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Electron spin exchange with 02. Effects on the muon spin rotation, the electron spin resonance,
and the positronium lifetime
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Electron spin exchange with spin one paramagnetic species has been investigated with particular emphasis
on the cases of hydrogen (H=p+e ), Mu (Mu=p, +e ), positronium (Ps=e+e ) colliding with Oz. The
effects of spin exchange on electron spin relaxation (ESR), muon spin relaxation (p,SR), and positronium
lifetime measurements are described in terms of the difference in phase shifts between quartet and doublet
encounters (6), which will allow one to interpret ESR, @SR, and positron data in a unified way and help one
to understand isotope mass effects not only in spin exchange but also in chemical reactions, which often
compete with spin exchange. For instance, the ESR and p, SR relaxation rates in high transverse fields are
expressed, in terms of the rate of collisions k, as kr=(32/27)X sin (5/2) and k~r=(16/27)k sin (5/2),
respectively, and the so-called statistical factors, such as (32/27) and (16/27), are strong functions of the

magnitude and direction of the applied field.

PACS number(s): 34.50.—s, 36.10.Dr, 76.75.+i

I. INTRODUCTION

Electron spin exchange [1—3] is not only an interesting
quantum phenomenon but also an atomic process important
in many fields of science, such as astrophysics [1],biochem-
istry [4], plasma, and optical pumping [5—8]. The muon spin
rotation (~SR) technique [9—12] has been used extensively
to investigate the spin exchange [13—19] and chemical reac-
tions [20—24] of muonium (Mu=/t, e ), which is the bound
state of the positive muon and electron with the virtually
identical ionization potential as hydrogen but with only —, of
the hydrogen mass. One of the important areas of Mu studies
is isotope mass effects in atomic and chemical reactions in
comparison with the corresponding hydrogen reactions. Di-
rect comparison of p, SR results with data taken by other
techniques, such as electron spin resonance (ESR), has often
been hindered by the lack of knowledge of the statistical
factor, which is essentially the proportionality constant be-
tween the observed relaxation rate and the rate of spin ex-
change, appropriate for the technique used in a given mag-
netic field value and direction.

In this work, the p, SR and ESR relaxation rates in various
field configurations and the change in ortho-positronium life-
time due to spin exchange are expressed in terms of a proper
statistical factor so that one can directly compare data ob-
tained by different experimental techniques. The formalism
used here is based on the time-ordered stochastic method
originally developed for Mu spin exchange with spin--, spe-
cies [25] in the gas phase. This method has been applied for
extremely fast spin exchange [26], spin exchange in interme-
diate and high fields [27], and spin exchange in spin-
polarized media [28,29]. The characteristic field dependence
of the muon relaxation rate in transverse fields, predicted
theoretically [27], has been observed experimentally [17,30].
The treatments of spin exchange presented in [26—29] have
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also proven to be useful in studies of hydrogen and Mu in
semiconductors [31].

In the present work, the method developed in Ref. [25]
has been generalized to the case of spin-1 paramagnetic spe-
cies such as 02 in order to calculate the muon spin relaxation
due to electron spin exchange as well as the relaxation of the
electron spin in hydrogenlike atoms (ESR). It should be
mentioned that systems containing 02 have been extensively
studied by the p, SR technique [15,16,19) and systematic
ESR studies of the H+02 system in various media are of
current interest [32], where results are to be compared with
the corresponding Mu+02 results.

II. THEORY

A. Outline

One of the main goals of this work is to calculate the time
evolution of the muon spin in Mu or of the electron spin in
hydrogen in the presence of electron spin exchange with

Oz. Since the total electron spin of Oz is one (S= 1), one
can classify Mu+02 and H+02 collisions according to their
total electron spin, S= 1+ —,

'= —', (quartet) and 5=1 ——,
'=

—,
'

(doublet). The difference in interaction energy between dou-
blet and quartet encounters is responsible for spin exchange.
A spin-exchange collision is characterized by a parameter
5 representing the difference in phase shifts between doublet
and quartet encounters. It is convenient to assume that the
duration of a collision is much shorter than the average time
between collisions. Between collisions, the Mu or H atom in
question will evolve with time as free particles, obeying the
time evolution dictated by the Breit-Rabi energy diagram.
The polarizations of the positive muon spin,
P"(to, t, , . . . , t„,t), or electron spin P'(to, t, , . . . , t„,t), in
hydrogen-like atoms observed at time t after n collisions at
t, , t2, . . . t„are expressed in terms of (the difference in) the
phase shifts for individual collisions, 5 i,52, . . . ,5„,where
to is the time of Mu or H formation. In order to obtain the
polarization observed at t, the quantity P"(to, t, , . . . , t„,t)
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or P'(to, t, , . . . , t, , t) is averaged over the Poisson distribu-
tion of ti, t2, . . . , t„ for a fixed n, then over all possible n
from 0 to infinity.

The hyperfine eigenstates of muonium (Mu=p, e ), hy-
drogen (H=p e ), or positronium (Ps=e+e ) in a mag-
netic field applied in the z direction are expressed by

I-,', + -', ) = n, (1,1),

I
~z + z) = gl/3Pe(1, 1)+$2/3n, (1,0),

) = g2/3P, (1,0) + gl/3n, (1,—1),

(14)

(15)

(16)

I»=ln„n, ),

l2) =sin„p, )+cl p, n.).

4) =cln„p,)-.l p, n, ).

(2)

(3)

where n and p denote the spin state parallel and antiparallel,
respectively, to the applied field and the subscripts p and e
refer to the positive particle (muon, proton, or positron) and
electron, respectively. Solving for ln„n, ), In„p, ), Ip„n, ),
and

I p~p, ), one can write

1),

ln p ) =sl2)+cl4

I p, n, ) = cI» —sl4).

(6)

Q7 i2 = + coo /2+ co~ —
Q 600/4+ co+,

t 2 2

f023 coo /2 + 0)M + & 400/4 + ct) +,
t 2

co i4 = + coo /2 + coM+ Q coo/4+ QJ+,
I 2 2

co34 + ct)o /2 &AM + g ct)0/4 + ct) +,
t 2

) 2 2
6024 =

Q Goo+ 4 Co+,

(10)

(13)

where coM=(co, —co„)/2 and co+=(co,+co„)/2 are defined
in terms of the absolute values of the precession frequencies
associated with the electron and positive particle (muon, pro-
ton, or positron).

B. Spin exchange

Since the 02 molecule has an electron spin of 5= 1, the
total electronic spin for the Mu+02 or H+02 system is 5=
z (quartet) or 5= —,

' (doublet). It is useful to write down the
Clebsch-CJordan coefficients for this system [33],

Here the quantities c and s [251 are given

by c =(1+x/v'x +1)/2 and s =(1—x/v'x +1)/2, re-
spectively, in terms of the magnitude of the applied magnetic
field in units of the hyperfine field, x =B/Bo, where Bo for
H, Mu, and Ps are Bo=0.5059, 1.585, and 36.28 kG, respec-
tively, corresponding to the hyperfine frequencies
~o/2~= 1.420, 4.463, and 203.4 GHz.

Some of the important transition energies between the ith
and jth levels of the Breit-Rabi diagram, cu;, = ~;—coj, are
given by

I-, , + —,) = $2/3P, (1,1)—gl/3 n(1,0),

I.-'. —-') = v'I/3P. (1,o) —42/3n, (1,—1),

where ( l,m) denotes the spin state of Oz with m being the z
projection; n, and p, are spin states of the electron in Mu (H
or Ps). The inverse relations of these equations are

n, (1,+I)=I-,', +-,'),

n, (1.o) = V2/3I-'. +.-') - ll/31 l + l)

n, ( 1,—1 ) = 41/3I l, —l) - V'2/3I l, —l),

p, (1,+1)= &I/3I-,', +-,')+ j2/3I-,', +-,'),

P.(1.o) = v'I/312. —z)+ V2/31 z. —z)

p.(I —I) =
I

-' —-')

(20)

(21)

(22)

(23)

(24)

(25)

The properly antisymmetrized wave function for I-,', —,') is
expressed by

l2 2)

where the right-hand side is a Slater determinant constructed
from m(r, ), g (rz), and g~(r3), i.e., from the spatial wave
functions of Mu (H or Ps) and two electron orbitals in Oz. In
the ground state of 02, two electrons are coupled to a spin
triplet and to zero orbital angular momentum. The I-,', —

—,')
state can be expressed in terms of Slater determinants as

I l —l) = 41~/3[ fImn g.P.g, PII+ IlmP g.n. g, PII

+ flm p.g.p.g, nil}

(l. llvll. l) =(-', , - -,'Ivl-', , --,'),

(l, l I vll, l) w(l, l I vie, l),

~here the energy difference between quartet and doublet en-
counters is on the order of the exchange energy

E,„(m,g ) =
j d r) d rzm*(r()g~ (rz) m(rz)g~(r)).

When
I 1)=

I
n n, ) Mu collides with a (1,—1) Oz mol-

ecule, the properly antisymmetric wave function of the initial

One can verify that the expectation value of the integration
energy V(r, , rz, r3) = I/r&z+ I/rzs+ 1/r3, is a function of
total spin only, i.e.,
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TABLE I. Transition matrix T„:Mu (H or Ps) spin exchange with (1,1) 02.

l 1)(1,1)
l1)(l,o)

l2)(1,1)
l2)(l,o)
l2)(1,—I)
l3)( 1,1)
l3&( I,o)

14)(1,1)
l4&(l,o)
l4)(1,—1)

11)(1,1) l2)( 1,1)

0
v2s(1 —e' )/3

0
1 —2s (1 —e' )/3

0
0
0
0
0

—2cs(1 —e' )/3
0
0

l3&(1,1)

0
0
0
0

+2c(1 —e' )/3
0

(1+2e' )/3
0
0
0

—v2s(1 —e' )/3
0

4)(1,1)

0
+2c(l —e' )/3

0
—2cs(1 —e' )/3

0
0
0
0
0

1 —2c (1 —e' )/3
0
0

state is expressed by llmu, g,P, gYPll, which is a superposi-
tion of quartet and doublet parts. During the collision the
quartet part accumulates a different phase from the doublet
part due to the difference in interaction energy. One can in-
vestigate effects of a collision on the state

l 1)(1,—1), with-
out manipulating Slater determinants explicitly, by simply
using Eq. (22),

l
1 )(1,—1)= u~u, (1,—1)

= $1/3u~l 2'. —2)- &2/3u~l 2 ~z). (26)

During the collision the S= and 5=-,' parts of Eq. (26)
acquire different phases,

l 1)(1,—1)~ v 1/3u„l 2, —2)e' & —g2/3u
l

~z, —~2)e' D

= gl/3u~[$2/3p, (1,0)+ v I/3u, (1,—1)]e' Q g2/3u—[Ql/3P, (1,Q) —g2/3u, (1,—1)]e'~D

+2= u+u, (1,—1) 3 [e' &+ 2e'~D]+ u p, (1,Q) [e'~g —e'~o]

Qz
=ll)(1, —l)3[e' ~+2e' D]+(sl2)+cl4))(1,0) [e'~g —e'~o] (27)

where the quartet and doublet phase shifts are defined in
terms of the potential energy between Mu and 02 as [1]

l(1+2e' )/3l =1—(8/9)sin (b/2). (29)

dt VD ~(r)/fi = — dr(dtldr) VD ~(r)/h, .

Multiplying Eq. (27) by e ' &, one can write down the final
spin state up to an overall phase factor

ll)(1, —1) ll)(l, —1)(1+2e' )/3

+l2)(1,0) +2s(l —e' )/3

+ l4)(1,0) +2c(1 —e' )/3. (28)

The phase shift 5 is defined by 5 = Az —5&. The first term
of Eq. (28) represents the process in which the spin states of
Mu and the oxygen molecule are not affected by the colli-
sion, leaving Mu still in the

l 1)= u„u, state. The probability
of having Mu in

l 1) after a collision with a (1,—1) molecule
is given by the coefficient of

l 1)(1,—1),

The second and third terms represent, on the other hand, the
process in which the electron spin of Mu is flipped from
u, to P, , while the molecule changes its spin state from
(1,—1) to (1,0). The probabilities that the Mu atom is in the
state l2) and l4) after the collision are given by
l+2s(1 —e' )/3l =s (8/9)sin (b/2) and lac(I —e' )/
3l =c (8/9)sin (6/2), respectively. Similarly, one obtains
for collisions of the type l 1)+ (1,0)

l 1)(1,0)~l 1)(1,0)(2+ e' )/3+ l2)(1,1)+2s(1 —e'~)/3

+ l4)(1,1)+2c(1 —e' )/3.

The effects of oxygen collisions on the eigenstates of Mu are
summarized by the transition matrices T», T&o, and T& i,
listed in Tables I—III. The state lk)(l, m) in the top row of
the tables is the initial state of Mu and 02. The state after a
collision is given by a superposition of states lk')(l, m')
with coefficients listed in the column below. If, for example,
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TABLE II. Transition matrix T,o .'Mu (H or Ps) spin exchange with (1,0) Oz.

i 1)(1,1)

I
I )(I 0)

[I&(I,—I)
i 2)( I,1)

i 2&(1,0)
(2)(I,—I)

[3&(I,0)
I3&(1,—I)
f4&(I, I)
i4&(I,0)
i4)(1,—I)

(I)(1,0)

0
(2+e' )/3

0

+2s(1 —e' )/3
0
0
0
0
0

+2c(1 —e' )/3
0
0

i2)(I,0)

+2s(1 —e' )/3
0

(2+ e' )/3
0

v2c(1 —e' )/3
0
0
0
0
0

~3&( 1,0)

0
0
0
0
0

v2c(1 —e' )/3
0

(2+e' )/3
0
0
0

—+2s(1 —e' )/3

(4)( 1,0)

0
0

v2c(1 —e' )/3
0
0
0

—v2s(1 —e' )/3
0
0
0

(2+ e' )/3
0

the Mu state ~2) collides with a (1,0) oxygen molecule, the
final state can be constructed from the column under

~2)(1,0) in Table II as

~2)(1,0)—+~2)(1,0)(2+e' )/3+ ~1)(1,—1)+2s(1 —e' )/3

+ ~3)(1,1)v2c(1 —e' )/3.

Tt t P(t to) =Xt(t to) I I) +X2(t to)12)+Xs(t to)13)+X4(t to) l4)

Xt(t to)

Xz(t,o)

Xs(t,o)

X4(t to)

C. Time evolution of spin states

These 12' 4 matrices, T», Tio, and T] i, operate on an
arbitrary spin state expressed in terms of eigenstates of Mu
and generate the state after a collision. Suppose the spin state
of Mu at initial time to is given by

x1

where t; = t; —tj with to= 0 and

Xt(tto) =xt(1,1)te '"'"0+x'(1,0)te ' ~'»+2s(1 —e'a~)/3

+x4(1,0),e '"4'~o+2c(1 —e' ~)/3

X2(tto) =x2(1,1)te '"2"o[1—2s (1—e'a&)/3]

t/(0) =xt il)+x2i2)+x3i3)+x4i4) =
X2

(30)

—x4(1,1)te '"4"o2cs(1 —e' ~)/3

+x3(1,0)te '"""+2c(1—e' ~)/3

where P is normalized to unity, ~xt~ + ~x2~

+ ~xs
~

+ ~x4~
= 1. The subsequent time evolution of this free

Mu state is given by

lait
1

x2

l CU3t
3

l CU4t
4

Xs(tto) =xs(1,1)te '""»(1+2e' ~)/3

X4(t,o) =x4(1,1)te '"4'»[I —2c (1 —e' ~)/3]

—x2(1,1)te '"2'»2cs(1 —e' ~)/3

—x3(1,0) te '""'ops(1 —e' ')/3,

where (I,m)/, and b, „are the final spin state of 02 and the
phase shift, respectively, associated with the kth collision.
After the first collision at ti, this state evolves as free Mu
and the spin state at t2 after ti is given by

where A, cu„ is the energy eigenvalue of the Mu state ~n). If
the first collision takes place at time ti, the spin state imme-
diately after the collision is given by Ttt P(t, ), Ttof(t, ), or
Tt t P(tt), depending on the spin of the colliding 02 mol-
ecule. The operation of T, on t/j(t, ) leads to a superposition
of ~n)(l, k) with n=1,2,3,4 and k=1,0, —1 with weighting
factors given the table of T, . By calculating the coeffi-
cients of ~1), ~2), ~3), and ~4), one can cast the result again
in the form of Eq. (30). For instance, the state P(t, ) will
become, after collision with a (1,1) molecule at tt,

( )
—t~lt21

X2(t to)e
Tt t(t2t) p(t to) Xs(t )

X4(t to) e '"4'»

It can easily be shown that T»(t2t) P(tto), T,o(t2, )l/I(t, o),
and Tt t(t2t) t/1(t, o) are normalized and orthogonal to each
other. This procedure can be repeated to produce the spin
state at t after collisions at t i, t2, t3, . . . , t„as
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TABLE III. Transition matrix T, , : Mu (H or Ps) spin exchange with (1,—1) 02.

1)(1,1)
1)(1,0)
1)(1,—1)
2) (1,1)
2)(1,0)
2)(1,—1)
3)(1,1)
3)(1,0)
3)(1,—1)
4) (1,1)
4)(1,0)
4)(1,—I)

( I)(I,- »
0
0

(I+2e' )/3
0

v2s(l —e' )/3
0
0
0
0
0

+2c(1 —e' )/3
0

12)(1,—I )

0
0
0
0
0

1 —2c (1 —e' )/3
0

+2c(1 —e' )/3
0
0
0

2cs(1 —e' )/3

0
0
0
0
0
0
0
0
1

0
0
0

i4)(1, —1)

0
0
0
0
0

2cs(1 —e' )/3
0

—v2s(1 —e' )/3
0
0
0

1 —2s (1 —e' )/3

Tlm (t t„)Tlm— (t„„ 1) . Tlm (t32)Tlm (t21)t/1(tlP)~

where the kth collision is with a (l,mk) molecule.

the time evolution of the muon spin in A-Mu by taking the

expectation value of o.," at time t,

D. Mu in a longitudinal field

The positive muon produced in the decay of a pion at rest,
m+~ p, ++ v„, is 100% spin-polarized. In this section, it is
assumed that the initial muon spin direction is in the z direc-
tion, which is also the direction of the applied field. If the
muon captures an unpolarized electron, two kinds of muon
atoms are formed with equal probabilities; (1) parallel Mu or
A-Mu, where the captured electron has the same spin as the
muon, u u, , and (2) antiparallel Mu or B-Mu, in which the
electron is pointing in the opposite direction to the muon
spin, u~P, . The initial spin state of A-Mu can be written
following the notation of Eq. (30),

GA(t) =(A(t) lu;I OA(t)) = I

0 0

se

l CO4t

which implies that the g component of the muon spin in
A-Mu is conserved in a longitudinal field, if there is no col-
lision. Similarly, for B-Mu

OA(0) = u u. =
I
I ) =

p .
The muon spin polarization in B-Mu at t is

After its formation at to=0, this Mu atom evolves with time
as

Gtt(t) =(hatt(t)io, its(t)) =1 —4c s (1 —costo24t).
(32)

lQJite

QA(t) =
p

1 0 0
s2 c2 0

c7 = 0

0 2cs

0

2cs

C2 $2

where the matrix elements are calculated among the eigen-
states of free Mu, ~1), ~2), ~3), and ~4). One can calculate

The muon spin polarization along the z axis is obtained from
the expectation value of the quantity

If the captured electron is not polarized, the average muon

spin polarization in Mu is

GL(t) =[GA(t)+Gg(t) jl2= 1 —2c s (1—costo24t)
(33)

L Muon polarization after one collision

The spin state immediately after the first collision can
be generated by calculating T„PA(t,p), T,pPA(t, p),
Tl 1 1/JA(tip), Tllptt(tip), Tlp(/lg(tip), and Tl 1/11(tip), cor-
responding to six distinct mutually exclusive combinations
of spin orientations, A+ (1,1), A+ (1,0), A+ (1,—1),
B+(1,1), B+(1,0), and B+(1,—1), respectively. For ex-
ample, the state of originally A-Mu colliding with a (1,1)
molecule at time t

&
is given by
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T110A(t 10) =

( 1 1) totl t10

0

Tl.l(t21) PA(t lo)

-
( I I )

—imltl0 —tmit21[ I 2( I ttt, 1)/3]-

(I 0) e '~1t10e t~2t21+Pz(1 —e'~l)/3

where the symbol (l,m)1 denotes the final spin state of the
molecule involved in the first collision. The time evolution of
free Mu after I1 is

(1 Iq
—imltl 0 —imlt21j1e e

Tl 1(t21)QA(tip) =

(1,0)le ' "'oe ' 4'»+2c(1 —e' 1)/3

(1/tA(tip)T1. 1(t21)ItT,"IT1 1(t21)t/IA(tip))

= 1 —2c s (16/9)sin (5/2)(1 —costtt24t2, ). (34)

The corresponding time evolution of the muon spin in Mu is
calculated from the expectation value of o.,",

( ti'IA(t lo) T1 1(t21) I tr,"I T, l( t21) PA(t 10))

which implies the muon spin in A-Mu is completely pre-
served after a collision with a (1,1) molecule.

If the first collision partner of A-Mu is a (1,0) molecule,

It is interesting to note that (1,0) and (1,—1) molecules have
the same effect on A-Mu.

If the electrons of 02 are unpolarized, i.e., A-Mu collides
with (1,1), (1,0), and (1,—1) molecules with equal probabili-
ties, the average muon spin polarization in A-Mu observed at

t2 after a collision at t1 as

PA(tp, tl, t2)

Tlp(t21) WA(tip) =

( I 0) e t ~1 t 10e tl 21t(2+ e'~ 1 )/3

(1 1),e '" ' e '" "v2s(I —e' ')/3

(1,1)le ' "10e ' 4'»/2c(l —e' ')/3

1

( 1/IA(tip) Tl m(t21) I tr,"ITlm( t21) 1/A(t ill))3 m=1, 0, —1

32
1 —

27
sin G„(t2p)

The muon polarization at t2 is

( t/IA(t 1 p) T 1p(t21) I tT, I Tip( t21) &A(till) )
= 1 —2c s (16/9)sin (b, /2)(I —cosctt24t21).

32
+ sin G t( t ]2)G A(t pi) . (35)

Similarly for A+(1,—1), Similarly, for 8-Mu one obtains

1
PB(to, tl, t2)=

3 g (9'iB(tlo)T1 (t21)ltT,"IT1 (t21)t/IB(twl))
m= 1,0, —1

32
2 A1 32

1 —
27

sin
2 GB(t20)+ 27

sin
2 GL()t21)GB(tip). (36)

Assuming that all possible combinations of spin states, A+(1,1), A+(1,0), A+(1,—1), 8+(1,1), 8+(1,0), and
8+(1,—1) take place with the same probabilities, i.e., the electrons of Mu and of 02 are unpolarized, one can write the
average muon spin polarization in Mu observed at t2 after a collision at t1 as

1
PL(tp, tl, t2) =

6 g g (QM(tip)Tlm(t21)ltr, "ITlm(t21) 1/IM(tip))6 M =A, B rn = 1,0, —1

1

2 [PA(tp'tl 't2) B( 0'tl 't2)~

32 . 251 32 . 221
1

27
Sill

2 GL (t20)+ 27
sin

2 Gt. (t21)GL (tlo). (37)
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2. Muon polarization after n collisions

The spin state at t3 of originally A-Mu colliding with (11) at time t, followed by a collision with (1,0) at i2 can explicitly
be written as

Tlp(l32) Tl l(r2l) tl A(l lp) =

(1 1),(1,0) e '"l'»e '""»(2+e' ')/3

(1,1),(1,1)2e '""2oe '"2'»+2s(1 —e'~2)/3

(1,1)l(1,1)ze '"l'»e '"4'»+2c(1 —e'~2)/3

where the subscript in (I,rn)k denotes the final spin state of the kth colliding molecule. The muon spin polarization at t3 ls
calculated to be

( QA(r 10)Tl 1(r21)Tlp(r32) I lr,"ITlp(l32) Tl 1(r21) 'iA(r 10)& I 2c s ( 16/9) sin (~2 /2)( I cosal24r32) (38)

The muon spin polarization in Mu at t3 after two collisions at tl and t2 averaged over all possible spin directions (18 in total)
1s

1
PL(tp, tl, tz, t3)= —g g g (QM(tip)Tl~(t2l)Tlk(t32)lo';IT, k(r32)Tlm(rzl)t/IM(rip)&

18 M = A, B k = 1,0, —1 m = 1,0, —1

32 52 32 b, l 32 b, 2 32 b, ,
1 ——sin 1 ——sin GL(t30)+ 1 ——sin —sin GL(t3l)GL(tip)

32 b 2 32 /3, , 32 52 32 b, l+
27

sin
2

1 —
27

sin
2 GL(t32)GL(l20)+ 27

sin
2 27

sin
2 GL(t32)GL(t2l)GL(lip). (39)

In general, the muon spin polarization observed at time t
after n collisions at t&, t2, t3, . . . , t„can be written symboli-
cally by

Using Eqs. (5)—(8), one can rewrite QA(0) in terms of the
eigenstates of Mu )I&, )2&, (3&, and ~4&,

PL(rp, il, l2, . . . , rz, r)

= GL"(r i„)—
k=1

32 bk
GL(tk k, ) 2

sin

yA(0) =
2 (11&+(c+s)12&+ I

3&+(c—s) I4&) =
2

The A-Mu state at time t is given by

c+s

c s

32 bk+ GL I ik, k —1) (40)

E. Mu in a transverse field

where GL(r32)GL Ir21)GLIrlp) GL(r31)GLI rip) GL(r30).
QA(t) = —,

'

e l CO ) t

(c+s)e
e

—l CO3t

(c—s)e '"4'

(42)

(43)

1 1
O'A (o) = (~„+P„) (~.+ P, ) .

2 " " 2
(41)

In this section, the initial muon spin polarization is as-
sumed in the positive x axis, where the applied magnetic
Beld is still in the z direction. If the muon captures an unpo-
larized electron, two kinds of Mu atoms are formed with the
same probabilities; (1) A-Mu, where the spin of the captured
electron is in the positive x direction, and (2) 8-Mu in which
the electron spin is pointing in the negative x direction.

Since the spin pointing in the x direction [25] is repre-
sented by (a+ P)/Q2, the spin state of A-Mu at the time of
its formation (t=0) is expressed by

0+=0„+E(7 =2 0 0 0 0

0 0 c 0

(44)

where the bases for the matrix are the free Mu eigenstates

~
1&, ~2&, ~3&, and ~4&. One can derive the time evolution of

the muon spin in A-Mu by calculating the expectation value
of o.~+ at time t,

It is convenient to define the complex muon polarization [25]
in such a way that the real and imaginary parts correspond to
the x and y components, respectively,

0 c 0 —s

0 0 s 0
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G:(t)= (@A(t) I o:I &A(t))

[c(c+s)e'"»'+ s(c+ s)e'""'

GT(t) = 2[GA(t)+ Gg(t)]=(c /2)[e'"'"+e '""']

+ (s /2) [e'"»'+ e'"'4'] (47)

+ c(c—s) e '"34'+ s(s —c)e'"'4']. (45)

1 1
4'a(0) = (~y, +Pp) ( o +P.)~4'a(t)

—e l Cd i t

(s c)e
—t'Cd3fe

(c+s)e '"4'

The electron spin pointing in the negative x direction is rep-
resented by (—n, +P,)/Q2. Therefore, for 8-Mu,

In the exact same manner as in the case of a longitudinal
field, the muon spin polarization at t2 of A -Mu after one
collision at tl with a (1,m) molecule can be calculated as

(O'A(t 10)T1m(tzl) I ~+ I Tl (tzl) 4A(t 10))

Assuming six types of collisions, A + ( 1,1), A + ( 1,0),
A+(1, —1), 8+(1,1), 8+(1,0), and 8+(1,—1), occur
with the same probabilities, one can write the muon spin
polarization in Mu observed at t2 after a collision at t 1 as

1
PT(to tl, t2) =—

6 M=AB m= 10,—1

x (@M(tlo) Tl (tzl) I ~+ I Tl (tzl) O'M(tlo))
The time evolution of the muon spin in 8-Mu is

Gg(t) =(Ps(t)lo'I ka(t))

[c(c-s)e'"»'+ s(s —c)e'"»'

+ c(c+s) e '"34'+ s(s+ c)e'"'4']. (46)

32 . 22 I
1 —sill GT(tzp)

32 b 1+ —sin GT(tzl) GT(t lo). (48)

If the captured electrons are not polarized, the average time
evolution of the muon spin in Mu is expressed by

The muon spin polarization in Mu at t 3 after two colli-
sions at i

&
and t2 is

1
PT(to tl tz t3) = X X X (&M(tlo)Tlm(tzl)Tlk(t32) l~+ITlk(t32) Tlm(tzl) 4M(tlo))18 M=AB k= 10,—1 m= 10,—1

32 , b, z 32 b, ,
1 ——sin 1 ——sin G (t3p)27 2 27 2 T

32 . ~z 32 . ~1 32 . ~z 32
+ 1 —

27
sin

2 27
sin

2 GT(t31)GT(t10)+ 27
sin

2
1 ——

7
sin

2 GT(t32)GT(tzp)

32 bz 32 b, ,+
27

sin
2 27

sin GT(t32)GT(tzl)GT(tlo). (49)

PT(tp, tl, tz, . . . , tn, t)

32
=G~(t t„)g —G (t, ) —sin

k= 1

32
+GTItk, k —1) 1 ——»n' (50)

where GT(t32) GTI tzl) GT It 10) GT(t31)G Tlt 10) G T(t30)

It is tedious but straightforward to show that the muon po-
larization at t after n collisions at t 1,t2, t3, . . . , t„can be
written as

F. Electron spin polarization in 8 atoms

In this section the electron polarization in H atoms in the
presence of spin exchange with 02 is investigated. The argu-
ments in the preceding sections can be applied to H atoms
with trivial substitutions in the Larmor precession and hyper-
fine frequency, i.e., co ~ co„and co0 /2 m =4.463~ 1 .420
6Hz.

The situation considered here is that the electron spin in H
is polarized in the positive x axis at t0 = 0 by, for instance, a
90' pulse, while the proton spin is assumed to be random.
Parallel and antiparallel hydrogen atoms have wave func-
tions given by
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1 1
$„(0)= (nt + pp) (n, + p, )~p„(t)

The time dependences of the electron spin in free A and B
hydrogen are calculated in a straightforward manner as

(c+s)e
l co3t

(c-s)e '"4'

1 1
pa(0) = ( —n„+pJ ) (n, + p, )~@a(t)

—e 1CUit

(c s)e
e l CO3f

—(c+s) e '"4'

G„'(t) =(P„(t)~o'+~/„(t))
=

2 [s(c+s)e'"»'+ c(c+s)e'"»'+ c(c—s) e'"14'

+ s(s —c)e '"'4'],

Ge(t) = ( P~(t)
~

tr'+
~
Pe(t) )

= —,
' [s(s —c)e'"'&'+ c(c—s)e'"»'

+ c(c+s) e'"14'+ s(c+ s)e ' '4'].

If 02 spins are not polarized, the average electron spin po-
larization in H is given by

The complex polarization of the electron spin in H is

0 s 0 c

0 0 c 0
0 =cT +lo =2 0 0 (51)

G'T(t) = '[Gg(t) +-Gg(t)1

( 2/2) [ 1 cd 12k+ kco341]

+ (c2(2)[e1~23t+ et 14t] (52)

0 0 —5 0 Following the same chain of argument as in the case of muon
polarization, one can write the average spin polarization of
the electron in H at t2 after a collision at t, as

1
p'r(to ti. t2) =

6 2 2 (4M(t to) Ti (t2i) In+ ITtm(t2t) 4M(tio))
M=A, B m=1,0, —1

32 51 32
1 —

27
sin

2 GT(t2o)+ 27
sin

2 gT(t2&)gT(t&o), (53)

where the quantity g T(t) is given by

g'T(t) = —,'[G„'(t)—Gt3(t)] = (cs/2)[e'"' '+ e'" ' —e '""'—e'"'"]. (54)

The electron spin polarization after two collisions at t1 and t2 can be expressed by

1
PT(to ti ~ t2 t3) = g g g (QM(t&o) Tim(t2t) Tik(t32) I ~+ I Tik(t32) Ti~(t2i) QM(t& ))o

M=A, B k= 1,0, —1 m= 1,0, —1

32 262 32 251 32 262 32
1 ——sin 1 ——sin GT(t3o) + 1 ——sin —sin gT(t3&) g T(t &o)

32 ~62 32 251 32 252 32
+ —sin 1 ——sin gr(t32) g T(t2o) + —sin —sin gT(t32) g T(t21)g T(t )o) . (55)

The expression after n collisions becomes
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PT(t0, tl, t2 ~. . . , tn t)
k=1

32
1 ——sin — [GT(t) g—r(t)]

32
2

b, k 32
+gT(t t ).. . . gT(4.k 1) -27»n 2 +grltk, k 1) 1——

27
sin'

2k=1
(56)

where g T(t32) g Tl t21)g Tl t10) g T(t31)g Tl t10) = g T(t30) .

III. STATISTICAL AVERAGE Gi~(t) = 1 —2c s =(2x +1)/(2x +2). (59)

The quantity P(t0, t, , tz, . . . , t„,t) denotes the polariza-
tion in question at t after n collisions at t1, t2, . . . ,t„. The
experimentally observed polarization at t is obtained [28] by
averaging over all possible time distributions of
t 1 t2 t 3 ~ . t and over the number of collisions between
to= 0 and the time of observation t,

Substituting Eq. (59) into Eqs. (37), (39), and (40), one ob-
tains

P~~(t0, tt, t) =(1—2c s ) 1 2c—s —sin
32

P(t) = g dt,
n=o ~O

ft3
dtz dt's(t0, tt, . . . , t„,t)

0 J 0

PL(t0, t, , tz, t)=(1 —2e s ) 1 —2c s —sin
32

XP(t0, t1, . . . , t„,t), (57)
32

1 —2c2g —sin
27 2. '

where f(t0, t1, tz, . . . , t„,t) is the probability density that n

collisions between to=0 and t take place at ti, t2, . . . t„.
The derivation and properties of f(t0, t, , tz, . . . , t„,t) for
several representative Markovian processes have been dis-
cussed in Refs. [28,34]. In this work, it is assumed that the
collision is Poissonian, where the probability density is sim-

ply given by f(t0, t, , tz, . . . , t„,t) =)1." exp( —)1.t). The
quantity X, which can be expressed in terms of the number
density of Oz (n), the relative velocity (y), and the collision
cross section (a.) as 11.= nU o, is the encounter rate of Mu (or
H) and Oz, i.e., the average rate of collisions, regardless of
whether collisions are of spin fIip or spin nonAip type. In this
case Eq. (57) can be simplified to

PL(t0, t1, tz, . . . , t„,t)

=(1—2c s )
k=1

2 232
g —sin

27 2

=(1—2c s ) 1 —2c s —sin—2 2 2 2 2

27 2. ' (60)

, (kt)"
PL(t)=(1 —2c s )g e

n=O n!

where 5 is an average value of A, , b, z, . . . ,6„.In this case
the integrand of Eq. (58) is independent of t1, tz, . . . , t„and
the n-fold time integral simply gives t"In, !.Thus,

fg

P(t) = g dt, dt, dt„e "k"
n=0 0 0 0

XP(t0, t1, . . . , t„,t). (58)

2 232—sin—
27 2. (61)

A. Muon spin relaxation

In this section, the statistically averaged muon spin polar-
ization is calculated using Eq. (58) in longitudinal and trans-
verse fields. The muon spin-relaxation rate observed in each
case is expressed in terms of the phase shift 6 and the rate of
collisions X. .

1. Longitudinal field

The time evolution function G~(t) in Eq. (33) contains a
term proportional to cosco24t which oscillates, at least, at the
Mu hyperfine frequency. Since the Mu hyperfine period
(22rlto0 = 0.22 ns) is much shorter than the typical time reso-
lution of the conventional p, SR apparatus, the term cosco24t
can be ignored as long as the collision rate is much less than
to24 [27]. In this case the time evolution function Gt (t) can
be simplified to

The observed muon spin-relaxation rate is expressed in terms
ofA as

, , 32
XL=2c s 27~ 2 (1+ ) 27 2

' (63)

2. Weak transverse field

In a field of less than 8=10 6, where c =s =-,' and
CIP12 to23 the time evolution function GT(t) can be simpli-
fied as

The quantity in ( } is the Poisson probability that there are
exactly n collisions between to=0 and t. The summation
over n can be calculated in a straightforward manner using
e =Ex"]n!, which leads to

zz'2 '
PL(t)=(1 —2c s )exp —2c s —k' sin —lt . (62)27 I, 2)
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TABLE IV. Transition probability matrix K» . spin exchange with a (1,1) 02 molecule. The states
l 1),

l2), l3), and l4) on the top of the table are the initial Mu (H or Ps) states before a collision. The four
numbers in the column below each ln) represent the probabilities of Mu bring in a particular Mu eigenstate
regardless of final O~ spin states after a collision with (1,1).

l
1)(1,1) l2)(1,1) l4)(1,1)

l3) o

l4) o

s Sln28 2
9

1 —s (1+2c )9 sin , 41
2)

(~
2c s 9 sin l—9

i 2

lgb
c 9sin28 2

(g
1 ——sin9

s sin28 ~ 2
9

(g
c 9 sin28 . 2

i2

2c2s2 sjn29

1 —c (1+2s ) 9 sin

Gz(t) = —,'(e™+coscuot). (64) One can carry out the summation with respect to the number
of' collisions,

The quantity co~ is the precession frequency of triplet Mu
given by &0M = (cu, —cu„)/2. The fast-oscillating term
coscuot can be ignored as long as the collision rate is much
less than too [27]. Substituting Gr(t) = —,'e™in Eqs. (48)—
(50), one can easily verify

P~z(t) = —,'e' M' exp[ —
—,",k(sin b, /2)t]. (69)

k~z= —,",k sin (b, /2). (7o)

The observed relaxation rate is expressed in terms of 6 as

1 . , 16
P~~(to, t&, t) = —e M 1 ——sin (65) 3. 1ntermediate transverse field

1 . 16
2 5] 16

Pr(to, t, , t2, t) = —e™1 ——sin 1 ——sin

(66) G~~(t) = —,'(e'"»'+ e' »'+ 2 cosruot). (71)

If the applied field is such that 20~B&&Bo=1.585 kG,
one observes the beating of two Mu frequencies ~]z and
co23,

1 . , 16
P (t, t, , t, , . . . , t„,t)= —e' 'g 1 ——sin'

k=1

1
t

16
2= —e'"M' 1 ——sin — . (67)

2 27 2

The integration in Eq. (58) can be carried out to give

If the two frequencies are well separated in the sense that the
quantity (coze —cu, 2)t is much larger than unity at a typical
time of observation (e.g. , t= 1 p, s), all the terms involving
the frequency difference, exp[i(c0z& —ru&z)t;, ], will vanish
upon integration [27,28]. Substituting Eq. (71) in Eq. (50)
and ignoring the fast hyperfine oscillation, one obtains

PT(t, , t, , t, , . . . , t„,t) = —,'(e'"»'+ e'"»')
1 . ()it)"

PP(t) EQ) fgMkt
n=O O.

16
1 sin

27 2.
(68)

&&[I ——', sin (b/2)]". (72)

The statistical average can easily be carried out,

TABLE V. Transition probability matrix K,o. spin exchange with a (1,0) 02 molecule.

l 1)(l,o) l2)(l, o) l3)(l,o) I4)(l,o)

13)

1 SII19

(g
s —sin l—28 ~ 2

9

(g
c-sin l—28 2

l, 2

s —sin28 . 2
9

(g
1 ——sin l—

9

c —sin28 . 2
9

(g
c —sin I—9

1 ——sin
( 2

(g
s —sin28 2

9

c —sin28 2
9

(g
s 9 Sln2 8 ~ 2I

( 2

1 9 S1n
( 2
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P~z(t) = (e'"»'+ e'"»') exp[ —f k sin (6/2) t]. (73)

The two precession frequencies relax with the same rate,

() t)"
P4 (t) = —[ed~231+ e~ ~ 141]g

n=o n.'l

X[1—
—,", sin (6/2)]"

)t~r= —,')t sin (b, /2).

This value is 1.5 times higher than the low-field value.

4. High transverse geld

(74)
,'[e'—"»'+e'"'4']exp[ ——'„' k(sin 5/2) t], (79)

where the observed relaxation rate of the electron spin is

In high fields B&&BO=1.585 kG, where c=1 and s=0,
one can simplify Gr(t) as

)tr= —,",)t sin (5/2). (80)

G+(t) = —(e'~12t+ e
—i m34t) (75) C. Renormalized encounter rate

In this case, one obtains

PZ"(tp, ti, tt2, . . . , t„,t)=2(e' »'+e '"'4')

X [1—
—,", sin (5/2)]". (76)

Therefore,

P~z(t) =
2
(e'"»'+ e '"34') exp[ —22)t(sin 5/2) t]. (77)

The relaxation rate in a high held is

k~z= 22K sin (b'/2). (78)

In this case, Pr(tp, t, , t2, . . . t„,t) can be expressed by

Pz(to, ti, t t2, . . . , t„,t) =
2
[e'"23'+ e' '4']

X[1——'„' sin (5/2)]".

The averaged electron polarization at t is calculated from Eq.
(58) as

B. Electron spin relaxation in a high transverse field

In this section, the case of a high field is considered where
most ESR measurements are performed. If B&)BC=0.5059
kG, where c= 1 and s =0, the quantities Gr(t) and g r(t) are

simplified, respectively, to

GT(t) =-,'[e' »'+e'"'4'] and gr(t) =0,

Equations (37) and (48) give an interesting insight into
the nature of spin exchange with 02. If sin (5, /2) =0, the
muon spin polarization at t2 is simply given by
P(tp, ti&t t2) = G(t2p), indicating that the collision at t, has

no effect at all on the muon spin at t2. The situation
sin (hk/2) = 0, therefore, can be regarded as the case where
the kth collision is of pure spin nonAip type. If
sin (6, /2) = g, on the other hand, the spin nonflip term
vanishes and the polarization at t3 is given by a simple prod-
uct of G(t)'s, i.e. , P(tp, ti, t2) =G(t2i)G(tip). It has been
shown [25,28] that the product G(t2, )G(t,p) represents a
spin-Aip collision at t

&
. This is in contrast to the case of Mu

spin exchange with spin--, species, where sin (6/2) = 1

corresponds to pure spin flip. For general values of 5,
the observed polarization at t2 is a superposition of spin-
nonflip and spin-flip terms, i.e., G(t2p) and G(t2t)G(t&p),
with appropriate weighting factors, 1 ——'„' sin (5/2) and

» sin (5/2), respectively. The second term in Eq. (39) or
(49) represents the process where the first and second colli-
sions are, respectively, of spin-fIip and spin-nonAip type.
Such a term depends on t] but not on t2, refIecting the fact
that the spin-nonAip collision at t2 has no effect on spin
dynamics of the muon and electron. If the collision process is
Poissonian, one can carry out all the time integrals with re-
spect to the times associated with spin-nonflip collisions in

Eq. (58) so that the result is expressed in terms of the times
associated with spin-fIip collisions only. Following the pro-
cedure described in Ref. [28] for Mu spin exchange with
spin--,' species, one can eliminate all the dependences on the
spin-nonflip times from P(t). The result for the muon spin
polarization in a transverse or longitudinal field is

TABLE VI. Transition probability ICt 1.'spin exchange with a (1,—1) 02 molecule.

11)(1,—1) i 2)(1,—1) )3)(1,—1) [4)(1,—1)

1 S1119

, ,

(a
s —sin '—

l2
1 —c (1+2s )9 sin

2/

c —sin28 . 2
9

(g
2c s —sin I—

9

ig
s —sin28 2

9

14)
(g)

C 9sln28 2

i2/
2c s —sin ~—9

1 —s (1+2c ) —sin9
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It2 It3
P"(t)= g dt, dt, dt e "»')»

m=0 30 JP 30

XP (tp, ti, . . . , tm, t),

where XsF is the renormalized encounter rate given by

)i.s„=k —'„' sin (b./2),

(81)

(82)

which is a measure of the frequency of spin-Aip collisions.
The quantity P~(tp, t, , . . . ,t, t) is a simple product of
G~(t) 's,

P (tp, ti, . . . , tm, t)

=G"(t—t )G"(t, -1) G"(t21)G (tip).

(83)

representing the muon spin polarization after I spin-flip col-
lisions [25,28] at t, , t2, ts, . . . , t . The quantity G"(t) is
either G~T(t) or GL(t), depending on the field geometry
used. It should be mentioned that Eq. (83) consists of only
one term as opposed to 2" terms in the case of 40 or 50.

A similar procedure can be carried out for the electron
spin polarization in H in a transverse field and the result can
be written down as

PT(t) = f GT(t) —gT(t)]exp[ —)1.sFt]

ft2+g dt,
m=P 30

rt ft
2

' ' dtm sF

0 &p

Xp T(t0, t1,tm, t), (84)

where

PT(tP ti, . . . , tm, t)

gT(t tm)gT(tm, m —1) ' ' ' gT(t21)gT(tip)

(85)

The first term of Eq. (84) represents the portion of H atoms
which do not undergo a collision until t and the second term,
which has in general a different relaxation rate from the first
term, is for the H atoms which participated in, at least, one
collision with 02. It should be mentioned that for non-
Poisson processes including the case of deterministic chaos
[34], Eqs. (81) and (84) are not valid and the observed po-
larization P(t) depends not only on ksF but also on
kNF= X [1—

—,", sin (b/2)] [28,34], which is a measure of the
frequency of spin-nonflip collisions. Equation (81) together
with the renormalized encounter rate ks„(rather than the
bare encounter rate )1.) will lead to the same expressions for
Pz~(t), Pz"(t), and PT(t) discussed in the preceding sections,
once the remaining integrals with respect to times for spin-
Aip collisions are carried out.

D. Positronium lifetime

Positronium (Ps) occurs in two distinct spin states: (1)
ortho-Ps is a spin triplet state with annihilation lifetime
I/k, =140 ns and (2) para-Ps with zero total spin with

l /k 0
= 0.12 ns. As a result of spin exchange with 02,

ortho-Ps can be converted to para-Ps, which causes a reduc-
tion in the apparent lifetime of ortho-Ps.

The absolute squared values of matrix elements in T»,
T&p, and Ti i represent the transition probabilities among the
states ~n)(l, m). One can construct tables of the transition
probabilities, E», K&0, and Ki, among the Ps eigenstates
regardless of the final 02 spin state after a collision with
(1,1), (1,0), and (1,—1) molecules, respectively (Tables IV—
VI). The labels on the top ~1), ~2), ~3), or ~4), are the Ps
states before the collision and the column below each label
gives the distribution of Ps states after one collision. If the
polarization of 02 spins is negligible, the average transition
probability matrix (Table VII) can be constructed simply by

K= [Ki1+K i0+ Ki i ]/3.

This simple sum of three Ki„'s can be justified, because two
different initial states lead to two different mutually exclu-
sive sets of final states, e.g. , ~1)(1,0) —+~1)(1,0), ~2)(I, I),
4)(1,1) (Table II), while

~
1)(1,—1)~

~
1)(1,—1),

2)(1,0), ~4)(1,0) (Table III), so that there is no interference
in the final states.

The quantity Bp for Ps is 36.28 kG, corresponding to the
hyperfine frequency cop/2~=203. 4 6Hz. In this work, the
applied field is assumed to be weak (B(&B0) so that the

system is in the low-field limit, x=0 and c=s= I/Q2. In
this limit, the states ~1), ~2), and ~3) are slowly decaying
triplet states and ~4) is the fast decaying singlet. The rate
equations for the occupation numbers, ni(t), n2(t), n&(t),
and n4(t), in the Ps eigenstates, ~1), ~2),

~
3), and ~4) can be

constructed from Table VII as

dni = —krni(t) —[2ni(t) —n2(t) —n4(t)])1. ~2'7 sin (5/2),

drI, 2 = —k Tn2(t) —[3n2(t) —n, (t) —ns(t)

—
n 4( t) ]k —,', sin (5/2),

d03 = —)i.rn3(t) —[2n3(t) —n2(t) —n4(t)])i. —,', sin (5/2),

dn4 = —Xsn4(t) —[3n4(t) —n, (t) —n2(t)

—n3(t)])1. —,', sin (6/2),

where P =nvo. is the rate of collisions and the quantities
kT and ks are the density-dependent (including the pick-off
process) ortho and para-Ps lifetimes, resp-ectively, in the
absence of spin exchange. Since the main interest here is the
change of ortho-Ps lifetime, one is interested in a time re-
gime comparable to the ortho Ps lifetime (I/-kT) and much
larger than 1/k z . This assumption amounts to setting
n4(t) =0, leading to

n T(t) = n T(0)exp[ —X Tt k t 27 sin ( b /2) ], —
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where nr(t) =ni(t)+nz(t)+ns(t) is the population in the
triplet states. The apparent lifetime of ortho-Ps in the pres-
ence of Oz spin exchange is

kz"= » X sin (6/2)

= 3ksF/4, p, SR in intermediate transverse fields,

hop, =X.z.+ —,', X. sin (6/2). (86) (89)

IV. DISCUSSION

For Mu spin exchange with spin--,' species such as Mu+
e, Xsp and XNp are defined as ksp=k sin (5/2) and

XNp=k cos (5/2), respectively, with X=nvo. , where the
quantity v is the relative velocity, n is the number density of
paramagnetic species, and o. is the collision cross section. If
the medium is 100% spin polarized antiparallel to the Mu
electron, XSF and XNF are related to the spin-Hip and spin-
nonAip cross sections by XsF=nvo. sF and ~NF=nvo. NF, re-
spectively. In the partial wave analysis, o.&F, o.NF, and a. can
be expressed by [37,38]

1
trsp g2X (2l+ 1)sin (8&+ —

8& ),

l
aNp= —„zg (2l+1)[2 sin 8'&++2 sin 8&

1

—»n'(~i/ —~i )],

2
a.= asp+ crNp =—qg (2l + 1 ) [sin 8', + + sin 8, ],

where k is the wave number, and the plus and minus signs
after the partial wave label l correspond to singlet and triplet
encounters. The spin-Aip rate Xsp, defined as a quantity in-
dependent of the spin polarization of the paramagnetic spe-
cies, represents the rate of collisions which inhuence spin
dynamics in both spin-unpolarized and spin-polarized media
[28,29] alike.

It is possible for spin--, species such as Cs to Aip the
electron spin of Mu in one collision, e.g. , Mu" +Cs~~
Mu" + Cs" [25]. For Mu+Oz collisions; however, the situa-
tion is more complex than Mu+Cs. As can be seen from
Table VI or Eq. (29), the transition probability
~1)(1,—1)~~1)(I,—1), 1 —-', sin (5/2), will never vanish
regardless of the value of 6, which implies that the electron
spin in Mu cannot be flipped completely in a Mu+Oz colli-
sion and that there is no clear separation between spin-Hip
and spin-nonflip collisions at the microscopic state-to-state
level. In spite of this complexity, it is still possible to define
Xsp= —,", csin (5/2) as a measure of the spin-Ilip rate for
Mu+Oz. It is interesting to express ) T, XT, XL, etc. , in
terms of ) sF,

kr= —,",k sin (b, /2) =esp, ESR in high fields, (87)

k~~= —,",X sin (5/2)

=esp/2, p, SR in low transverse fields, (88)

Such changes in Ps lifetimes upon addition of small amount
of Oz in Ar in the gas phase have been observed [35] and
attributed to the presence of unpaired electrons in Oz [36].A
more general treatment of ortho- and para-like Ps lifetimes
in a magnetic field is presented elsewhere [37].

k~z= —,",k sin (5/2)

=esp/2, p, SR in high transverse fields, (90)

k 16
z sin (5/2)1+x 27

P SF/2
z, p, SR in longitudinal fields,

X o p k7+ pg X sin (5/2) = kz.

+X&F/4, ortho-Ps in zero field. (92)

2 8J(J+1)
)esp= —k sin (b, /2)=2 zX sin (5/2), (93)

3 2J+1

where f is the statistical factor defined in Ref. [41].For J=
—, and 1, this equation gives the correct statistical factors 1

and —'„', respectively.
The transverse muon spin relaxation rate at intermediate

fields, X ~r = 9)i. sin (5/2) = ~esp, is 1.5 times faster than that
in low fields, which is a distinct signature for spin exchange
absent in Mu relaxations due to chemical reactions [30].
Such a field dependence for spin exchange was predicted
theoretically for spin-~ species [27] and subsequently con-
firmed experimentally in the Mu+Cs system [17],serving as
a convenient tool to distinguish spin exchange from chemical

It is important to note the relaxation rate of the electron spin
in H in high transverse fields is different from the muon
relaxation rate in low, intermediate, and high fields, which
will have important consequences in comparing ESR and

p, SR relaxation data [32].This difference in 5 dependences
between p, SR and ESR is due to the fact that p, SR is sensi-
tive to electron spin dynamics indirectly through the time
evolution of the muon spin, while ESR observes the relax-
ation of the electron spin directly, where the transition

~
n~n, )~

~ n~P, ) may be a case in point. In a high longitu-
dinal field, where both initial and final states are eigenstates,
the electron spin polarization is completely lost in one colli-
sion in the sense that the spin of the final state is opposite to
that of the initial state. On the other hand, the muon spin is
not affected at all by this transition, since the final state is
also an eigenstate.

It should be noted that the expressions for the relaxation
rates Xz" and X~~ expressed in terms of esp= —,",X sin (5/2),
are identical to the case of spin--,' species [25,27] expressed
in terms of Xsp=X sin (b/2). If one rewrites Table VII
(transition probabilities) using X sp, the resulting matrix
(Table VIII) for Oz is identical to that for spin--,' paramag-
netic species [37].One is tempted to speculate that the tran-
sition rate matrix and the muon and electron spin relaxation
rates for Mu (H) spin exchange with species of any arbitrary
spin J are identical to those of spin--, paramagnetic species,
if Xsp is defined as
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TABLE VII. Average transition probability matrix K=[K»+K,0+K, i]/3: spin exchange with unpolar-

ized 02 molecules.

I2)

I3)

16
I'

1 27 Sln
(2)

I'g
S 27 S1n

216 2

c —sin216
27

(g
S 27 Sln

216 2

1 —(I+2c2s2) —' sin2—27

c —sin216
27 2

2c s 27 sin
2j

C 27 Sln
216

(2)

1 —
27 sin

s 27 Sln
216

42/

C Sln
216

27

2c s 27 sin
( 2

S 27 Sln
216

2 j
t' g'I

1 —(1+2c s ) —' sinz27 i2

reactions as the cause of observed relaxations. A similar field
dependence has been observed experimentally for Mu+02
[30] and the present work confirms the ratio of relaxation
rates in intermediate and low fields is also 1.5 as in spin--,
species. It is interesting to point out that this characteristic
field dependence in transverse relaxation rates is absent in Ps
spin exchange because of the degeneracy ~&=~3 for Ps
[37)

Ps spin exchange in zero field enhances the ortho-Ps an-
nihilation rate by A)i. sin (5/2) =)esp/4 [Eq. (86)], indicat-
ing that the average rate of ortho- to para-Ps conversion is
Xsp/4. This straightforward interpretation is not valid for Ps
spin exchange in external magnetic fields, where the ~2) and

~4) states do not represent pure ortho and para Ps [-37]. -
In most experimental situations, one obtains esp, which

is a product from k and sin (b, /2). One notable exception to
this is Mu spin exchange with spin-polarized media, where
measurements in an intermediate field can determine k and
sin (b, /2) separately [28].

Treatment by Turner et al. [41] defines )i.sp and

)esp=�

)i, sin (b /2) and expressed the observed relaxation rate
in low fields by XT $7ksF, which is in agreement with Eq.
(70).

It is instructive to estimate the phase shift
—5 = fdt[VD(r) —Vti(r)]/fi=Bt[VD(r) —

, V&(r)]/fi for a
typical experimental situation. It is assumed that the differ-
ence in the potential energy is on the order of 1 eV and that
the integral with respect to time is calculated over the time
period for thermal Mu to travel over the size of 02, which is

f oo

= —e)M+ X.sF dt Xspe
Jo

stan '
gx'+1

tan(niptgx + 1/2)

=(o + (r0, + cu )(coo/)i. sp), (94)

about St=10 ' s. Under these assumptions, one obtains
—5=150, which is much larger than 2~. If Bt is very dif-
ferent from one collision to another, the quantity 5 takes
random values in the reduced zone from 0 to 2'. This im-
plies that the average value of sin (5/2) is —,', a case of
strong collisions [1],leading to )i. 'T= 27)i. for the electron spin
polarization in high transverse fields and X.T 2'7k 9X, and

27 k for the muon spin polarization in low, intermediate, and
high fields, respectively, where k is the bare rate of encoun-
ters.

The case of very fast spin exchange with 02, in which
one has to deal with a very large number of collisions, can
most conveniently be investigated with the simplified Eq.
(81). The comparison of Eq. (81) with Ref. [26] reveals that
the only change to be made for 02 spin exchange is to re-
place esp=)i. sin (5/2) by ksp=)i. —,", sin (b, /2). The ob-
served precession frequency and relaxation rate of the muon
spin in Mu in a transverse field are related to the imaginary
and real part, respectively, of lnGT(t) by

f oo

niobs )~ sp dt kspe '"' Im InGT(t)
Jo

TABLE VIII. Average transition rate matrix expressed in terms of the spin-Ilip rate (renormalized encoun-

ter rate) esp. Mu (H or Ps) in collision with unpolarized species. This matrix is valid not only for 02 but also
for paramagnetic species of any spin J, if li. sp is defined by Eq. (93).

II)
12)
13)
14)

( I)O,

k —XSF/2
s esp/2

0
c ksF/2

s esp/2
li —(1+2c s )lisp/2

c esp/2
2c s esp/2

13)O.

0
c ksF /2

x —) SF/2
s Xsp/2

c esp /2

2c s X sp/2
s ksF /2

g —(1+2c s )$$F/2
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dt XsFe»' Re lnGL(t)
Jo

COp
2 l

~+ 1+ co24/XsF

2

[I —
—,'(x +1)(too/)tsF) ].

sF
(95)

If the renormalized encounter rate XsF is much larger than

the Mu hyperfine frequency coo/2' =4.463 6Hz, the muon

spin cannot follow the rapid repeated electron fIips so that
the muon spin in Mu precesses with the precession frequency
of the bare positive muon [25,26,39,40]. This phenomenon
analogous to motional narrowing in NMR has previously
been investigated in details for spin--, species [26]. Compar-

ing Eq. (94) in the limit of Xs„&)coo with the corresponding
expression by Nosov and Yakovleva [42] (coo/4 v), one con-
cludes that their phenomenological parameter p corresponds
to v=)tsF/2=X —,", sin (6/2) in the case of Oz spin ex-
change. In a longitudinal field, where there is no precession,
the relaxation rate is given by

CO()

2ksF l + A@24/~sF

V. CONCLUDING REMARKS

The (statistical) factors which connect experimentally ob-
served rates to the collision rate and sin (b, /2) are derived
for Mu+Oz (/zSR), H+02 (ESR), and Ps+0@ (Ps lifetime),
which enables one to interpret spin-exchange data obtained
by three different techniques in a coherent manner. Even
though Mu (H or Ps) spin exchange with 02 is much more
complex than that with spin--, species, it is still possible to
define the spin-flip rate as )ts„=X,—", sin (5/2). Once ex-
pressed in terms of X», the expressions of XT, ) T, k L, and
Xo p for spin- 1 molecules become identical to those for
spin--,' species expressed in terms of XsF=X sin (b/2) ap-
propriate for spin--,'.
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