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The photodissociation of doubly excited H, has been experimentally investigated. Using the pulsed character
of the incident synchrotron radiation, the time analysis of the atomic fragment fluorescence Balmer-& (H,)
decay was used for identification of the fragments. The measured branching ratios of the H(3/) fragments at a
given photon energy contain information about the dynamic behavior of the photodissociation. The states of the
first Rydberg series, Q;(2po,nl\), dissociating into H(1S)+H(n=3) lead almost to H(1S)+H(3S) frag-
ments; the state involved can be identified from the correlation diagram as the (2po,,4do,) configuration. The
photodissociating states of the second Rydberg series, Q,(2p,ni\), lead to H(2p)+H(n=3), the H(n=3)
fragments being a mixture of H(3S) and H(3D) in a ratio of about 2:1. In order to identify the relevant Q,
state, the energy ordering in the manifold of the molecular states dissociating into H*(n=2) and H*(n=3)
has been established by calculating the whole dipole-dipole long-range interaction.

PACS number(s): 33.80.Gj, 34.50.Gb

I. INTRODUCTION

The vertical excitation energies of doubly excited states of
H, (H,**) exceed 23 eV, far above the ionization threshold
(15.4 eV). Thus, dissociation of H,** into neutral fragments
competes with autoionization. These states belong mainly to
two Rydberg series, labeled Q; and Q,, with, respectively
(1], 2po,.nik,) and (2pm,,nI\,) united-atom orbital
configurations. The potential-energy curves of some of the
doubly excited states of H, are shown in Fig. 1. The Q,
states are correlated to (o,1s,\,n'l") at a large distance
corresponding either to H(1S)+H*(n'l’) or to H"+
H™(1s,n'l") [2]. For all these states, the dissociation com-
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FIG. 1. Potential-energy curves of the H, states (full lines) and
H; states (dotted lines) [1].
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petes with the formation of H,"™ and H* ions.

Such dissociation yields fast atoms (v=20 km/s), which
have been observed many years ago by electron impact. By a
time-of-flight technique, Leventhal, Robiscoe, and Lea [3]
were first to put into evidence fast H(2S) atoms and to sug-
gest that doubly excited molecular states were responsible
for them. Misakian and Zorn [4] then identified the lowest
M1,2p m,250,) among the O, manifold as the main parent
molecular state, the dissociation of which was calculated by
Hazi and Wiemers [5]. Spezeski, Kalman, and McIntyre [6]
later on settled the importance of the O, states besides the
Q, previously assigned. Fast long-lived fragments were then
observed by translational spectroscopy [7]. Later on, fast
short-lived fragments were studied by the Doppler profile
analysis of Balmer lines [8,9].

Photoexcitation of the doubly excited states from the
ground state occurs through a forbidden dipole transition,
allowed only by the two-electron correlations. Despite the
very low values of the absorption cross section, photodisso-
ciation could be observed leading to H(n=2) [10,11],
H(n=3), and H(n=4) atoms [12]. It has been recognized
that some of those states undergo dissociation as the major
deexcitation channel [4,5,10]. The goal of the present work is
to determine the branching ratio of the H(n=3) orbital an-
gular momentum photofragments and to assign the configu-
ration of the parent molecular states that leads to these
atomic states.

II. EXPERIMENTAL SETUP

Monochromatized synchrotron radiation (300<A <500
A) was used to excite H, molecules contained in a differen-
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FIG. 2. H, decay after excitation of H, at A =400 A: experi-
mental and best fit (dashed line) corresponding to 5+10% of 3P
and 95% of 3 state. The dotted line corresponds to the best fit for
a pure 3§ excitation.

tially pumped cell maintained at a constant pressure of the
order of 5 mT. The H,(n=3—n=2) fluorescence of the
atomic fragments was time-analyzed [13].

A 3-m normal-incidence monochromator (Balzers)
equipped with a Pt-coated, 2200 lines per mm holographic
grating was used in the first order. The spectral bandwidth
used was about 2 A.

The Balmer-a fluorescence was detected at right angles
from the incident light, collected by a Plexiglass light pipe,
filtered with a red-colored Wratten filter, and detected by a
refrigerated red-sensitive photomultiplier (RTC XP2254B),
using a traditional single-photon counting technique. When
operating with two positron bunches in the storage ring, the
delay between two consecutive synchrotron light pulses was
115 ns. The analysis period was 100 ns digitalized by 256
channels. The decay of the Balmer-a emission was obtained
by substraction of the signals recorded with and without hy-
drogen gas present in the chamber, in order to eliminate the
residual gas (N,) contribution. Data with backgrounds that
could not be reduced by this procedure had been rejected. No
pressure dependence of the signal was observed below 6 mT.

III. RESULTS

The H(n=3) states have quite different lifetimes (7;):
158, 15.5, and 5.3 ns [14] for 3S, 3D, and 3 P, respectively.
The experimental decay curves were fitted by a function de-
fined as the sum of three exponentials with these known
lifetimes 7; . The amplitudes of the exponentials were con-
strained to be non-negative (Figs. 2 and 3). The points dis-
played at negative ¢ values represent neither the asymptote of
the signal nor the background but are due to the piling up of
the decay signal at

tzTR_Itl’ (1)

T being the synchrotron repetition period. This is shown in
Fig. 2, where these negative time points are placed at their
real time positions. As the period is 115 ns and the time-
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FIG. 3. H, decay after excitation of H, at A =346 A: experi-
mental and best fit (dashed line) corresponding to 58*+=2% of 35,
42*+2% of 3D, and 0+ 10% of 3 P. The dotted line represents the
3S contribution.

analyzed delay only 100 ns, a small portion of the delay
spectrum is not measured, corresponding to the flat part in
Fig. 2.

The 3§, 3D, and 3P contributions were deduced from
the integration of these components over the repetition pe-
riod Tg:

Tg Tg
0'(3L)=’)’Lf nL(t)dt=yLnL(O)j e"/TLdt
0 0

=y (0) 7 (1—e TR ). (2)

To obtain the 3S, 3D, and 3P populations we had to take
into account that the 3S and 3D states radiate only through
H, line (ys=vyp=1), whereas the 3P state radiates with
88% relative probability through the here unobserved Lg
channel (yp=0,12) [14]. The relative populations of the 3.,
3D, and 3 P states have been determined for various excita-
tion wavelengths ranging from 340 to 407 A (36.5 to 30.5
eV) (Fig. 3).

For incident wavelengths greater than 370 A, the decay
curves exhibit the same behavior as that displayed in Fig. 2.
The dashed line represents the best fit; it leads to 95+ 5% of
3S fragments, 5+ 10% of 3P fragments, and 0%£4% of 3D
(the quoted errors are twice the standard deviation). The fit
with a single exponential of width 7,= 158 ns is displayed by
a dotted line. It corresponds to a dissociation into pure
H(3S) fragments.

In the 340-360 A excitation range, both 3S and 3D frag-
ments are present (Fig. 3). As shown there, at short decay
time, the two fits, with and without 3P contribution, can
hardly be distinguished. Thus, the presence of 3 P fragments
cannot be ascertained, but a value of 5*+10% of the 3S+3D
population can be deduced. The measured 3D to (3S+3D)
relative population is observed to increase with energy, as
shown in Fig. 4(a).

The energy variation of the branching ratio 3D to (3
+3D) can be put into relation with the total photodissocia-
tion cross section (Ref. [12]) and displayed [Fig. 4(b)]. If the
3D to (3S+3D) branching ratio of the Q, fragments is
taken as constant over the whole spectral range, the 3D to
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FIG. 4. (a) The o3 /(035+ 03p) branching
ratios (error bars) as a function of the excitation
wavelength displayed with the weighted Q, rela-
tive cross section computed from the data of (b).
(b) The experimental o,-; data (solid squares)
are superimposed to a theoretical curve (full line).
The dotted lines represents the Q; and Q, contri-
butions to the o, _3 theoretical curve (from Ref.

[12)).
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the total (35 +3D) population has to be proportional to the
relative cross section oy, /(0g,+0g,) previously deter-
mined in Ref. [12]. The agreement between the two ratio
variations is displayed in Fig. 4(a) (dotted line), leading to
the determination of the constant value

o(3D)/[0(3S)+0(3D)]=0.4%0.1

for the Q, branching ratio over the investigated spectral
range, i.e., typically two 3§ fragments for one 3D.

IV. DISCUSSION

For excitation wavelengths between 407 to 380 A
(E<32 eV) the H(n=3) fragments originate from the dis-
sociation of Q; doubly excitation states [12], while for
shorter wavelengths (340 to 380 A) both Q; and Q, states
contribute. From the H, emission cross-section curve, it has
been established [12] that the dissociating Q, state corre-
sponds to a Rydberg state of the H,* (2po,23,) ion core
with a 4I\, orbital and that the dissociating Q, state corre-
sponds to a Rydberg state of the H,* (2pr,2I1,) ion core
with a 3/, orbital [Q, 'TI(2) (2pm,,3da,)].

A. O, state

The overwhelming occurrence of the 3§ fragments in this
case implies a single A =0 molecular state for the parent-
excited molecule. Among the possible Q; states of 12:
symmetry satisfying the above configuration, there is the
(2po,.,450,)%3, (4) or the (2po,,4do,)'S, (5) state.

The Q, states 2po,,nl\, and the singly excited state
(1so,,nIN,) are both correlated to 1sm=0, n'l'm'=N\ at
large distance, with both atomic and ionic character [15] giv-
ing covalent H(1s)+H(nl) and higher-lying ionic H* +
H™ (1s,nl) limits. A pure adiabatic description would link
the ionic limit to the Q; states and the covalent one to the
singly excited states. However, the observation of
H*(n=23) fragments proves that the Q, dissociation is not
adiabatic.

The kinetic energy of Q; dissociation fragments exceeds
15 eV. A diabatic behavior is thus expected between the Q)
states and the crossed singly excited states, whereas the small
energy gap between two neighboring Q; states may favor an
adiabatic behavior inside the Q; set.

Following this rationale we determined the adiabatic cor-
relation diagram for the '3, Q, set. The relative energy
position of the states in the united-atom limit reflects the /
dependence of the quantum defect for penetrating orbitals. At
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FIG. 5. (a) Adiabatic correlation diagram for the Q'S states
(see text). (b) Adiabatic correlation diagram for the Q,'Il, states
(see text).

very large distances, the ordering of the levels depends on
the long-range interactions between the excited atom and the
atom in its ground state [16]. The potential curves for the
long-range interaction between an H(ls) and an H
(31m;=0) atom have been calculated [16]. For the '3
symmetry, the order of increasing energy is (1s50,3p0),
(150,3d0), followed by (150,350). The (150,3p0)!3, con-
figuration gives an attractive dipole-dipole potential, the
(150,3d0) an attractive dipole-quadrupole potential, and the
(150,350) only a dipole-dipole induced term. The adiabatic
correlation diagram for the 'S Q, set is presented in Fig.
5(a). The adiabatic correlation diagram shows that the 1S
+3S limit correlates to (2po,,4do,) in agreement with the
previously assigned 4/\, orbital.

B. O, state

The Q, states involved in the dissociation leading to
H(2P)+H(3D and 3S) fragments have to be of IHM sym-
metry. As already discussed, the dissociation is expected to
be diabatic except inside the O, set. To build up the adiabatic
correlation diagram, we have to sort the 'TI, states at a large
internuclear distance by computing the long-range potential
curves for the (2pm;=1, 3Im; =0,~2) configurations. This
is shown in the Appendix.

Eight different 'TI, (n=2,n=3) configurations are de-
generate at infinity. The dipole-dipole interaction mixes them
into two groups; among these eight states, the Q, 'II,, states
represent only four. The diagonalization of the interaction
matrix leads to the ordering of states that are no longer
(21m;,31'm)) states. Taking the main configuration for each
of them as a label for the states and rejecting the non-Q,
states, we obtained the adiabatic correlation diagram of Fig.
5(b).

The state with the (2p1,35s0) main configuration can be
associated with the calculated fragment composition of 59%
S, 40% D, and 2% P, which agrees with the observed val-
ues. This state is correlated to the (2pm,4dso,) Q) 1,
state. According to the calculations of Guberman [1] its ef-
fective quantum number is expected to be n 0,= 3.9, in dis-

agreement with the previous assignment [12]. In addition, we
can show that none of the superpositions of the available
states is able to reproduce the observed fragmentation ratios.
As in the case of the Q, state, the observed H(n=2)+ H(n
=3) photodissociation is dominated by a single Q, state.

V. CONCLUSION

We measured the branching ratios of the orbital angular
momentum states of the H(n=3) fragments following the
photodissociation of doubly excited states of H, and their
relative occurrence, depending on the excitation energy. The
observation of 3§ fragments from the Q; dissociation invali-
dates the previous assignment at the 'II1,(2) state, deduced
from a cross-section curve fit [10]. To assign the dissociative
states, we considered the adiabatic correlation diagrams,
based on the long-range interaction potentials, assuming a
diabatic behavior between the Q; or Q, states and the singly
excited configurations and assuming an adiabatic one inside
the states of the same set O or @,. We have calculated the
dipole-dipole interaction between the H¥*(n=2)+
H*(n=23) atoms. From this interaction matrix we were able
to calculate the eigenvalues and eigenfunctions. The ob-
served @, dissociating state can be assigned to the
(2pm,Ado,)'S, state. The Q, dissociating state is the
2pm,4s a'g)IHu state, with an adiabatic limit being a state
superposition of H*(2P)+H*(3S) and H*(2P)+H*(3D)
fragments.

APPENDIX: CALCULATION OF THE INTERACTION
BETWEEN H*(N=2) AND H*(N=3) ATOMS
AT LARGE SEPARATIONS

The long-range interaction between atoms had been
treated by Fontana in 1961 giving general formulas [17]. His
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TABLE I. '3 dipole-dipole interaction matrix on the unperturbed separated atom basis set. The numbers
(in atomic units) have to be divided by R>.

Isr 357
u g
[250,3p0,+) [2p0,350,+) |2p0,3d0,+) [2p1,3d—1,+,+)
|250,3p0,+) —6.262 062 —44.090 817 —39.436 025 —19.091 884
|2p0,350,+ ) —44.090 817 —0.587 068 —2.656 768 —1.626 931
|2p0,3d0,+) —39.436 025 ~2.656 768 —12.023 160 ~9.017 370
12p1,3d—1,+,+) —19.091 884 —1.626 931 ~9.017 370 ~9.017 370
Iy + 3w+
DINED
|250,350,— ) |250,3d0,—) |2p0,3p0,—) 2p1,3p=1,—,+)
|250,350,~) 0.000 000 0.000 000 —42.173 460 —29.821 140
|250,3d0,~) 0.000 000 0.000 000 —22.499 947 —13.778 348
|2p0,3p0,—) —42.173 460 —22.499 947 0.000 000 0.000 000
[2p1,3p—1,—,+) —29.821 140 —13.778 348 0.000 000 0.000 000
i3F 0%
|250,3p0,~ ) [2p0,350,—) 12p0,3d0,~) [2p1,3d—1,—,+)
|250,3p0,—) 6.262 062 44.090 817 39.436 025 19.091 884
|2p0,350,—) 44.090 817 0.587 068 2.656 768 1.626 931
[2p0,3d0,—) 39.436 025 2.656 768 12.023 160 9.017 370
12p1,3d—1,—,+) 19.091 884 1.626 931 9.017 370 9.017 370
I+ 3+
3.2,
|250,350,+) |250,3d0,+) |2p0,3p0,+) [2p1,3p—1,+,+)
|250,350,+) 0.000 000 0.000 000 —46.008 174 —32.532 692
|2$0,3d0,+> 0.000 000 0.000 000 —39.853 883 —24.405 420
|2p0,3p0,+) —46.008 174 —39.853 883 0.000 000 0.000 000
12p1,3p—1,+,+) —32.532 692 —24.405 420 0.000 000 0.000 000

approach had been previously used to investigate the long-
range interaction between hydrogen atoms, one of which was
excited [16,18] or both excited in the n=2 states [19]. We
need to extend this calculation to the H*(n=2)
+H*(n=3) level set.

Neglecting the fine and hyperfine structures, the unper-
turbed wave function is a product of hydrogen atom eigen-
functions,

|nilymy naloma)=@u 1m (F10) @nytymy(726), (A1)
where the ¢,,;,, are the ordinary hydrogen-atom wave func-
tions with atomic quantum numbers nlm. The r;, is the
radius vector of the electron 1 with respect to the nucleus a

(and similar for r,,); the functions (2) correspond to
A=m,;+m,, the total orbital angular momentum along the
internuclear axis, which is an exact quantum number for the
diatomic molecule in the Born-Oppenheimer approximation.
The functions (1) correspond at infinite internuclear distance
to the energy
Ey=— %(”1_2"'”2_2) (in atomic units). (A2)
According to Fontana, the electrostatic interaction energy
can be expanded as a sum of coupling terms between multi-
pole moments written in an irreducible tensor basis set. The
interaction matrix elements V; can be expressed in the form
(Refs. [16] and [19])

o e
Vs=(nilymy,nylymy|V|nilim] ,nélﬁm§>:l > (- 1)lb+m1m2R—_ln+le (Lot 1) | i n 1 nalol Py nj 1)

a vlb M

X[(20+1) (211 +1)(21+ 1) (21 + DI [(1= ) Lo+ w) (1= ) V(L + ) 1] 712

Lo, U\ [ 1, N[ I 1. 4

Xlo o oflo o of|-m

—M my

o1, 1

—my (A3)

Momy e
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TABLE II. Same as Table I for the 'IT states.

1 3
IT, °II,
|2p1,350,+)  |2p1,3d0,+)  |2p03d1,+)  |[2p—13d2,+)  |2503p1,+)
|2p1,350,+) 0.293 534 -1.992 576 —2.300 829 —1.626 932 22.045 408
|2p1,3d0,+) —1.992 576 1.502 895 —-10.412 362 1.840 663 —7.794 229
|2p0,3d1,+> —2.300 829 —10.412 362 ' 4.508 685 0.000 000 27.000 000
[21)— 1,3d2,+) —1.626 932 1.840 663 0.000 000 9.017 370 —19.091 883
|250,3p 1,+) 22.045 408 ~7.794 229 27.000 000 —19.091 883 3.131 031
I, ,31'Ig
|250,3d1,—) [2p0,3p1,—) |2p1,3p0,—)
|250,3d1,— ) 0.000 000 37.909.836 24.590 774
|2p0,3p1,—) 37.909 836 0.000 000 0.000 000
|2p1,3d0,—) 24.590 774 0.000 000 0.000 000
‘Hg ST,
|2p1,350,—)  |2p1,3d0,—)  |2p03d1,—)  |2p—13d2,—)  |2503pl,—)
|2p 1,350,—) —0.293 534 1.992 576 2.300 829 1.626 932 —22.045 408
|2p 1,3d0,—) 1.992 576 —1.502 895 10.412 362 —1.840 663 7.794 229
|2p0,3d1,— ) 2.300 829 10.412 362 —4.508 685 0.000 000 —27.000 000
[2p—1,3d2,—-) 1.626 932 —1.840 663 0.000 000 —9.017 370 19.091 883
|250,3p1,—) —22.045 408 7.794 229 —27.000 000 19.091 883 —3.131 031
ll'[g V0,
|250,3d1,+) |2p0,3p1,+) |2p1,3p0,+)
|2s0,3d1,+> 0.000 000 30.395 361 9.561 825
|2p0,3p1,+) 30.395 361 0.000 000 0.000 000
|2p 1,3d0,+) 9.561 825 0.000 000 0.000 000
TABLE III. Same as Table I for the A and '® states.
A, ,3Ag
|2p1,3d1,+) |2p0,3d2,+) |250,3d2,~) |2p1,3p1,—)
|2p1,3d1,+) -9.017 370 6.376 243 0.000 000 0.000 000
|2p0,3d2,+> 6.376 243 0.000 000 0.000 000 0.000 000
|250,3d2,—) 0.000 000 0.000 000 0.000 000 13.778 348
]2p 1,3p2,—) 0.000 000 0.000 000 13.778 348 0.000 000
1Ag A,
|2p1,3d1,—) |2p0,3d2,~) |250,3d2,+) |2p1,3p1,+)
|2p1,3d1,—) 9.017 370 —6.376 243 0.000 000 0.000 000
]2p0,3d2, -) —6.376 243 0.000 000 0.000 000 0.000 000
]2s0,3d2,+) 0.000 000 0.000 000 0.000 000 24.405 421
|2p1,3p2,+) 0.000 000 0.000 000 24.405 421 0.000 000
o, ,3<I)g
|2p1,3d2,+)
|2p1,3d2,+) 9.017 370
3
D, 0,
|2p1,3d2,—)
|2p1,3d2,~) ~9.017 370

4627



4628 M. GLASS-MAUIJEAN, H. FROHLICH, AND P. MARTIN 52

TABLE IV. '3, eigenvalues and eigenfunctions of the dipole-dipole interaction.

12+ 32+
u 8
E(1) E(2) E(3) E(4)
—72.4232/R? —8.0075/R? —0.9814/R? 53.5225/R?
F(1) F(2) F(3) F(4)
|250,3p0,+) 0.680 734 0.150 824 0.019 979 —0.716 557
|2p0,350,+) 0.443 097 0.619 256 0.325 833 0.560 374
|2p0,340,+) 0.507 014 —0.354 429 —0.683 198 0.388 017
|2p1,3d—1,+,+) 0.288 448 —0.684 218 0.653 203 0.148 223
12-{- 32+
u g
E(5) E(6) E(T) E(8)
—57.9792/R? —1.5504/R? 1.5504/R? 57.9792/R?
F(5) F(6) F(T) . F(8)
|250,350,—) —0.629 879 0.321 329 0.321 329 —0.629 879
[250,3d0,—) —0.321 329 —0.629 879 —0.629 879 —0.321 329
[2p0,3p0,—) —0.582 865 —0.400 335 0.400 335 0.582 865
[2p1,3p—1,—,+) —0.400 335 0.582 865 —0.582 865 0.400 335
DRI
E(1) E(2) E(3) E(4)
—53.5225/R? 0.9814/R? 8.0075/R? 72.4232/R?
F(1) F(2) F(3) F(4)
|250,3p0,~) —0.716 557 0.019 979 0.150 824 0.680 734
|2p0,350,—) 0.560 374 0.325 833 0.619 256 0.443 097
|2p0,340,—) 0.388 017 —0.683 198 —0.354 429 0.507 014
[2p1,3d—1,—,+) 0.148 223 0.653 203 —0.684 218 0.288 448
DI
E(5) E(6) E(7) E(8)
—73.1673/R? —2.3741/R? 2.3741/R? 73.1673/R?
F(5) F(6) F(7) F(8)
|250,350,+) —0.544 367 0.451 292 0.451 292 —0.544 367
|250,3d0,+) —0.451 292 —0.544 367 —0.544 367 —0.451 292
|2p0,3p0,+) —-0.588 119 —0.392 576 0.392 576 0.588 119
|2p1,3p—1,+,+) —0.392 576 0.588 199 —0.588 119 0.392 576
using the notation p=-+1 corresponds to an even (g) state, p=—1 to an odd
(u) state. According to the symmetry rules, the wave func-
' (ni|r'en'1"y= fo R*. 1R, dr (A4) tion of the unperturbed basis set has to be chosen in the form

for the radial part of the matrix elements. The terms between
() are 3j Racah coefficients.

The total wave function, including spin, must be antisym-
metric with respect to electron exchange; with respect to
space, the wave function must be symmetric (o= +1) for a
singlet state and antisymmetric (0= —1) for a triplet state.
For the symmetry operator P with respect to inversion
through the midpoint of the internuclear axis, if PW=p¥,

Wo=|nlymy,nzl,m,S)
=[2(1+ 8, 1, 81,1, 0m,m D 1L 1,m, (F10) Py 1y, (T26)
TS, 1m, (r26) Wy my (r12) ] (AS5)
By using the inversion operator I centered on one atom,the

operator 7 that changes the center of the wave function from
a to b or vice versa, we get P=T-I (see Ref. [16]) and
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TABLE V. Same as Table IV for 'IT states.
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I, T,
E(1) E(2) E(3) E(4) E(5)
—36.7485/R3 —4.5658/R3 3.0102/R3 10.3421/R3 46.4155/R3
F(1) F(2) F(3) F(4) F(5)
|2p1,350,+) —0.436 812 0.190 730 0.765 495 0.286 672 —0.323 502
|2p 1,3d0,+) —0.026 631 —0.860 717 0.155 425 0.409 069 0.258 772
|2p0,3d1,+ ) —0.489 801 —0.427 486 —0.165 850 —0.563 265 —0.482 263
[2p— 1,3d2,+) 0.277 952 —0.102 276 0.586 769 —0.655 405 0.372 061
|2s0,3p 1,+) 0.700 945 —0.172 001 0.134 375 0.060 488 —0.676 296
', 11,
E(6) E(T) E(8)
—45.1870/R3 0 45.1870R3
F(6) F(7) F(8)
|2s0,3d1,—) 0.707 107 0.000 000 0.707 107
|2p0,3p1,—) —0.593 231 —0.544 201 0.593 231
|2p1,3p0,—> —0.384 808 0.838 955 0.384 808
"I, 10,
E(1) E(2) E(3) E(4) E(5)
—46.4155/R3 —10.342/R3 —3.0102/R3 4.5658/R3 36.7485/R3
F(1) F(2) F(3) F(4) F(5)
|2p 1,350,—) —0.323 502 0.286 672 0.765 495 0.190 730 —0.436 812
|2p 1,3d0,—) 0.258 772 0.409 069 0.155 425 —0.860 717 —0.026 631
|2p0,3d 1,—) —0.482 263 —0.563 265 —0.165 850 —0.427 486 —0.489 801
|2p—1,3d2,—) 0.372 061 —0.655 405 0.586 769 —-0.102 276 0.277 952
|250,3p1 ;=) —0.676 296 0.060 488 0.134 375 —0.172 001 0.700 945
', VI,
E(6) E(T) E(8)
—31.8639/R3 0 31.8639/R3
F(6) F(T) F(8)
[250,3d1,+) 0.707 107 0.000 000 0.707 107
|2p0,3p1,+) —0.674 518 —0.300 084 0.674 518
|2pl,3p0,+> —0.212 191 0.953 913 0.212 191
S=po(— 1)t (A6) *1, +2, and =3 of A. Each of these subsystems has singlet

In the case of hydrogen atoms, because of the high degen-
eracy of the excited levels, the major contribution is due to
the dipole-dipole interaction, with [,=1,=1 leading to R™3
terms. We restricted our calculation in this term. The
H*(n=2) states are 4 X2 degenerate states; the H*(n=3)
states are 9X2; the H¥(n=2)+H*(n=3) system repre-
sents 8 X 18 configurations.

Because of A=m;+m, the system can be partitioned
into subsystems 2, IT, A, and ® according to the values 0,

and triplet and u# and g states. As the Vg matrix elements
depend only on the po product, the 'A, and 3A, terms
(respectively, 'A, and 3 A,) are degenerated. For A +#0, the
A ¢ terms are degenerated with a symmetrical and antisym-
metrical superposition of A and — A functions; the results
are noted with A=|A| for easier reading. For A=0, i.e., %
states, the symmetry with respect to reflection in the plane
containing the internuclear axis, giving 'S, and '3, states,
has to be defined.

For the 'S, states built from 2p1 and 3d—1, for in-
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TABLE VI. Same as Table V for 'A states.

'A,0A,
E(1) E(2) E(3) E(4)
—13.7783/R3 —12.3180/R3 3.3006/R3 13.7783/R3
F(1) F(2) F(3) F(4)
12p1,3d1,+) 0.000 000 0.888 074 0.459 701 0.000 000
12p0,3d2,+) 0.000 000 —0.459 701 0.888 074 0.000 000
|250,3d2,~) ~0.707 107 0.000 000 0.000 000 —0.707.101
12p1,3p2,~) 0.707 107 0.000 000 0.000 0000 ~0.707 107
A, A,
E(1) E(2) E(3) E(4)
—24.4054/R3 —3.3006/R3 12.3180/R3 24.4054/R3
F(1) F(2) F(3) F(4)
12p1,3d1,+) 0.000 000 0.459 701 0.888 074 0.000 000
12p0,3d2,+) 0.000 000 0.888 074 ~0.459 701 0.000 000
|250,3d2,~) ~0.707 107 0.000 000 0.000 000 ~0.707 107
12p1,3p2,~) 0.707 107 0.000 000 0.000 000 —0.707.107

stance, we have to consider the combinations with 2p—1,
3d1 giving one 'S and one '3, term:

V(2 H=]2p—1,3d1+,(+))

1
=—(|2p—1.3d1,+)+|2p13d—1,+))

V2

(A7)

and

V(3 )=[2p—1,3d1+,(-))

1
=—(|2p—13d1,+)—|2p1,3d—1,+))

V2

(A8)

with the similar combinations for the '3 ¢ states. The rel-
evant matrices are gathered in Tables I to III. The eigenval-
ues and eigenfunctions of the doubly excited states of the
H, molecules are displayed in Tables IV to VI.
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