
PHYSICAL REVIEW A VOLUME 52, NUMBER 6

Bound states of positrons and neutral atoms

DECEMBER 1995

V. A. Dzuba, V. V. Flambaum, G. F. Gribakin, and W. A. King
School of Physics, University of New South WalesS, ydney 2052, Australia

(Received 30 August 1994; revised manuscript received 7 April 1995)

We use many-body perturbation theory to examine the interaction of positrons with atoms. Our calculations
predict positron s-type bound states with binding energies 0.87, 0.23, 0.35, and 0.045 eV for Mg, Zn, Cd, and

Hg atoms, respectively. This binding is due to the positron-atom polarization potential and virtual positronium
formation. A simple criterion is used to find other atoms that are likely to form bound states with positrons.
Among the most probable candidates are Ti, V, Cr, Mn, Zr, Nb, and Mo.

PACS number(s): 36.10.k, 31.25.Eb, 32.10.Hq, 71.60.+z

I. INTRODUCTION

The main aim of this paper is to suggest that neutral at-
oms can form bound states with positrons. The results of our
calculations performed using atomic many-body theory
methods show that a number of atoms (Mg, Zn, Cd, Hg, and,
we believe, many others) are indeed capable of binding pos-
itrons. This binding is due to the correlation interaction be-
tween the positron and the atomic valence electrons. There
are two physically distinct mechanisms contributing to the
large positron-atom attraction. The first one is the dynamic
polarization of the atom by the positron. The strength of this
interaction is roughly proportional to the atomic dipole po-
larizability n. This interaction acts between an atom and an
electron as well and is responsible for the stability of atomic
negative ions. The second mechanism is the virtual forma-
tion of positronium (Ps) bound states by the positron and one
of the valence electrons. The attraction it produces is similar
to the stabilization of the symmetric state in a two-well po-
tential. Indeed, the valence electron can be bound either to
the positive atomic ion (with the binding energy equal to the
ionization potential I), or to the positron (with the ~E&, ~

bind-

ing energy, where E&,= —6.8 eV is the Ps ground-state en-
ergy).

The possibility of bound-state formation of positrons with
atomic and molecular systems has been extensively studied.
Ore [1]proved the stability of positronium hydride PsH (or
e+H ) and the existence of positron-anion bound states may
be considered well established (see [2], and references
therein). There is also experimental evidence for the exist-
ence of bound states of positrons with neutral molecules [3].
However, very few results have been obtained about the ex-
istence or nonexistence of bound positron-atom species.
Aronson et al. [4] proved that positron binding to hydrogen
is not possible which agreed with the earlier variational cal-
culations of the e+-H scattering phase shifts [5]. Gertler
et al. [6] were able to show that ground-state helium would
not bind a positron. Golden and Epstein [7] derived neces-
sary conditions for the existence of bound states for positron-
atom systems and showed that He, Ne, and N, in their
ground states, are not capable of binding positrons, whereas
the binding of positrons to H, 0, Ar, and Kr could not be
ruled out. Karl et al. [8] used the proton-atom potential and
concluded that He, Li, N, 0, F, Ne, Na, Al, and Ar probably
do not bind positrons.

There have been a number of calculations that reported on
positron —alkali-atom s-type bound states (e Li [9], e+Li,
e+Na, and e+ K [10]),but while being bound in the positron-
atom channel, these states are unstable to Ps emission. This
is also true for the positron —alkaline-earth-atom (Ca, Sr, Ba,
and Ra) bound states [11] which were obtained using the
adiabatic dipole polarization potential calculated in the rela-
tivistic polarized orbital approximation. The same calcula-
tion yielded binding energies of 0.003 and 0.02 eV for Be
and Mg, respectively, and the values of 5 X 10 and 0.0075
eV were obtained for Zn and Cd [12].However, the accuracy
of these predictions is doubtful since neither the use of the
adiabatic approximation nor the neglect of other multipoles
and the Ps formation can be justified in this problem.

In the present work the interaction of positrons with at-
oms is studied using the formalism of atomic many-body
theory. Atomic many-body theory has not been applied to the
type of double-well bound-state problem considered here.
However, high accuracy has been obtained in the calculation
of electron-atom scattering (see, e.g. , [14—17]), positron-
atom scattering [18,19], calculations of negative ion bound
states [17,20—23], and calculations of the energy levels of
atoms with one valence electron [24—26], and very high ac-
curacy has been obtained. For example, the largest discrep-
ancy with experimental values of the Cs energy levels was
0.005 eV [24] and was 0.01 eV for Fr [25].The discrepancy
between the experimental values of the binding energies of
Pd was 0.02 eV [17] and for He was less than 0.01 eV

II. CORRELATION POTENTIAL METHOD

Within the atomic many-body theory the problem of in-
teraction between a ground-state atom and a positron (or an
electron) can be reduced to a single-particle (Dyson) equa-
tion (see, e.g. , [13])

(00+&e) PE= F-Ae

where Pz is the quasiparticle wave function describing the
motion of the extra particle of energy F., Ho is the single-
particle Hamiltonian of the zeroth approximation, and gE is
a nonlocal energy-dependent potential:
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FIG. 3. Renormalization of the polarization operator by the re-
sidual Coulomb interaction ("screening").

FIG. 1. Diagrammatic expansion of the positron-atom correla-
tion potential (fl deli). The thick line corresponds to the positron.
Wavy lines show the Coulomb interaction between the positron and

atomic electrons, and between the atomic electrons. Summation
over all intermediate states is assumed. In the electron-atom case
exchange diagrams must be added.

&~(r.r') WE(r') «' (2)

ne
X~"(r,r') = —

4 8(r—r'). (3)

Note that the value of the atomic dipole polarizability n is
determined by the polarization operator in Figs. 3 and 4, and
corresponds to the random-phase approximation (RPA) for
the excited atom. Although the dipole polarization [Eq. (3)]

ge(r, r') describes the correlation interaction of the extra
particle with the atom. It is equal to the self-energy operator
of the single-particle Green's function. If Eq. (1) has a nega-
tive eigenvalue 8= so(0, a positron-atom bound state (or a
stable negative ion if an electron is considered) exists.

It is convenient to choose 00 to be the Hartree-Fock
Hamiltonian of the atom. The correlation potential is then
given by the diagrammatic expansion shown in Fig. 1. The
main contribution to Xe is given by the second-order dia-

gram, describing the polarization of the atom by the projec-
tile (diagram a in Fig. 1). There are also important higher-
order corrections to it (see, e.g. , [22—24,26]), that take into
account the electron-hole interaction and the screening of the
Coulomb interaction in the excited atom (e.g. , diagrams b
and c in Fig. 1). Following [24,26] we can calculate the
correlation potential in the second order in the Coulomb in-
teraction between the projectile and atomic electrons, as
shown in Figs. 2—4. The intra-atomic correlations of two
types, namely, the electron-hole interaction and the screening
of the Coulomb interaction, are taken into account within the
polarization operator. The Feynman diagram technique and
the Green function method are used to perform the all-order
summation of the diagrams of the polarization operator and
calculate Xz. The correlation potential thus calculated will

be referred to as the polarization potential XP hereafter,
since it produces the long-range asymptotic behavior

p, . ~ (fnll'lq'1. ,K)(q'I. , KII I«) d'&
(fl&alt)=

)
(' ~2 (2 )3

E+e„—E),+ +i 6

(4)

dominates in the asymptotic region, X~z" contains contribu-
tions from all multipoles, and the contributions of, say,
monopole and quadrupole polarization of the target by the
projectile are known to be quite important.

The polarization potential g~z" (with the corresponding
exchange diagrams included) was shown to be quite accurate
for describing electron-atom interaction (see references in
Sec. I). However, in the positron-atom case this approxima-
tion proved to be somewhat deficient t18,27]. The physical
reason for this is the possibility for the positron to virtually
form Ps bound states with the valence electrons. This process
is represented diagrammatically by the series in Fig. 5. The
contribution to the correlation potential that results from the
sum of such series will be referred to as the Ps formatio-n
potential, Xz'. In the case of electron-atom interaction the
series in Fig. 5 is sign alternating and hence each successive
term partially cancels the previous term, giving a small total.
In the case of positron-atom interaction all the terms in the
series are negative and the sum of the series of diagrams with

3, 4, 5, etc. electron-positron interactions gives an important
contribution to the positron-atom attraction [27]. The result
is represented by the diagram in the right-hand side of the
diagrammatic equation in Fig. 5, where the shaded rectangle
describes the propagation of the electron-positron pair.

There are physical reasons which make the exact calcula-
tion of this sum very difficult. First, the electron-positron
pair has bound Ps states (i.e., poles in the propagation am-
plitude). This makes the problem nonperturbative, and there-
fore it is not possible to directly sum the series. Secondly, the
correct description of the bound Ps states (even if they are
formed virtually) involves electron and positron states with
large orbital momenta in the ladder diagram series (a similar
problem was mentioned in [28] where the authors had to
include l up to 15 in their convergent close coupling calcu-
lation of the low-energy positron-hydrogen scattering). On
the other hand, to calculate Xz' we only need to describe the
propagation of the correlated electron-positron pair (the
shaded block in Fig. 5). It was suggested in Ref. [18]that the
following expression can be used to approximate the sum of
the ladder diagram series:

FIG. 2. Polarization contribution (flX~ li) eto the correlation
potential. In the polarization operator (shaded loop) the electron-
hole interaction and screening of the Coulomb interaction are taken
into account.

FIG. 4. Calculation of the electron-hole interaction in the polar-
ization operator.
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TABLE I. Parameters of the virtual and bound s-type states of
positrons and neutral atoms.

Atom Z K leol
'

FIG. 5. Positronium-formation contribution (f~

XE'~ i) to the cor-
relation potential. The shaded block is the Ps Green function, which
corresponds to the sum of the positron-electron ladder diagrams.

Mg
Cd

Zn

Hg

(eV)
12 7 65
48 8 99
30 9 39
80 10.44

(a.u. )
68
53
42
38

(a.u. )
—0.016
—0.036
—0.056
—0.080

(a.u.)
0.21
0.11

0.09
0.05

(ev)
0.87 0.53
0.35 0.76
0.23 0.86
0.045 0.95

where V= —
I/~ r—r,

~

is the electron-positron Coulomb inter-
action, 'Ir„K= q&&,(r—r, )e' is the wave function of the
Ps atom in the ground state, moving with momentum K,
E],+ K /2M is the energy of this state, M is the mass of the
Ps atom, n is the hole state, and e„ is its energy in the
Hartree-Fock approximation. The tilde above 'P &, K indicates
that this wave function is orthogonal to the single-
electron states of the atomic ground state:

~

'Ir &, K)
= (1 —X„~n)(n ~) ~'Ir t, K). This is necessary since the shaded
block in the right-hand side of the diagrammatic equation in
Fig. 5 is constructed from the excited electron states.

Since Eq. (4) is only an approximation for the series in
Fig. 5, one may suspect that there is some "double counting"
in using Ps intermediate states in addition to the electron and
positron states in the diagram a in Fig. 1. However, this
defect, if present, must be very small. First, the expression
(4) has a much lower denominator. Second, it effectively
involves contributions of high angular momenta
l-2 mr+ Irp, , where r+ is the typical radius for the positron,
and rp, is the radius of the Ps atom. Both effects are due to
the repeated Coulomb interactions in the ladder diagram se-
ries of Fig. 5. Other physical arguments and estimates which
justify the validity of approximation (4) can be found in Ref.
[18]. There we also tested Xz' calculated from Eq. (4) by
applying it to low-energy e+-H and e+-He scattering where
accurate variational or experimental results are available (see
below). Here we would like to mention that if the binding
energy of the outer atomic electron ~e„~=I is larger than

~E„~= 6.8 eV, the denominator in Eq. (4) is always negative
(for E=O). This makes the contribution of gz' to the corre-
lation potential negative, thus producing an additional attrac-
tion for the positron. The smallest absolute value of the de-
nominator is ~I+E&, E~. Therefore, —for atoms with smaller
ionization potentials the Ps-formation contribution is greater,
since this process is less virtual for them. If I—E~6.8 eV
the integral in Eq. (4) contains both negative and positive
contributions. This means that for low-energy positrons the
Ps formation may produce a repulsive contribution to the
correlation potential. Besides that, the potential X, E in this
case acquires an imaginary part due to the opening of a new
reaction channel. This imaginary part is proportional to the
squared amplitude of the ground-state Ps formation.

The total positron-atom correlation potential is calculated
as the sum

XE=XE"+ XE'.

It was shown in [18] that in e -H and e+-He low-energy
scattering the Ps-formation contribution is about 30% and
20%, respectively, of the total correlation potential, The lat-
ter provides good agreement with the results of precise varia-

'Atomic ionization potential [33].
Dipole polarizabilities calculated from g~z".

'Inverse scattering length for g~z".

Inverse scattering length for g~+"+pe'.
'Binding energy for P~+"+Pz'.
Normalization of the positron quasiparticle wave function.

tional calculations for the e -H scattering and with the ex-
perimental data on low-energy scattering of positrons by
noble gas atoms [18,19]. The results of [19] give evidence
that for the Xe atom, which has the largest polarizability
among the noble gas atoms (a=27 a.u.), the positron-atom
potential may be strong enough to form an s-type bound
state. The energy obtained, so= —0.005 eV, is too small for
the bound state to be considered firmly established. A 5%
reduction of the correlation potential eliminates the binding,
and we cannot guarantee the accuracy of the calculated cor-
relation potential to be better than a few percent. However, if
an atom had a greater dipole polarizability (and perhaps a
smaller ionization potential), a stronger binding could be
achieved. This would secure the result against the uncer-
tainty in the correlation potential.

III. RESULTS AND DISCUSSIAN

In the present work we consider the interaction of posi-
trons with the atoms Mg, Zn, Cd, and Hg of the second
column of the periodic table. Their polarizabilities are greater
than that of Xe, and our calculations indicate that all of them
can form bound states with positrons. The starting point for
the calculation is the Hartree-Fock-Dirac (HFD) Hamiltonian
of the neutral atom. The polarization contribution Xz~" is ob-
tained according to Fig. 2. The dipole polarizability values
corresponding to the long-range behavior of X~z" are given in
Table I. They are in reasonable agreement with the recom-
mended values from [29].

The solution of Eq. (1) with Xz=X~z" shows that the
polarization potential alone is not strong enough to produce
positron-atom binding. However, it creates low-lying s-wave
virtual levels. These states can be characterized by the pa-
rameter ~, which describes the low-energy behavior of the
corresponding phase shift Bp'. k cot Bp= K (k is the positron
wave number) and is equal to the inverse scattering length:
K= a '. If K is small and negative (i.e.,

—a&)r, , r, being
the atomic radius) a virtual level exists at E= fiK/2m The, .
K parameter varies linearly with respect to the potential [30],
and when ~ passes through zero and becomes positive, a
bound state emerges at so = —6 ~ /2m. The extremely
small negative values of ~ in Table I mean that the systems
in question are on the verge of binding, and even a small
increase of the correlation potential would make these states
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bound. We should mention that there is a noticeable discrep-
ancy between our value of z= —0.08 and the value of
—0.025 obtained for Hg in I31], where the polarization po-
tential was calculated by the relativistic polarized orbital
method.

Then, to obtain the total correlation potential (5), the Ps-
formation contribution is calculated from Eq. (4). As one
would expect, only the formation of Ps by the electrons from
the outer shell noticeably contributes to Xz'. The relative
strength of Xz' is essentially determined by the smallest
value of the energy denominator in Eq. (4),
Ie„—E„I=I IE„—I, where n is the outer atomic orbital.
This energy difference (equal to the Ps-formation threshold)
is rather small, especially for Mg, which makes Xz' very
sensitive to the magnitude of e„.To improve the accuracy of
the calculation of g+~ we use experimental values of
e„=—I rather than the HFD ones, for the outer orbital. In
principle, this could be done within the many-body theory by
including the self-energy corrections to the hole state n in
Fig. 5.

The inclusion of Xz' into the correlation potential pro-
duces the s-type positron-atom binding. The binding energies

IeoI are given in Table I together with the values of I~, ob-
tained from the corresponding s-wave phase shifts.

Naturally, one should be very careful when predicting a
new kind of atomic system, to be sure of one's results. The
accuracy of the polarization potential has been shown to be
very high for many atoms. However, the accuracy of the
Ps-formation potential is not as well established. Thus it is
important to consider how accurately we need to know the
Ps-formation potential to be sure that the bound states actu-
ally exist. Comparing the I~ values for Q~E" and the total

Xz, one can see that even a fraction of the present Ps-
formation potential would be sufficient to form bound states
(from about 60% for Hg to only 7% for Mg). Therefore,
there is a great deal of certainty in our prediction of the
existence of these bound states.

Calculating the eigenvalue eo of Eq. (1) at arbitrary E:
(Ho+1+) P=aoP, one can find the dependence of the ei-

genvalue on E: eo(E)I the equation ao(E) =E gives the cor-
rect energy of the bound state]. This enables one to calculate
the corresponding residue of the Green's function (see, e.g. ,

I:13]),

z= 1—Beo(E)
BF.

E=go

(6)

which estimates the contribution of the "positron plus atom
in the ground state" component to the wave function of the
positron-atom bound state. In other words, it is the degree to
which the positron-atom bound state is a single-particle state.
The values of z are given in the last column of Table I. They
show that the positron-atom states obtained are highly corre-
lated, since the z values are noticeably smaller than unity. In
general they are smaller than those for the negative ion states

I 20,22], where the correlation potential is accurately approxi-
mated by X~z" (with the exchange diagrams added). This is
explained by the fact that Xz~ has a much stronger energy
dependence than X~z" (since the denominator of Xz' is ap-
proximately IE„I smaller than that of $P'). Therefore for an
atom A with the ionization potential close to 6.8 eV the
positron-atom bound-state wave function is not described
very well by the e+A component and the positron-atom com-
plex has rather a moleeulelike structure. Its wave function
can be qualitatively described as a linear combination of the
e+A and PsA+ components.

Now, since our many-body calculations predict bound
states for positrons with Mg, Zn, Cd, and Hg atoms, it would
be interesting to answer the following question: Is positron
binding to these atoms an exception, or rather a common
phenomenon throughout the periodic table? In order to get
some insight let us recall that it is the polarization potential
alone that creates low-lying positron-atom virtual levels.
Once this has happened a relatively small additional attrac-
tion is capable of turning these virtual levels into true bound
states. Therefore the first thing to be estimated is the strength

I I I I I I I I I
I

I I I I I

10,

FIG. 6. Strength of the
positron-atom polarization poten-
tial. Atoms with S)5 (and
I~ 6.8 eV) are likely to form
bound states with positrons.

20 40 60
Atomic Number

80
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of the polarization potential. This can be done for a local
positron-atom potential U(r) by calculating the dimension-
less integral [32]

2mS= 2 ~U(r)irdr6 J
(7)

over the domain where U(r) ~0. There are two basic fea-
tures of the positron-atom interaction which can be approxi-
mated within a local potential U(r). First, at large distances
it is proportional to the atomic dipole polarizability:
U( r) = —n e I(2 r ) . Second, the potential inside the atom
(i.e., at r(r, ) is strongly repulsive. If we assume that the
atomic radius is given by the classical turning point of the
outer electron in the ionic Coulomb field: r = e/I, the inte-
gral (7) calculated from r, to infinity yields the following
estimate for the potential strength:

mnI
2h. 2 (8)

This estimate of the potential does neglect the nonadiabatic
effects, as well as the quadrupole polarizability, etc. How-
ever, we compared the S values of H, He, Ar, Kr, Xe, Mg,
Zn, Cd, and Hg with the results of our accurate many-body
calculations (the results of the present work and of [18,19])
and we found that the trends shown by the S values agree
with the trends seen in our many-body calculations.

In Fig. 6 we plotted the strength of the positron-atom
polarization potential S from Eq. (8) for all atoms through to

Z=92 (we used the polarizabilities from Ref. [29] and the
ionization potentials from [33]). The results of the present
paper and the absence of binding for the rare gas atoms He,
Ne, Ar, and Kr [19] indicate that the strength has a critical
value S,=5. Atoms with S~S, are likely to have bound
states with positrons, whereas those with S~S, are not. Of
course, if the ionization potential of an atom is smaller than
6.8 eV, the state is unstable against Ps emission, unless
I+ ~so~)6.8 eV. The latter may easily be the case for Cr,
which has I=6.77 eV. The situation I=6.8 eV should, in
fact, give rise to a large Ps-formation contribution, probably
even stronger than that for Mg. Besides Cr, there are a num-
ber of other atoms which look quite favorable in the sense of
binding positrons: Ti, V, Mn, Zr, Nb, and Mo (S=6.2, 5.1,
4.7, 7.6, 6.7, and 5.8, respectively). Mn is included in this list
as it has an ionization potential just greater than 6.8 eV
[I(Mn) =7.43 eV] and hence the Ps-formation contribution
should be very large for it.

IV. CONCLUSIONS

The results of our calculations and estimates suggest that
many atoms in the periodic system can form bound states
with positrons. The question of binding is decided by the
magnitude of the dipole polarizability and the ionization po-
tential of the atom. Virtual Ps formation is vitally important
for the binding. The wave function of the "(positron) +
(atom)" bound state is strongly correlated and contains a
large contribution of the "Ps + (positive ion)" component.
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