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A comparison of nonlinear classical resonances with the nonlinear quantum resonances has been well
established for semiclassical systems. However, systems in which tunneling is present are no longer semiclas-
sical and the correspondence between the classical and quantum systems breaks down. We examine nonlinear
quantum resonances in a system consisting of a triangular potential well (formed by a static field plus an

impenetrable wall) with an attractive 8-function potential well and a weak external time-periodic force. In this

system, tunneling is important and nonlinear quantum resonances that have no classical counterpart can occur.
In the second part of this paper, we remove the impenetrable wall and consider this system to be a model of a
bounded particle subject to a strong external static field and a weak periodic field. The presence of the static
field leads to strong enhancement and suppression of the single-photon photodetachment rates for certain
frequencies. This effect has been observed experimentally in the photodetachment of H ions and predicted by
theoretical models. The model present here is particularly useful because the photodetachment spectrum can be
obtained analytically and leads to greater insight into more realistic models.

PACS number(s): 32.90.+a, 03.65.Ge, 32.60+i, 42.50.Hz

I. INTRODUCTION

The correspondence between nonlinear resonances in
driven conservative classical systems and their quantum ana-

log has been well established for semiclassical systems. This
connection between classical and quantum resonances has
led to the theory of nonlinear quantum resonance and has
been studied in a variety of simple systems [I]. However,
few attempts have been made in understanding nonlinear
quantum resonances in systems that are not semiclassical.
These systems include those in which there is strong tunnel-

ing or scattering present. We examine such a system here [2].
In Secs. II and III, we first look at a semiclassical system: a
driven triangular potential well formed by combining a linear
potential and an impenetrable wall. The driving force is an
external time-periodic electric field, such as a laser or micro-
wave. We use the Husimi function to compare the quantum
"phase space" with the corresponding classical one.

In Sec. IV, we add an attractive 6 function to the model.
While the 6 function has no effect on the classical system, it
leads to tunneling and scattering in the quantum system and
the system is no longer semiclassical. We look at the case of
a weak external time-periodic field where the resonances are
isolated (nonoverlapping). Even though this system may ap-
pear to be somewhat artificial, it has an energy spectrum
similar to more realistic quantum systems in which tunneling
is present. The model should exhibit behavior found in a
wide variety of quantum systems, and it is particularly useful
in that many calculations can be done analytically or with a
minimum of numerical computation. The system may be
taken from the nonclassical regime to the semiclassical re-
gime by variation of a single parameter, the strength of the
attractive 6 potential, thus helping to isolate purely quantal
effects.

The attractive 6 function itself has proven to be a useful
model of a bound particle; the bound state is functionally

II. DRIVEN PARTICLE IN A TRIANGLE POTENTIAL—
CLASSICAL SYSTEM

Let us first consider a particle of mass, I, moving in a
classical version of a triangular well with no 6' function
present. If we assume dipole coupling between the particle
and the external electric field, we may write the Hamiltonian

PH= epx ex cos (tot+ @p) + VL(x),

where p is the momentum and x the position of the particle,
ep is the field strength of the static field, e and co are the field
strength and frequency of the external time-periodic field,
and L is the location of the wall. We use atomic units
throughout. The potential, Vt (x) = 0 for x (L and

Vt (x) =~ for x)L
In order to study the nonlinear resonances of the system,

it is useful first to rewrite the Hamiltonian, H, in terms of the
action-angle variables of the nondriven system,

P
Hp= —epx+ VL(x) =Ep.

2m (2)

The action variable is defined as

2 /2mJ= && pdx= (Ep+ epL)2' g 3 7TEp
(3)

similar to the ground state of one-dimensional hydrogen [I].
Accordingly, in Sec. V of this paper we shift focus and re-
move the impenetrable wall, and consider the system as a
bound particle subject to a strong static field and a weak
periodic field. The single-photon ionization spectrum, which
we obtain analytically, exhibits oscillations similar to that
observed experimentally in the photodetachment of H [3]
and predicted in other theoretical models.
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Solving for the energy, Ep, we find

1 3 7T&p(
. )2/3

J2/3

m /

The angle variable can be found from Hamilton's equation,

d0 BE() 1 3vrep\
g — J 3

BJ 3 ( ~m j
(5)

x(J, O) =—Ep(J) 9ep/ ~m I J' 8

ep 2 I, 3'rrep / m

so x(J,O) = —Ep lep is the turning point. It is useful to ex-
pand x(J, 8) in a Fourier series. Then

x(J, 0) = g x„(J)cos(n 8),
n=p

where

—Ep(J) 3ep7r ~m
(J)— + J2/3

Fp 2m l 3 prep

for the frequency of the orbit. Note that since Ep is a non-
linear function of J, the frequency, 0, is a function of J. The
position, x, of the particle in terms of action-angle variables,
(J, O), is

0.

-9
-IO 0 20 X 40

~hl

60 80

FIG. 1. Classical phase space strobe plot of the system for the
parameters @=0.01, co=3.59, and I.=600, in the vicinity of the
n = 28 primary resonance.

In Fig. 1, we show a phase space strobe plot of trajectories of
the driven particle in the triangular potential well for the
parameters e= 0.01, co = 3.59, and L = 600 (these parameter
values were chosen because they allow a sufficient density of
states in the quantum calculation described in the next sec-
tion). The phase space trajectories are obtained by solving
Hamilton s equations obtained from the Hamiltonian in Eq.
(1). These orbits lie in the vicinity of the i=28 primary
resonance. There are a total of 28 "islands" associated with
this resonance, of which 10 are shown. The energy of the
periodic orbits at the center of the "islands" in Fig. 1 is
correctly given by Eq. (11) for i =28.

18ep ~rn
x„(J)=(—1)", ' J"' for n~o. (8b)

mn 3wep J

The Hamiltonian, Eq. (1), in terms of action-angle variables,
is then (with Pp = 0)

H =Ep(J) —e g x/(J) cos(l &—cut).
/= —oo

(9)

The external field can now be seen to induce an infinite se-
ries of traveling waves into the phase space of the system.
Each traveling wave may trap a phase space trajectory and
gives rise to a nonlinear resonance [I].

Nonlinear resonance between the external time-periodic
driving field and the particle occurs when the field frequency,
w, is a rational fraction of the natural frequency, 0, of the
particle in the triangular well (this is also the condition that
the phase space trajectory becomes trapped in a traveling
wave). The condition for resonance is then

where l and s are integers. This resonance is nonlinear be-
cause the resonance condition depends on J. The action,
J/, at the center of the lth primary (s= 1) resonance is
J/=sr ep/3m(l/cp) . The energy at the center of the lth
resonance is

III. DRIVEN PARTICLE IN A TRIANGLE POTKNTIAL-
QUANTUM SYSTEM

1 8
2 ///n

= (En+ epx) t//„ for x ~L,
2m OX

(12)

where the integer n=0, 1, . . . . The normalized eigenfunc-
tions are given in terms of Airy functions,

t//„= C„Ai(—[(2m)" ep '3E„+(2m ep) '"x]), (13)

where Ai is an Airy function and the normalization constant,
is given by C„=Ai' (—[(2m)' ep E„

+ (2mep) L]) with Ai'(x) = dAi/dx.
If we apply a periodic external field (eA 0), we may use

Floquet theory [I] to study the system. We can obtain the
time-evolution matrix, U„, of the system by integrating the
Schrodinger equation,

8
i U„„=E„—U„„+g (n

~

e~n"x) sc(o/pt) U„«, , (14)

Next we wish to look at the quantum version of the
model. For the unperturbed case (e=O), the Schrodinger
equation for energy eigenstates, (x~n) = ///„(x) (with energy
E„),becomes

m l ep
EI= —epL+

2-In M

subject to the initial condition, U„„(t=O)= 8„.The di-
pole matrix elements (n~x~n') are given by
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remain unaffected by the field. However, at energies, F.„,
near —1.4 and 2.17 (v= 144 and 172) there are pairs of
FES that strongly couple the unperturbed states, fn) and
fn+28) [these are shown by the arrows (1) in the figure and
can be seen clearly when we plot the eigenstates separately].
These energies correspond to the one-photon resonance
co=8„+2&—E„.Classically this would be the 28th primary
resonance, and its location at the center ( v=158 or n =3124)
agrees well with the prediction of Eq. (11) for s= 1, I =28,
and J=n. The analogy between the classical and quantum
resonances has been studied in connection with the theory of
nonlinear quantum resonances [1].We can also see another
resonance between energies —3.2 and 3.96 ( v=130 and 186
or n =3096 and 3152), which are shown by the arrows (2).
This is a two-photon resonance corresponding to
2co=E~+56 F~.

Husimi functions [4] provide an interesting way to com-
pare quantum systems with classical systems. The Husimi
function allows us to construct a quantum "phase space"
portrait that can be compared to the corresponding classical
one. If we introduce the operator a = (x+i.p)(+2, the eigen-
state of this operator is a coherent state with a complex ei-
genvalue a=(x+ip)(+2, where x,p are analogous to the
classical phase space variables x,p. The coherent states are
minimum uncertainty wave packets centered at (x,p). The
coherent states in the position and momentum representa-
tions are given by [5]

FIG. 2. In each of parts (a) and (b), we plot the overlap prob-
ability, f(q !n)! versus n for 125 different Floquet eigenstates
(FES), ! q ) . In both (a) and (b) e = 0.01, co = 3.59, and L = 600. A
basis set, ! n), with n ranging from 2967 to 3167 was used to com-

pute these FES. For all FES except those coupled by resonances,

!(q !n)! =1. Joined arrows indicate coupled FES for a (1) one-

photon resonance, (2) two-photon resonance, and (3) Floquet eigen-
state that is nearly equal to an unperturbed eigenstate (up to a phase
factor). These were determined by plotting each FES individually.

(b) Same system as (a) but with a 8 function added (V= —2.0), as
described in Sec. IV.

and

( i
I/4

(xfa) = ~
—

' exp—
)

( i t/4

(p fa) = ~
—' exp—

a a x
+ —— —a '

)

+ la
2 2 !+2 )

nxn'

~o

)2 for n'Wn

2F.„
for n'=n.

3 E'p

(15)

The Husimi function for an arbitrary state is given by
W(x,p) = f(t(/fa) f, and gives the probability that a particle
lies in the area dxdp centered at (x,p). The Husimi function
can then be written

The energy eigenvalues can be found from the condition that
/(/„(x =L) =0. It can easily be shown, using the properties of
the roots of the Airy function, that for large n the eigenval-
ues, F.„, are proportional to n ' . Note that this dependency
on n is the same as we get from the classical Hamiltonian
[Eq. (4)] when the action is quantized so J=n6.

After the time-evolution matrix has been found for one
period, we then compute its eigenvectors, fq ), and eigen-
values q . In Fig. 2(a), we plot the overlap probability,

f(q fn) f, versus n for 125 different eigenvectors, fq ) (Flo-
quet eigenstates or FES), for the parameters
a=0.01, co=3.59, and L=600. The 125 FES shown in the
figure were constructed using a basis ranging from
n =2967 to 3167. For most of the FES, f(n fq ) f

is a sharply
peaked function of n so that f(nfq ) f

=1, and these states

W(x,p) = g dx( Pf E„)(E„fx)(x!a), (16)
n

where (E„fx) are the eigenfunctions of the unperturbed sys-
tem and (xfa) is given above.

Figure 3 shows plots of Husimi functions for some Flo-
quet eigenstates for the quantum system mentioned above.
Compare these plots with the strobe plot for the correspond-
ing classical system given in Fig. 1. The Husimi functions
shown in Figs. 3(a) and 3(b) are peaked near the classical
fixed points (both stable and unstable). In Fig 3(c) we plot
the Husimi function for a Floquet eigenstate which shows a
two-photon resonance. There are 56 islands in the two-
photon resonance. Only part of the two-photon resonance
structure is shown in Fig. 3(c).



4518 S. COCKE AND L. E. REICHL

IV. TRIANGLE WELL WITH AN ATTRACTIVE
8' POTENTIAL

P
Ho=

2m
—x+ VB(x) + Vl (x),

52

(17)

We now construct a nonsemiclassical system by adding an

attractive 6 potential well to the previous triangular well.
The presence of the 8' potential will allow for tunneling be-
tween the 6 well and the triangular well and will introduce
interference effects that will alter the eigenspectrum of the

system. Let us first consider the case of no external field

(a=0). The Hamiltonian becomes (for co= 1)

where U is the strength of the 6 potential. One can show that
in the classical system the 6' well has no effect on the system.
However, in the quantum case we will have localized and
nonlocalized energy eigenstates. [In the limit (L +~—), the
localized states are associated with virtual levels for E&0
and with a quasibound state for E~O.] The energy eigen-
functions P„(x)= (x~n) of the Hamiltonian Ho are given by
(for m = I/2)

1VAi((), x~0
0 (x)=

N(Ai($) [1—V7rBi( —E„)Ai(—E„)]+Bi(()[V7rAi ( —E„)]), x)0,
(18)

where (= —(E„+x) and E„are energy eigenvalues and

1V= (Ai'[ —(E„+L)]([1—VmAi( —E„)]Bi(—E,)f
+ Bi' [—(E„+L) ][V srAi ( —E„)]
—2VAi'( —E„)Ai(—E„)—V Ai ( —E„)) ' (19)

is the normalization integral. The eigenvalues are given by
those values of E„ that satisfy the boundary condition

@„(L)=0. In Fig. 4, we show Husimi plots for typical local-
ized and nonlocalized eigenstates for V= —2.

We have compared the difference in energy eigenvalues
of the system for V=O and V= —2 using 300 states. For
V=O the energy spectrum corresponds to the classical case
with the quantization condition J=nk (6=1 in atomic
units). For large negative energies there is essentially no dif-
ference due to the presence of the 6 well. However there are
downward shifts in the V= —2 spectrum when the energies
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FIG. 3. Husimi function, W(x,p), contour plots. (a) The one-
photon resonance Floquet state for unstable fixed point orbits. (b)
The one-photon resonance Floquet state for stable fixed point orbits.
(c) The two-photon resonance Floquet state. The Husimi functions
are normalized such that the peak value is 1.

FIG. 4. Husimi function W(x,p) contour plots of two typical
eigenstates. Note that (a) is localized near the 8 well, while (b)
follows the classical trajectory, and (c) is the Husimi function con-
tour plot of a Floquet state corresponding to a resonance between
two localized eigenstates.
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FIG. 6. Survival probability, P(t), as a function of time, t (in
atomic units) for the particle initially in the bound state l+0), for
V = —2.0.

well (that is, where there is little tunneling), we may have a
situation where a particle is coupled to a localized state and
fails to reach the wall. We then have Rabi oscillations be-
tween the (semi) bound state and one of the localized levels.
As the wall is moved away from the atom, these levels be-
come unstable and the oscillations become damped.

V. IONIZATION OF THE "BOUND STATE"

Let us now remove the wall (let L~ ~). The system con-
sists of a bound particle subject to a strong external static-
field and a weak time-periodic field. The spectrum is purely
continuous and there are no bound states. First we consider
the static-field ionization (no periodic field) of a particle that
is initially in the bound state of the attractive 6' potential. The
wave function of the single bound state is

( veal[
f2'

for V~O. When the static field is suddenly turned on, this
bound state becomes a superposition of the eigenstates of the
combined 6 plus linear potential system and decays. In Fig. 6
we show the survival probability

(24)

for the case V= —2. For practical purposes of numerical
computation, we used a large number of eigenstates (more
than 100) of the discrete system with L =600. The decay of
the survival probability is nearly exponential, as expected,
but it also has an oscillatory component. The spectral density
p(F) = l%'ol E) l of the initial state in the constant-field basis
is shown in Fig. 7. One can distinguish two "Lorentzian"
type peaks. The first peak, centered near Ep, gives rise to the
overall exponential character of the decay. The states associ-
ated with the smaller peak interfere with those of the larger
peak and thus produce the oscillatory behavior. These peaks
are centered near energies of the virtual levels given in Table
I. It is not difficult to understand this oscillatory behavior.
The survival amplitude is given by

FIG. 7. The spectral density, p(E)=l(+OlE)l, of the initial

state in the constant-field basis. (a) The full spectrum. (b) A

close-up of the small peak.

where 'P& are the final continuum states. With the approxi-
mation that the lifetime of 'Il'p being very long, the dipole
moment is found to be

0.2 -.

0 LI ~ ~ ~ LI
2 4 6 8 10

is assumed that one pole is dominant (llmzol
&&llmz„l for all n) and that after a significantly long time,
t, all other terms can be neglected. However, if two poles
significantly contribute to the survival probability, they will
interfere and give rise to oscillations. Note that the survival
probability is given by the modulus squared of the ampli-
tude, which results in interference terms. We have computed
a few of the poles numerically (cf. Table I) and find the first
two significant poles (real part) zo= —1.15 and z, =2.66 to
be in agreement with the location of the peaks in Fig. 7. The
frequency of the oscillation is easily computed and is found
to be A=Re(zt —zo). Figure 8 shows the oscillatory com-
ponent after the exponential trend has been removed and
agrees with the predicted result.

We now consider the photodetachment of a particle sub-
ject to a strong external static field. The particle is initially a
bound state of the attractive 6' potential in the absence of the
external static and periodic fields. If the static field is ap-
plied, then as we saw above, the state is metastable and even-
tually decays. (We assume that turn on of the field does not
ionize the particle. ) The lifetime of this semibound state is

lVl exp(lVl ) [6]. Thus for sufficiently large
l
Vl the particle

may be considered bound, and essentially an eigenstate of
the static-plus-6 potential. In the presence of a weak external
periodic field we may then use perturbation theory to calcu-
late the transition (or photodetachment) rate,

A=) (25)
-0.2 -.

where z„are the poles of the integrand in Eq. (25). The
imaginary part of z„gives rise to decay. In many systems it

FIG. 8. Survival probability, P(t), with the exponential trend
removed.
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2
( Pf ~x Pp) =

p (V[A1( E—f)Ai '
( —Ep) + Ai' ( E—f)Ai( —Ep) ]+ V Ai( —Ef) Ai( —Ep)),

f 0
(27)

where

N= g[2VAi'( —Ep)Ai( —Ep)+ V Ai ( —Ep)]([1—V7rAi( —Ef)Bi( —Ef)] + V 7r Ai ( —Ef) i (28)

When there is no static field present, Geltman [7] has found
the dipole moment analytically. In Fig. 9 we plot the transi-
tion rates, as a function of frequency, for both the case with
a static field and with no static field for V= —5. For the case
with no static field, the transition rate is smooth and goes to
zero for co&E;,„.However the spectrum is dramatically dif-
ferent when a static field is present. There are values of the
frequency of the incident field for which the photodetach-
ment goes to zero, alternating with a series of peak values
where the photodetachment is considerably enhanced. These
features can be easily understood by examining the expres-
sion for the dipole moment, Eq. (27). The peaks occur when
N approaches zero. With a =Ff—Eo and Fo fixed, the peaks
occur when

[1—VvrAi(z„)Bi(zp)] + V vr Ai (z„)—+0, (29)

1.5 x10

Cx10T

Sx10

10

FIG. 9. Plot of the single-photon ionization rates, Wo f, as a
function of photon energy, A, a~, for the case of a static field (solid
line) versus no static field (dashed line). In both cases V= —5.

where z„=—(Ep+ e„). These values of z„are just the real
part of the poles of the resolvent given earlier. Thus photo-
detachment is very efficient when the bound state is coupled
to one of the virtual levels. This is due to the fact that the
virtual levels have high probability amplitude near the 6' well
(between the well and static field barrier). It should be
pointed out that the virtual levels are due to the interference
between the 8' well and the static field barrier, and are not
"resonances" of the 6 function alone. For a sufficiently deep
well, the spacing of the virtual levels are just the spacing of
the system where the 6 function is replaced by an impen-
etrable wall, which was described in Secs. II and III. The
spacing of the peaks then are proportional to the two thirds
power on the incident electric field.

The zeroes in the photodetachment spectrum occur when
the numerator in Eq. (27) vanishes. For large V, this happens
when Ai[ —(E0+ e )] is nearly zero. By examining the ex-
pression for N we see that this is nearly true for the peak

values as well. This explains why the peaks are very closely
spaced to the zeroes. Another way to look at this is as fol-
lows: The zeros occur when the continuum wave functions
are locally symmetrical about the 6 well, whereas the peaks
occur at the virtual levels where the probability amplitudes
of the continuum wave functions are very high. The locally
symmetric states are thus closely spaced to the virtual levels.

The photodetachment spectrum presented here is nearly
identical to that obtained in a one-dimensional model by
Peek [3], but with the 8' function replaced by a square well
that is shallow enough to support only one bound state. The
advantage of the model presented here is that the analytical
expression for the dipole moment allows for a more intuitive
interpretation of the features of the photodetachment spec-
trum. For example, the notion of virtual levels and their ef-
fect on photodetachment was not mentioned in Ref. [3].The
peaks and zeroes of the photodetachment spectrum are easily
calculated numerically for our model. In attempting to gain
analytical approximations for the peaks and zeroes in the
photodetachment spectrum, Peek and other researchers re-
place the continuum states with the eigenstates of the static
field alone (i.e. , without the atomic potential). We may easily
do that here. The dipole moment becomes

2 VAi( —Ep) Ai( Ef)—
(+fl 1+0)=

E E 2 A'( Ef)+-
0 f 0 f

(30)

where ~II'f=Ai[ —(Ef+x)] are the eigenstates of the system
with static field alone. The peaks are now symmetrical and
smoother —not spiked as before. The peaks given by Eq.
(30) are at nearly the same energy as in Eq. (27), but the
zeros are not. We may interpret this as follows: when the
effect of the atomic potential on the continuum is neglected,
photodetachment is enhanced when the final continuum
states are locally antisymmetric, whereas if we include the
effect of the atomic potential the predominant mechanism for
the enhancement is the presence of the virtual levels. The
locally antisymmetric states Wf ='If„occur at nearly, but not
exactly, the same energy as the virtual levels of 9'f. If
9'f(x) is near a virtual level, then we have a nodal point at
x=0 and 'Il'f(0) is approximately, but not quite, zero. How-
ever, states for which 'Pf(0) =0 are unaffected by the

potential, i.e., 'Ij'f(x) = iII'f(x) if 'I' f(0) =0; that is, both the

virtual levels 'Pf and the locally antisymmetric states W,
have a nodal point near x=0 for Ff=E, . Thus both con-
tinua will lead to peaks at nearly the same energy. However,
the locally symmetric states of Ij'f are at very different ener-
gies from that of 9'f, thus giving different locations in the
minima for the dipole moment.
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Oscillations of the type described here have been ob-
served in experiments with the photodetachment of negative
hydrogen ions [8] and similar experiments. The oscillations
in these experimental data appear to be symmetrical, as we
would have in the situation predicated by Eq. (30). Thus the
virtual levels in these systems may be negligible. However,
in any experiment there will be finite resolution due to the
lack of monochromicity of the laser pulse, Doppler shifting,
etc. Indeed, a course graining of the photodetachment spec-
trum given in Fig. 9 would give smoother, symmetrical look-
ing peaks. More analysis is needed to determine if the pre-

dieted asymmetry can be observed. Nevertheless, this model
illustrates a key idea: that static fields can substantially en-
hance (or reduce) photodetachment rates for a select range of
frequencies of an incident electric field.
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