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B splines with carefully adjusted knot sequences are used as basis functions in cylindrical coordinates to
calculate the energy levels of the low-lying (m=0) states of a hydrogen atom in a uniform magnetic field of
arbitrary strength by using the variational method. The strength of the field calculated covers a range from
=0 to y=100 000 for the ground state and up to y=2000 for the 25 and 2p states. A precision of up to ten
digits in the region of 0=<vy=200 and up to eight digits for y>200 has been maintained for all the results
presented. In order to test the applicability of the B splines for the higher excited states, the energy levels of
3s, 3p, 3d, and 4f states with m =0 in the field region of 0= y=10 have also been calculated. Even though
the number of basis sets was kept constant, the accuracy of the results was maintained in the intermediate field
regions and also in the very strong field regions, which are known to be difficult for achieving high accuracy.
The flexibility of the B splines is demonstrated here by the uniformly accurate results in the transition from
spherical symmetry to Landau symmetry as the field strength of the magnetic field is increased. The energy
levels of all the low-lying states with various ranges of magnetic field strength have been compared with
published values. They are in good agreement with the most updated values and compare favorably with all
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other published results.

PACS number(s): 32.60.+1i, 31.50.+w, 31.15.Pf, 02.90.+p

I. INTRODUCTION

Strong magnetic fields have been of interest for some time
in solid-state physics, astrophysics, surface physics, and
plasma physics. In particular, the discovery of extremely
high fields in white dwarf stars and neutron stars has re-
newed interest in the investigation of the energy levels of the
hydrogen atom in very strong magnetic fields. The problem
of a hydrogen atom in a uniform magnetic field of arbitrary
strength is made difficult by the nonseparability of the Schro-
dinger equation for an electron under the combined effects of
the nuclear Coulombic electric field and the external uniform
magnetic field and from the fact that as the strength of the
magnetic field increases the symmetry of the problem
changes from spherical (Coulomb symmetry as B —0) to
cylindrical (Landau symmetry as B —). This problem has
been considered in numerous theoretical and experimental
works. Details and references on these research may be
found in the articles by Brandi [1], Garstang [2], Simola and
Virtamo [3], Avron, Herbst, and Simon [4], Aldrich and
Greene [5], Starace and Webster [6], Lindgren and Virtamo
[7], Pavlov-Verevkin and Zhilinskii [8], Doman [9], Wunner,
Ruder, and Herold [10], Clark [11,12], Wadehra [13], Ruder
etal. [14,15], Avron [16], Cohen and Hermann [17],
Friedrich [18], Chen [19-21], Le Guillou and Zinn-Justin
[22], Rosner ef al. [23,24], Forster et al. [25], Delande and
Gay [26,27], Galas [28], Grozdanov and Tayior [29], Rech,
Gallas, and Gallas [30], Liu and Starace [31], Ivanov [32],
Handy et al. [33], Johnson, Blundell, and Sapirstein [34],
Shertzer [35], Baye and Vincke [36], Fonte et al. [37],
O’Mahony and Mota-Furtado [38], Chen and Goldman [39—
41], and Xi et al. [42]. Methods for the solutions of such
equations with nonseparable variables used include expan-
sion of the wave functions, group theoretical method [26,27],
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second-order perturbation [29], variational method [23—
25,29,37], finite-difference approximation [33], finite-
element method [35], finite basis expansion [39-41],
R-matrix method [38], Lagrange basis [36], and B splines
basis [42], etc. Some of these works achieved partial success
in the treatment of special aspects of the problem, such as in
low fields, very high fields, or intermediate fields etc. In
1984, Rosner er al. [24] calculated the energy levels with
high accuracy for some low-lying states of the problem.
They expanded the wave functions either in terms of spheri-
cal harmonics (for weak and moderate fields) or in terms of
Landau states (for strong and very strong fields). The results
of their numerical calculation in the case of weak and very
strong fields were accurate. But in the transition region they
could not obtain accurate results. Ivanov [32] supplemented
these works in the intermediate field and obtained somewhat
better results by using a finite-difference method. Chen and
Goldman [39-41] used a finite basis expansion with a basis
set composed of products of Slater- and Landau-type func-
tions, in the variational method for both the relativistic and
nonrelativistic calculations. They obtained very accurate re-
sults. Xi er al. [42] expanded the wave functions by using the
B splines as the basis set in the spherical coordinate system.
They could handle accurately the problem in the transition
region for which most of the other methods had difficulties
in achieving high accuracy. But they could not achieve the
same degree of accuracy for the very strong fields
(vy=100).

In this paper, we report a calculation by using B splines in
the cylindrical coordinate system with the variational
method. It is shown here that the highly localized piecewise
polynomials of the B splines with carefully adjusted knot
sequences can efficiently handle the problem of a hydrogen
atom in the magnetic fields of arbitrary strength. As we are
also interested in the behavior of a hydrogen atom in very
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high magnetic field strength, the cylindrical coordinate sys-
tem is adopted.

The aim of the present work is to calculate with a high
degree of accuracy energy levels of low-lying states in the
presence of a uniform magnetic field of arbitrary strength B
over the whole range of 0<B=<2.35X10!" T. Section II
serves to describe the variational method and the numerical
treatment used. In Sec. III, we compare our results with other
theoretical calculations. Discussions and conclusions are
given in the final section. '

IIL. METHOD AND NUMERICAL TREATMENT

The nonrelativistic Hamiltonian of a hydrogen atom in a
uniform magnetic field B, which is assumed to be in the z
direction, may be written in the cylindrical coordinate system
as

2 72
H=—V2—7+7(LZ—1)+—4—p2, (1)

with
r=+\p*+z? and p’=x2+y?,

where the magnetic field strength B is expressed in units of
Bo=2a’m?*c?/(eh)~4.70X10° T and y=2B/B,. In this
work only the spin-down state is considered and the Rydberg
atomic units (energies in units of 1 Ry=a2mec2/2, and
lengths in units of Bohr radius ag=#%am,c) are used. The
energies of the corresponding spin-up state are obtained by
adding a constant 2y to that of the spin-down state.

First of all, the ¢ dependence of the eigenfunctions of Eq.
(1) may be factored out,

W(p.z,)=y(p.2)e™? .

Only the states with m=0 are considered in this work. The
wave functions are then expressed as sums of products of B
splines in the p and z variables as

w<p,z)=i2j a,;Bi(p)B(z) .

The Schrodinger equation for the Hamiltonian may then be
written as a generalized eigenvalue problem in a matrix form
for the coefficients a’s:

Ha=ESa. 2

Equation (2) is solved iteratively by using the variational
method based on the Galerkin method.

The advantage of the numerical treatment by using the B
splines lies in the flexibility and simplicity. The B splines are
piecewise polynomials and are completely determined by the
given order k, which is a non-negative integer, and the knot
sequence 7 consisting of a nondecreasing sequence of points
={t;}, 1,<t,<---<r1,_;=<t,. To be precise, the kth-order
B splines are defined by the kth-order divided difference of
truncated polynomials,

B Ax)=(tpp—t)[t;, ... Ji+1](f_x)ﬁ:l,
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where (t—x)%"' is the truncated polynomial of degree
k—1,

(t_x)kfl

0 for r<x.

i1 for t>x,
(t__x)+ =

Further details of the B splines may be found in the excellent
book by de Boor [43]. A completely equivalent definition for
the B splines, which is more convenient for the purpose of
numerical calculation, is through the following recursive for-
mula:

_ — I Livk™X
B,y (x)= — By 1,{(Xx)+ ————— B, 1 4-1,.(x),
Liver1 L Livk— it
with
1 for t;=x=<t;,q,
B xX)= .
i..7(X) 0 otherwise.

From this definition, it can readily be seen that the B splines
have finite support. Among the whole B splines basis set for
a knot sequence 7 with order k& only the functions
B _t+1kr>» Bi—k+24.7» - -5 B rare nonzero in the region
t;<x=<t,, . Hence, the nonzero matrix elements constructed
by the B splines are sparse. Another advantage of the B
splines is their flexibility. By adjusting the values in the knot
sequence, the B splines may be modified to accommodate for
various needs arising from the specific physical situations.
The regions with rapidly changing wave functions may be
easily handled by a corresponding increase of the density of
the knot sequence there. For example, as the magnetic field
strength is increased, the range of the wave function expands
in the p axis but shrinks in the z axis. This situation may be
easily tackled by adjusting the knot sequences for the {p;}
and {z;} accordingly. The order and number of the B splines
have been kept at 7 and 56, respectively, for all calculations
in this work.

III. RESULTS

We have calculated the energy levels of the low-lying
(m=0) states from 1s up to 4f of a hydrogen atom in uni-
form magnetic fields by using B splines. The strength of the
fields covers a range from y=0 to y=100000 for the
ground state and up to y=2000 for the 25 and 2p states. The
results are tabulated in Tables I-1II and compared with those
published in the literature.

Our results of the energies in the ground state are listed in
the last column of Table I. The precision of the calculation is
high and stable. An accuracy of up to ten digits for the en-
ergies in the region 0= y=<200 and up to eight digits for
¥>>200 has been maintained. Given in the first column are
the lower and upper bounds of the energies obtained by
Fonte et al. [37] and by Liu and Starace [31]. Fonte et al.
used a variational method employing semiparabolic coordi-
nates and a harmonic-oscillator basis. They gave error esti-
mates for both the eigenvalues and the eigenfunctions. They
have difficulties in strong magnetic fields. Liu and Starace
proposed an adiabatic approximation in the cylindrical coor-
dinate system employing a single configuration wave func-
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TABLE I. Ground-state energies (in units of Rydberg atomic units) for a hydrogen atom in a uniform magnetic field of arbitrary strength.
a: Lower (upper bound): F denotes Fonte et al. [37] variational. L denotes Liu and Starace [31] cylindrical adiabatic approximation. b: Chen
and Goldman [41]: basis expansion and variation method. ¢: ROsner ez al. [23,24]: numerical multiconfiguration Hartree-Fock method. d:
Ivanov [32]: finite-difference method. e: Xi et al. [42]: B splines basis expansion in spherical coordinate system. f: Present work. Numbers
in parentheses represent the upper bound of the energy values.

b% a b c d e f

0 1.00000000 1.0000000000
0.0002 1.000200 1.00019998 1.0001999800
0.002 1.001988 1.00199800 1.1001998000
0.02 1.019800 1.01980009 1.0198000878
0.2 1.180763 1.18076313 1.1807631235
1 1.662337793(5)F 1.66233779346 1.662338 1.66233778 1.6623377850
2 2.044427815(20)" 2.04442781532 2.044428 2.0444277 2.0444278053
3 2.32906598(614)F 2.3290659786 2.329066 2.3290659 2.3290659662
4 : 2.561596 2.5615958 2.5615960169
5 2.5364(818)F 2.7607954 2.7607977148
6 2.936492 2.9364918 29364919568
7 3.0945431 3.0945432264
8 3.2387697 3.2387699647
9 3.3718149 3.3718152944
10 4.430791(1825)F 3.495594 3.4955939 3.4955942951
12 3.7207760 3.7207765486
14 3.922425 3.9224234 3.9224247 3.9224250960
15 4.0161278 4.0161281686
16 4.1057577 4.1057580851
18 4.2743561 4.2743563664
20 4.430797030 4.430797 4.430797 4.4307967 4.4307969687
22 4.5770037 4.5770038684
24 4.7144561 4.7144562474
25 4.5864(8174)F 4.7802730 4.7802731438
26 4.8443185 4.8443186382
28 4.9675262 4.9675263316
30 5.084843 5.084834 5.0848431 5.0848431942
32 5.1969021 5.1969021186
34 5.3042341 5.3042340504
36 5.4072893 5.4072892877
38 5.5064535 5.5064534192
40 5.602058(60) 5.602054 5.6020596 5.6020594559
100 7.4720(6054)F 7.5781(805) 7.57958 7.57961 7.5796079443
200 9.2924(4774)F 9.454290216 9.4531(50) 9.45423 9.45432 9.4542886885
400 11.7023(39) 11.70324 11.7036 11.70329920
1000 15.3241(53) 15.32473 15.329 15.32483814
2000 8.5508(6204)" 18.6095300 18.60896(986) 18.60931 18.63 18.60951488
5000 23.746816 23.7467269
10000 28.2816839
50000 41.1594818
100000 47.7829865

tion. They provided both upper and lower bounds for the
binding energies of the ground state of a hydrogen atom in
* strong magnetic fields. Our values basically fall within most
of the error bounds of both works. Listed in the second col-
umn are the available results of Chen and Goldman [41],
which are considered one of the most updated values. In the
region of low to intermediate field strength, our results agree
with their calculations for the first 7-9 digits. In very strong
magnetic fields the agreement is reduced to 5—7 digits. The
results of Rosner et al. [24] and Ivanov [32] are displayed in

the third and fourth columns, respectively. Rosner er al. used
a numerical multiconfiguration Hartree-Fock method to ob-
tain energies in the weak and in the very strong field strength
with an accuracy of seven digits. The precision of their re-
sults in the region of y=40 is less accurate. Ivanov used a
finite-difference method to improve the results of Rosner
et al. in the transition region. The precision of Ivanov’s re-
sults was 7—8 digits. Our results are in good agreement with
the results of Ivanov, but maintain a higher degree of accu-
racy. Finally, listed in the fifth column are the results of Xi
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TABLE II. Energies of 2p (m=0) state (in units of Rydberg atomic units) for a hydrogen atom in a
uniform magnetic field of arbitrary strength. a: Ivanov [32]: finite-difference method. b: Rosner ez al. [23,24]:
numerical multiconfiguration Hartree-Fock method. c: Xi et al. [42]: B splines basis expansion in spherical

coordinate system. d: Present work.

b% a b c d

0 0.25000000 0.25000000
0.0002 0.2501999 0.25019988 0.25019988
0.001 0.2509970 0.25099700 0.25099700
0.002 0.2519880 0.25198800 0.25198800
0.01 0.25970082 0.2597008 0.25970083 0.25970083
0.02 0.26881293 0.2688129 0.26881293 0.26881293
0.04 0.28538742 0.2853874 0.28538742 0.28538741
0.06 0.30003254 0.3000325 0.30003254 0.30003253
0.1 0.3248202 0.3248202 0.32482016 0.32482015
0.14 0.3452365 0.3452365 0.34523645 0.34523644
0.2 0.3703681 0.3703681 0.37036808 0.37036807
0.3 0.40300823 0.4030083 0.40300827 0.40300828
0.4 0.42853095 0.4285310 0.42853099 0.42853100
0.6 0.4673572 0.4673569 0.46735693 0.46735693
1.0 0.5200137 0.5200132 0.52001323 0.52001323
14 0.5562670 0.5562670 0.5562670 0.55626701
2 0.5954217 0.5954219 0.5954217 0.59542194
3 0.6400803 0.6400802 0.6400801 0.64008036
4 0.671394 0.6713901(4) 0.6713909 0.67139145
6 0.714324 0.714320(31) 0.7143217 0.71432364
10 0.765308 0.7652975(3036) 0.7652994 0.76529969
14 0.7963735(76) 0.796374 0.79637498
20 0.8267545(72) 0.826753 0.82675546
40 0.8774672(83) 0.877467 0.87746760
60 0.9018597(604) 0.90186 0.90185996
100 0.9272354(7) 0.92723 0.92723438
140 0.9409211(3) 0.94092 0.94092118
200 0.9530640(1) 0.95305 0.95306399
400 0.9707261 0.9706 0.97072608
1000 0.9849900 0.984 0.98498997
2000 0.9911896 0.99 0.99118929

et al. [24] by using the B splines in the spherical coordinate.
They achieved high accuracy in the region y<<100. Our re-
sults are in good agreement with theirs in this region. The
degree of accuracy of their results is decreased as the mag-
netic field strength is increased, as the rate of convergence in
their calculation for high magnetic fields is relatively slow.
When y=2000 they gave results with four digits only. In
contrast, our results maintained a higher degree of accuracy
in the region of very high magnetic field strength
(y=100). We can summarize the above comparison in Table
I as follows: In the region 0= y<<100, our results are in good
agreement with the results of Rosner et al., Ivanov, and Xi
et al. In the very strong magnetic fields (100= y=<2000), the
accuracy of the results of Rosner et al., Ivanov, and Xi et al.
are poor. The high degree of accuracy of our results has been
maintained in this region and are in agreement with the re-
sults of Chen and Goldman for the first six digits. We have
also calculated the energies with high accuracy for high mag-
netic field strength (y=2000). The result for y=5000 agrees
with that of Chen and Goldman up to five digits. We pre-
sented also the results in the region of very intense magnetic

fields y=100 000 where to our knowledge up to now no
results have been published for the ground state.

In Table II, we list the energies of the low-lying excited
2p (m=0) states. The results of Ivanov, Rosner et al., and
Xi et al. are also listed in the table. Our results are in good
agreement with those of other calculations in the region of
y=<3. The precision of the results is up to 6—8 digits of
accuracy. In the region of 4< y=<200, the results of Rosner
et al. are less accurate, and the accuracy of the results of Xi
et al. decreases in this region. In contrast, we can easily ob-
tain good results with a precision up to eight digits. In the
region of very strong magnetic fields (200<<y=2000), our
results are in agreement with the result of Rosner et al. up to
a precision of seven digits. The accuracy of the results of Xi
et al. is very low in this region.

The energies of the 2s state are given in Table III, to-
gether with the results of Ivanov and of Rosner et al. We
have maintained an accuracy of eight digits for all the ener-
gies. In the region of y=<1, the published results of Rosner
et al. have been maintained to an accuracy of seven digits
and are in agreement with our results. In the region of
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TABLE III. Energies of the 2s state (in units of Rydberg atomic
units) for a hydrogen atom in a uniform magnetic field of arbitrary
strength. a: Ivanov [32]: finite-difference method. b: Rosner et al.
[23,24]: numerical multiconfiguration Hartree-Fock method. c:
Present work.

y a b c

0 0.25000000
0.0002 0.2501997 0.25019971
0.001 0.2509930 0.25099300
0.002 0.2519720 0.25197200
0.01 0.2593031 0.25930312
0.02 0.2672484 0.26724835
0.04 0.2794796 0.27947964
0.06 0.2877269 0.28772692
0.1 0.2961783 0.29617830
0.14 0.2985628 0.29856275
0.2 0.2979734 0.29797334
0.3 0.2967346 0.29673460
0.4 0.2983327 0.29833268
0.6 0.3055311 0.30553113
1.0 0.3209379 0.32093795
1.4 0.3334499 0.3334492 0.33344962
2 0.347883 0.3478880 0.34788939
3 0.365144 0.365131(87) 0.36515383
4 0.377681 0.37762(85) 0.37769290
6 0.395508 0.39530(63) 0.39551564
10 0.417894 0.41777(98) 0.41790363
14 0.432454 0.43237(53) 0.43247238
20 0.4476701 0.44761(73) 0.44768422
40 0.476352(425) 0.47639850
60 0.492573(627) 0.49260765
100 0.512339(77) 0.51236192
140 0.524938(68) 0.52495663
200 0.537921(45) 0.53793620
400 0.562050(65) 0.56205587
1000 0.5917099(180) 0.59171424
2000 0.6124793(844) 0.61248116

y>3, Rosner et al. gave only bounds with an accuracy of

4-5 digits. Our results as well as those of Ivanov have been
maintained to an accuracy of 5-6 digits, which falls within
the bounds.

In order to test the applicability of the B splines for higher
excited states, we also calculated the energy levels of 3s,
3p, 3d, and 4f states for m=0 in the field region of
0=<+y=10. The results are tabulated in Table IV and Table V.
Also included in the tables are the published results of
Ivanov and of Rosner et al. for comparison. In the neighbor-
hood of 0.2<<y=0.3 no results have been given by Rosner
et al. Our results are also in agreement with the results of
Ivanov and of Rosner et al. for an accuracy of 4-7 digits.
The situation in the cases of 3s, 3p, 3d, and 4f are similar
to the cases of 2s and 2p states.

From the above comparison, it is demonstrated that our
method is a powerful tool in handling the problem of a hy-
drogen atom in a magnetic field of arbitrary strength.
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IV. DISCUSSION AND CONCLUSIONS

The problem of a hydrogen atom in an external magnetic
field of arbitrary strength has been solved by various meth-
ods. For example, Rosner er al. calculated the energies of
many low-lying states of the problem. They expanded the
wave function either in terms of spherical harmonics (for
weak and moderate fields) or in terms of Landau states (for
strong and very strong fields), the r- and z-dependent expan-
sion functions are determined with the use of an adopted
version of the multiconfigurational Hartree-Fock code of
Froese Fischer [44]. An accuracy of seven digits has been
obtained in the region of weak and strong field strength for
most of the low-lying states. Our results are in good agree-
ment with theirs. But they could not obtain satisfactory re-
sults in the transition region between the Coulomb and Lan-
dau symmetries. A slightly improved result in the region of
intermediate strength has been presented by Ivanov using a
finite-difference method. In the basis expansion method,
Chen and Goldman employed a basis set that combines to-
gether Slater-type and Landau-type functions. This basis set
contains correct behavior at both the Coulomb limit
(B=0) and the Landau limit (B—o0). The transition from
Coulomb symmetry to Landau symmetry was smoothly
achieved by varying two nonlinear parameters N and f3,
which characterize the Coulomb and Landau orbitals, respec-
tively. They have obtained accurate energies for the ground
and low excited states of the problem for both relativistic and
nonrelativistic calculations. The variational parameters A\ and
B play an important role for the efficiency of the method,
and the incorporation of Landau-type functions in the basis
set allowed them to achieve highly accurate results for the
very strong magnetic fields. Suitable choices of the varia-
tional parameters as the field strength is varied allow them to
achieve accurate results in the whole range of fields strength.
Our results are in good agreement with the results of Chen
and Goldman in the whole region for the ground state. Xi
et al. also used the B splines as the basis set for expanding
the wave function, but they employed the spherical coordi-
nate system. They also obtained accurate results in the region
y<<100. Our results are in very good agreement with their
results in this region. But they were unable to achieve high
accuracy in the very strong-magnetic field (y=100), be-
cause in the strong-magnetic-field region Landau symmetry
dominates. This symmetry cannot be properly handled in the
spherical coordinate system. On the other hand, their
progress in this region was also hampered by the rapid in-
crease of the size of the basis set.

In this paper, we have presented results of a successful
application of the B splines basis in cylindrical coordinates
for the calculation of energies of low-lying
ls, 2s, 2p, 3s5,3p, 3d, and 4f states of a hydrogen atom
in magnetic fields of arbitrary strength. An accuracy of 8—10
digits has been maintained for all the energies in various
states with arbitrary magnetic field strength. They compare
favorably with the most updated published results. The high
accuracy of the energies over the whole region including the
region with very strong magnetic fields is achieved by care-
fully adjusting the knot sequences only. The B splines can
easily handle the atom in the transition region where both
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TABLE IV. Energies of 35, 3p (m=0) states (in units of Rydberg atomic units) for a hydrogen atom in a uniform magnetic field of
arbitrary strength. a: Ivanov [32]: finite-difference method. b: Rosner et al. [23,24]: numerical multiconfiguration Hartree-Fock method. c:
Present work.

3s 3p

y a b c a b C

0 0.11111111 0.11111111

0.0002 0.1113095 0.11130956 0.1113104 0.11131039
0.001 0.1120720 0.11207198 0.1120931 0.11209312
0.002 0.1129547 0.11295474 0.1130392 0.11306976
0.01 0.1173387 0.11733863 0.1193757 0.11937573
0.02 0.1172685 0.11726841 0.1247571 0.12475712
0.04 0.1065539(50) 0.10656056 0.1308128 0.13081275
0.06 0.09343459 0.09345169 ‘ 0.1344065 0.13440650
0.1 0.08713344 0.08713337 0.08713731 0.1397834 0.13978337
0.14 0.0862250 0.08622455(551) 0.08622492 0.1442643 0.14426424
0.2 0.0830400 0.08303934 0.1498509 0.14985090
0.3 0.075656 0.07568542 0.1570134 0.15701336
0.4 0.072072 0.0694(720) 0.07207151 0.162446 0.1624457 0.16244568
0.6 0.070700 0.07022(84) 0.07076951 0.1703662 0.1703659 0.17036638
1.0 0.071458 0.07128(53) 0.07146367 0.1804491 0.180441(63) 0.18044898
14 0.0724765 0.07238(53) 0.07248119 0.1869843 0.186979(93) 0.18698412
2 0.073710 0.073658(753) 0.07372298 0.1937062(144) 0.19370916
3 0.075195 0.075172(231) 0.07521137 0.2010007(54) 0.20100238
4 0.07626 0.076249(91) 0.07627660 0.2059002(34) 0.20590129
6 0.07775 0.077741(69) 0.07775927 0.2123613(32) 0.21236194
10 0.079554(72) 0.07956546 0.2196909(18) 0.21969114

TABLE V. Energies of 3d, 4f (m=0) states (in units of Rydberg atomic units) for a hydrogen atom in a uniform magnetic field of
arbitrary strength. a: Ivanov [32]: finite-difference method. b: Rosner et al. [23,24]: numerical multiconfiguration Hartree-Fock method. c:
Present work.

3d 4f

b% a b c a b c

0 0.11111111 0.06250000
0.0002 0.1113107 0.11310689 0.06269893 0.06269693
0.001 0.1121008 0.11210076 0.06347332 0.06347319
0.002 0.1130698 0.11306976 0.06439456 0.06439344
0.01 0.1200958 0.12009583 0.07001254 0.07001241
0.02 0.1272339 0.12723386 0.07380055 0.07380038
0.04 0.1373908 0.13739075 0.07607329 0.07606243
0.06 0.1438266 0.14382657 0.07613841 0.07613813
0.1 0.1498760 0.14987603 0.07648 0.07647957 0.07647923
0.14 0.1501991 0.15019906 0.077508 0.07738(67) 0.07750556
0.2 0.1451139 0.14511383 0.079192 0.07913(27) 0.07918930
0.3 0.1353427 0.1353427 0.13534274 0.081562 0.081535(97) 0.08155964
0.4 0.130985 0.1284(315) 0.13097442 0.083387 0.083385(421) 0.08339919
0.6 0.129795 0.1287(301) 0.12979562 0.086083 0.086074(92) 0.08608101
1.0 0.1324671 0.13202(63) 0.13246604 ’ 0.0894514(93) 0.08945428
1.4 0.1352546 0.13499(537) 0.13525446 0.0916065(113) 0.09160822
2 0.138574 0.13841(65) 0.13857978 0.0937956(84) 0.09379658
3 0.142547 0.14245(60) 0.14255444 0.0961373(89) 0.09613790
4 0.145400 ~0.14533(45) 0.14540915 0.0976912(31) 0.09769242
6 0.1493976 0.149356(431) 0.14940534 0.09972083(145) 0.09972097

10 0.154311 0.154286(333) 0.15431648 0.1019939(42) 0.01019938
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Slater- and Landau-type functions alone cannot achieve high
accuracy. An advantage of the method is the fact that the
Hamiltonian matrix constructed from the B splines basis is
sparse and the evaluation of the matrix elements is straight-
forward. An efficient diagonalization package utilizing the
sparseness of the matrix elements was developed. The con-
vergence of the diagonalization procedure is fast, stable, and
the demand on the memory space of the computer is reason-
able. In contrast to the results of Xi er al., we have demon-
strated the applicability of the B splines for a hydrogen atom
even in the region with very strong magnetic fields.

Our results show that B splines can be successfully ap-
plied in accurate calculation of the nonrelativistic problem of
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a hydrogen atom in a uniform magnetic field of arbitrary
strength. The accuracy of these results warrants the relevance
of further studies on the additional corrections such as the
relativistic effect, the finite-nuclear-size correction, and the
effects of finite nuclear mass. Further application of the B
splines to these effects as well as m # 0 excited states will be
presented in a future work.
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