum

I c, ) .

higher-lying ones and the ones with different angular mo-
menta, would enter the problem, so that the model we use
would be invalid anyway. For the parameters we choose in
this paper, and for a photon energy of about 5 eV, this im-
plies a C-C saturation intensity of /=10' W/cm (cf. also
I16]), and we remain well below this intensity. For larger
photons the saturation intensity increases in general. We now
take a closer look at the atomic system of Fig. 1.

The ground state Ig) is coupled via an M-photon process
to the vicinity of an isolated autoionizing resonance Ia),
which decays to a continuum cl) by autoionization. Both
la) and Ic 1) are coupled to a higher-lying continuum

I
c2)

by a one-photon dipole transition. This coupling may repre-
sent both pure free-free transitions (in which the outer elec-
tron makes a transition) and a far off-resonant core transition
(in which only the inner electron is involved). The states

I
a) and

I
c 1 ) are coupled by the configuration interaction V,

and can be diagonalized to form a structured continuum
Icl) I I].

The M-photon dipole moment p, ,—,
&

coupling the ground
state to the continuum Ic 1) can be parametrized as

Again, q, 2, 1 and p, ,2ci may depend on both energies E,2
and E,1, but this dependence is assumed slow on the scale of
the resonance structure around the AI state. In integrals we
encounter below, we can then take the values of these quan-
tities at the resonant energies Ec 1

=Eg
+M 6 co and

E,2=Eg+(M+ 1)/icu. The contribution of far off-resonant
core transitions is to modify the asymmetry parameter
through the principal part term in (4).

In most cases, the first term in the numerator of (4) domi-
nates the second, and q, 2, 1 will be large even when q is
small. We can then approximate the photoionization rate y
of the AI resonance Ia) to the continuum Ic2) by

y. = ~l p.z.l'~'= q,'2. i ~'I p, 2.il'&'y. ,

with P» the slowly varying electric field amplitude in a.u. A
perturbative treatment of the C-C coupling is valid for inten-
sities such that y (&y, .

Finally, we introduce an additional decay width y of the
ground state due to the radiative coupling to other continua
with different angular momenta, which is always present
when M)1. This consideration not only makes the model
more realistic, but also avoids some complications due to the
vanishing width of Ig) at the M-photon absorption minimum
to lcl).

(M) (M) c1
P -1=P

c1

and p, ;i =(p, ;,)*.Here e, i ——(E;.i —E,)/y, is the energy
of Icl) relative to the AI state, normalized by half the AI
width y, = vrl V„iI, and q is the M-photon asymmetry pa-
rameter, defined as (with, 'P~ denoting the principal part)

p, g, +Mf p,g„V,i, /(Eg+Mktu —E,)dE„
mP, , 1 V, i

where V, i, represents the Coulomb interaction between Ia)
and Icl). With this form of the coupling to the structured
continuum Ic1), p, ;, I

has the familiar Fano profile I I].
The only assumption needed later is that the variation of the
quantities q and p, , i with Eci is negligible over the width
of the AI state, which is correct if there is no other AI reso-
nance present around the energy E +Mkco.

Making the same assumption for the one-photon coupling
to the higher-lying continuum implies that the coupling be-
tween Icl) and Ic2) has the same form as that between

I g) and
I
c 1 ),

B.Analytical results

Here we give the analytical final results obtained by keep-
ing the C-C interaction up to first order. In the numerical
calculations of the next section, we included the next higher-
order corrections. The derivations can be found in the Ap-
pendix.

We are interested in three quantities. We give expressions
first for the photoelectron spectrum, second for the total
population in the two continua, and third for the third-order
nonlinear susceptibility y~ ~, which gives a measure for the
third-harmonic generation in the special case where M = 2.

These quantities can all be expressed in the matrix ele-
ments defined above, and in terms of the roots x of the
quadratic equation (A5) determining the time evolution of
the atomic system. The photoelectron energy spectrum is cal-
culated from the amplitudes U;, (t) and U, 2(t) for the re-
spective continua, as

I
U;, (t~ ) I

+
I U,2(t~ ) I

. These
quantities follow from (A6) and (A7) and are given by

2
2 &c1+q

IU; (t )I'=
~y, (e„—x+)(e„—x )
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2rgr qq 2 I t(+ 2+q+q 2 i)
1Tq,2, i r, (e,2

—x+)(e,2
—x )

(6b)

The populations in the two continua for t~~ are calculated
by integrating these expressions over the whole spectrum.
Using complex contour integration we obtain

r, (x+ + q)' (x +q)
P i= lU;, g(t~~)l dE i= ~ +

J
' g ' r, (x+ —x )(x+ —x*)Imx+ (x+ —x )(x+ —x )Imx

(7a)

r, r. 1 (qq, i,2)'+(x++q+q. i,2)' (qq. i,2)'+(x +q+q, i,2)'
p;2= lU, 2g(t~~)l d&.2=——2, +

J r. r. q„„(x+—x )(x+ —x*)Imx+ (x+ —x )(x~+ —x )Imx
(7b)

In the next section we will illustrate these results, and show that their consequences can be exploited to enhance harmonic
generation.

Finally then, in the case where I=2, if we assume that lc2) has a dipole-allowed transition to the ground state, we can
calculate the third-order nonlinear susceptibility yt i, as (with e the normalized photon detuning)

(2) 2
1 P'g iP Ic2P'c2g 2 . q+ q, 2, i (qq, 2, i

— )~ +—qq, 2 i+ (q+ q, 2 1)

J J (~ ~, t)(~ ~ 2) +1 e +1

so that at low intensities (rg(& r, ) the third harmonic production is proportional to

(3) 2 [(I qqc2ct)&+q+qczct] +[& +(q+q 2 ci)c&+qq 2 ci]c
l&( )l (1+ ')' (9)

We will compare this result with the one obtained from a
time-dependent calculation of harmonic generation, includ-
ing ionization, in Sec. III.

III. NUMERICAL RESULTS AND DISCUSSIONS

To be specific, in all the following calculations we take
M = 2. The reason for this choice is twofold. First it relates
to recent experiments on excess-photon detachment of
Rb [7], and second it enables us to apply the theory to the
study of two-photon resonant third-harmonic generation.
This choice M=2 mainly determines the intensity depen-
dence of the various decay rates and couplings in the system.
We choose the atomic parameters as follows: we take q = 1

(the q value of the autoionizing resonance in the experiment
[7] is small), and q, 2„=10, this quantity being large in gen-
eral. We choose y = y, at a typical laser intensity I=10"
W/cm, so that Pt, i, =7.9X 10 ~r, in atomic units. For r
we assume the same intensity dependence as for rg (i.e.,

rg describes two-photon ionization), and we choose
kg=0 1&g.

The C-C coupling strength is determined by p, ,2, &=1
(a.u.), being a typical value for photon energies of about 5
eV [18].For smaller photons P,,2„ tends to be larger. For
our perturbative approach to be valid, we need to satisfy
~p, ,2„c~q,2„&(1, which means y„&(y . This implies that
I(&0.0041 (a.u.), i.e., I(& 1.4X 10' W/crn (cf. [16]).

Figures 2(a) and 2(b) show the photoelectron energy spec-
tra as defined in (6b) for two different laser intensities. In
each plot, spectra for three different laser detunings are
shown. Dramatic changes in the relative heights of the two

ionization peaks occur when the photon is detuned near the
two-photon ionization minimum. The position of this absorp-
tion minimum in nonzero field is by now a well-known fact
seen also in many related works, and is determined by the
minimum of the imaginary part of the root, say x, that has
the smaller imaginary part (see [12]).The condition for the
detuning is

r.+ r.-(r, + r, )
(10)

For instance, it is this condition that, in the absence of inco-
herent decay, such as that represented by a nonzero y and

r, , leads to population trapping [19] and to transparency
f4].

This effect is more clearly seen when we plot the ioniza-
tion rates to the two continua

l
c 1) and

l
c2). Figure 3 shows

the two continua populations in the long-time limit versus
the photon detuning. The upper curves display the population
of

l
c 1) and the lower ones the population of

l
c2). Each pair

of curves corresponds to a different laser intensity. From the
left to the right curve the intensities are I=3.16X10',
1.0X 10, and 1.41 X 10 W/cm, corresponding
yg=0. 1y, yg= y, and yg=2y„, respectively. We can see
a close correlation between the enhancement of the ioniza-
tion to the second continuum and the minimum of the first
ionization peak. We can obtain analytical understanding of
this phenomenon from Eqs. (7a) and (7b): When Im x has
a minimum, the ionization rate of the ground state has a
minimum. Thus, the population in the first continuum lc1)
must have a minimum as well. Indeed, the value of x ap-
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proaches —
q near the minimum, and the zero in the denomi-

nator of (7a) is counteracted by a double zero in the numera-

tor, so that P, &
will have a minimum. On the other hand,

there is no such compensation in the expression (7b) for
P,2, so that the second continuum population will be maxi-
mum.

In fact, from Fig. 3 we see that, for positive q, the maxi-
mum of the second ionization peak is slightly shifted to posi-
tive detuning compared to the minimum of the first peak, and
t is shift is larger for higher intensity. For negative q, irre-
spective of q, 2, i, we find that the shift is negative. Finall,
we note that in previous work the C-C coupling was ne-
glected, so that the second ionization peak is symmetric. In
our case, however, we have due to the C-C coupling a finite

q,2,, &, which 1eads to an asymmetric profile, which is, as
usual, more pronounced the closer

l q,z, il is to unity.

fin
'

An important conclusion, in agreement with experime t 1na
ndings [6,71, is that the previous results indicate that the

(M+ 1)-photon process in this system can be greatly en-
hanced at certain photon frequencies, while the M-photon
process itself is suppressed. Therefore, we expect that the
(M+ 1)st-order nonlinear process can be enhanced without
an early saturation caused by the loss of the ground-state
population through M-photon ionization.

In particular, we expect that, in our case where M = 2, the
third-harmonic generation will be enhanced near the photon
absorption minimum. First we plot gt 1 as given in (9) in

Fig. 4(a), which shows that at low intensities a detuning e
close to zero is the optimum detuning for harmonic genera-
tion. In fact, ly l

attains its maximum at the detuning (for(3) 2

q, 2, i large)

I

2.0 4.0

~~ ~ ~ ~

I

—zI. .O
I

0.0

FIG. 3. Populations of continua lcl) and lc2) (scaled up by a
factor of 2) as a function of detuning at three different intensities.
Pairs of solid curves are calculated at laser intensities
I=3.16X 10 W/cm, dashed curves are at I= 1.0X 10" W/cm,10 2

and dotted curves are at I= 1.41X 10" W/cm . The upper curves
are the population of lc1) and the lower ones are the population of
lc2)

q+ qc2ci

(q+q, 2, i) +q q, 2, i
—I

'

For higher intensities, however, the dynamics (ionization in

EXCESS PHOTON IONIZATION AND HARMONIC GENERATION. . .
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Let us finally note that all these effects are essentially due
to destructive interferences between the two different paths
leading to continuum c &), one direct path, the other through
the AI resonance. The presence of other, noninterfering paths
determines ultimately how deep the minimum in ionization
can be, and how efficient the harmonic generation conse-
quently is. In the system treated here, the incoherent decay
channels are represented by y . If this decay exceeds the
"coherent" decay to let), the interferences will be washed
out. The only requirement to observe the effects described
above is yg(y~.

IV. CONCLUSIONS

0.0—2.0
I—1.0 o.o

E'
1.0 2.0

particular) becomes important. In order to investigate this,
we calculate numerically the third-order nonlinear polariz-
ability by

Pt l(t) = p, ,2U,*.2(t) U (t)dE, 2. .(12)

The number of third-harmonic photons generated at each in-

stance of time is then proportional to
l

Pt ~(t)
l

. Examples of
the third-harmonic generation for different laser intensities
are shown in Fig. 4(b). We plot the total harmonic production
in the long-time limit, which is proportional to

FIG. 4. Upper graph: lgt ~l as a function of the detuning.
Lower graph: Third-harmonic generation as a function of detuning.
The solid curve corresponds to a laser intensity I=3.16X10'
%'/cm, the dashed curve to I=1.0X 10" W/cm, and the dotted
curve to I= 1.41 X 10" W/cm .

We analyzed the excess photon ionization through an AI
resonance, where we included a perturbative but exact treat-
ment of the C-C coupling, We showed that both excess pho-
ton ionization and harmonic generation can be enhanced, not
only because of the presence of the intermediate resonance,
but mainly due to a minimum in photon absorption. In gen-
eral, we showed analytically that the quantum interferences
that lead to the absorption minimum near an M-photon reso-
nant AI state, maximize the (M+ 1)-photon coupling. As a
consequence, the (M+ 1)st-order nonlinear process is en-
hanced, without having the depletion due to M-photon ion-
ization.

We applied the theory to, and performed explicit calcula-
tions on, a two-photon resonant AI system. We derived pho-
toelectron spectra, ionization profiles, and studied the third-
harmonic generation, both perturbatively (calculating the
third-order susceptibility yt ~) and by including the full dy-
namics of the system. The intensity dependence of the har-
monic generation is strongly nonperturbative as a result of
interference effects. Around the photon detuning given in

(10), the harmonic generation is optimized due to the simul-
taneous occurrence of the suppression of two-photon ioniza-
tion and the enhancement of the three-photon coupling.
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as a function of the detuning e. The optimum detuning for
harmonic generation is now indeed found to be close to the
absorption minimum (10), and is in fact always shifted to-
wards the detuning (11), irrespective of the sign of q and

q, 2, &. The profile for the harmonic generation is asymmet-
ric, rellecting the presence of the AI resonance (see also [2]).

It is interesting to observe that the harmonic generation is
not always an increasing function of the intensity. There are
two reasons for this: First, without any incoherent decay,
when yg

= 0, the harmonic generation tends to be maximum
at detuning a=0. Thus, the optimum intensity is that at
which the photon absorption minimum (10) is at zero detun-

ing, in our case at I= 10 W/cm . Second, the presence of
incoherent decay (y =O. ly in our case), which increases
with increasing intensity, favors even smaller intensities, so
that the optimum intensity is lower than I= 10" W/cm, as
is clear from Fig. 4(b).

APPENDIX

Here we give a derivation of the relevant equations de-
scribing the atomic system displayed in Fig. 1, using the
resolvent operator. For further details we refer to [13].

Starting from the full Hamiltonian for atoms and fields
one first eliminates the nonresonant bound and continuum
states. One is thus left with an effective Hamiltonian H de-
scribing the evolution of the resonant states lg), lcl), and

c2), which includes the field-dependent decay width yg of
the ground state to other continua than lcl) and lc2), an
effective M-photon dipole operator D~ ~ coupling the
ground state to lc1), and a one-photon dipole operator D
coupling lc1) and lc2).

The equations for the various matrix elements of the re-
solvent operator G(z) = I/(z —0) read then
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f
(z —Eg)Ggg —D;i G;igdE;i = 1, (Ala)

shift and decay rate of the ground state due to the coupling to
~ci). With the definition for the normalized photon detuning
e=(Eg+Mftto —E,)/y, , we get

(z —E; i ) G; i g D;—, Gg g
—D; „2G,2g d E. ,2

= 0,

(A lb) 1
G (x)=

y, (x —e)+ yg[i —(q —i) /(x+ i)]+i y

(z E,2—)G,2g
D—,2, , G;,gd-E;i=0. (A 1c)

x+i
y, (x —x+)(x —x )

' (A4)

Here the ground-state energy is Eg=Eg —i y~ and the con-
tinuum energies E;,=E; i

—M 6 co and E,2
=E,2—(M+ 1)A, co already take into account the photon energies. '

The M-photon dipole coupling energy D;, can be speci-
fied as the product of the M-photon dipole moment, dehned
in Sec. II A and the Mth power of the (slowly varying) elec-
tric field amplitude, /L, , 8'(t,)-, and similarly the one-

photon dipole coupling is D;i,2=/L„, ,zc~(t). Th-e time de-
pendence of c~ will henceforth be suppressed.

The C-C coupling between ~cl) and ~c2) cannot be
treated exactly, unless by making some simplifying assump-
tions. Instead we treat this coupling perturbatively, which is
valid for sufficiently low intensity. In the lowest-order per-
turbation limit, neglecting the coupling to ~c2) in the equa-
tions for G«and G;i~ for the moment, we get

where the roots x satisfy

It then follows from Eq. (Al) that

(~)g~-gt( +;)
G;.ig(x) =

y„(x—e„)(x—x~)(x —x )
(A6)

I'

x + l —6+1 yg yg x ——(q -2iq) —ie ——=0.
l ya f ya yo

(A5)

G (z) = „.(A2)

z Eg [~D—;, —/(z —E;,)]dE;i

The integral in the denominator of Eq. (A2) can be calcu-
lated explicitly, provided p „can be approximated as con-
stant near the poles of the integral, which is correct for the
coupling to a pure continuum without resonances (see
Sec. II A). Defining the dimensionless quantity x=(z E, —
+MA, co)/y, we have

This result reduces for y =0 to previous results calculated
by other authors [13,17].Substituting Eq. (A6) into Eq. (Al),
we derive

(M) ~ W+ 1~p'c2 1p' ig + qq 2 i '( + q+ q, 2 1)
G,2g(x) =

(x —e,2)(x —x~)(x —x )
'

(A7)

Dg,-i l
— yg

'- (~, i+ q)'
dEci =

2 dEci
(x —e„)(1+e„)

(q t)= —y I i-
(x+ i)

(q+x) 2q+(1 —
q )x

yg 2+] 2+l

(A3)

where e,2=—(E,2
—A, co —E,)/y, . Higher-order corrections

can be obtained by substituting this result for G,,2 in the
equations for G, ig and G«, solving them, and substituting
the result in (Alc), etc. We will not give the resulting com-
plicated expressions, but note that we included these correc-
tions in the numerical calculations of Sec. III.

Now we are ready to calculate the time-dependent ampli-
tude of each state, using the transformation

where yg= 7r~/J, ii~ 6™is the decay rate to the pure con-
tinuum

~
c 1). This integral determines the effective energy iy,

U (t) = lim
7T p J —oo

e "~"G (x +ir) /d, x (A8)

'Here we implicitly make the rotating wave approximation. With

respect to the C-C coupling this is correct if there is no resonant

coupling from ~cl) to ~c2) by photon emission Here we assume.
that, indeed, M —1 photons are not sufficient to reach the threshold

of the second continuum ~c2).

for u=g, cl,c2, from which the photoelectron and ioniza-
tion spectra can directly be derived. The results were given
in Sec. II B.
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