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Explicitly correlated Gaussian functions in variational calculations:
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Explicitly correlated Gaussian functions are applied to extensive variational calculations of the 'S ground

state of the beryllium atom. The convergence of the energy with respect to the basis-set expansion length is

investigated. The nonrelativistic clamped-nuclei energy computed from a 1200-term wave function equals
—14.667 355 hartree and is in error by about 1 cm '. This is the lowest variational upper bound to the

beryllium ground-state energy reported to date and it shows that recent empirical estimates of the nonrelativ-

istic energy of the Be atom lie slightly too high. Several expectation values, including powers of interparticle

distances and the Dirac 6 function, are computed. The nuclear magnetic shielding constant, the magnetic

susceptibility, the specific mass shifts, the transition isotope shift, and the electron density at the nucleus

position are evaluated.

PACS number(s): 31.15.Ar, 31.25.—v

I. INTRODUCTION

Thirty-five years ago Boys [1]and Singer [2] proposed to
represent a many-electron wave function in the form
W = Xickexp( —Qi), where Q& is a positive definite quadratic
form in interparticle distances. We refer to this type of func-
tion as exponentially correlated Gaussian functions (ECG).
This type of function, in connection with a suitable optimi-
zation procedure, and thanks to the progress in computer
techniques, provides a very promising computational tool.
The method has already proven extremely good on two-
electron systems. The case of the helium atom obtaining mi-
crohartree accuracy does not present any difficulties [3—5].
Already in the 1980's Gaussian-type-geminal functions, the
two electron case of the ECG, allowed for an accuracy of a
few cm ' when applied to the hydrogen molecule [6—8].
During the last decade, the energy error was decreased to a
fraction of cm ' [4,9,10] to reach finally the level of accu-
racy that has never been obtained before for any molecular
system [11].A possibility of obtaining results of the same
quality for HeH+ and H&+ has also been presented [4,10,12].
Application of the ECG to three-electron systems also results
in high accuracy as has been shown for Li [13] and H&

[10,14]. A very good agreement with experimental spectro-
scopic data has been presented for helium dimer cation,
He2+ [15].Encouraging results have also been obtained in
the case of the four-electron LiH molecule [14].In this work,
we employed the ECG to challenge another four-electron
system: beryllium atom in its ground 'S state.

The most accurate experimental total energy of the
ground state of beryllium atom E, , is obtained by adding
together the first and second ionization energies measured by
Holmstrom and Johansson [16] and the theoretical value of
the total energy for Be +. The latter component, correspond-
ing to a sum of the third and fourth ionization energies, is
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known more accurately from the theoretical calculations of
Drake [17] than from the experiment. The total energy ob-
tained this way [18] is —14.669 332 4 hartree (EH).

From the computational point of view, the total energy
consists of several contributions. The major one, usually re-
ferred to as the nonrelativistic energy, E„„involves the Cou-
lomb interactions and the kinetic energy of the electrons. It is
often calculated as a sum of Hartree-Fock, EHF„and corre-
lation, E„„,energies. All the other contributions to the total
energy of Be amount to ca. —2X10 EH, where EH=1
hartree, which is a relatively small fraction of E„,, but it
must not be neglected when high accuracy is expected. Sev-
eral non-Coulomb factors account for the contributions.
Among them, the finite mass of the nucleus, and the relativ-
istic and radiative effects, are the leading ones. Extensive
work has been done towards determining the values of these
corrections [18—20]. Bunge's configuration interaction (CI)
calculations [19] give E„, E„,= —2047(—30) X 10 EH,
the same quantity calculated from the data given in the
review by Martensson-Pendrill et al. [20] amounts to
—1956(25)X 10 6EH . Most recently the sum of the correc-
tions has been estimated by Lindroth et al. [18) as being
—1979(2)X10 EH. Subtracting this value from the ex-
perimental total energy E„,leads to an estimate for the "ex-
perimental" nonrelativistic energy [18]

E„„=—14.667 353(2)EH .

This number could serve as a reference to the energy of the
ground state of Be.

While the main corrections are known to within a few
microhartrees, the theoretically determined nonrelativistic
energy still gives a major contribution to the uncertainty of
E„,. An extensive review of various computational approxi-
mations and a discussion of the corrections needed to per-
form a comparison between theory and experiment can be
found in Ref. [20]. Its authors, because of the apparent dis-
crepancy between the theory and the experiment, try to ex-
amine possible sources of this discrepancy, among them are
the nonrelativistic energy and the mass polarization energy.

1050-2947/95/52(6)/4500(8)/$06. 00 4500 1995 The American Physical Society



52 EXPLICITLY CORRELATED GAUSSIAN FUNCTIONS IN 4501

Highly accurate values of these quantities will be reported in
the present paper, helping to resolve the problem and re-
sponding to their call that "more precise calculations of both
relativistic and nonrelativistic few-electron systems are
needed. " Most of the nonrelativistic energy estimates come
from perturbational computations or some extrapolation pro-
cedures with poorly determined or undetermined error bars.
On the other hand, the best variational calculations, which
give strict upper bound to E„„appear to be as much as
hundreds of microhartrees in error. Therefore, as Lindroth
et al. concluded [18], "An accurate calculation of a nonrel-
ativistic energy for Be thus remains a challenge to be pur-
sued.

The purpose of this work is to establish a more accurate
reference for the energy and several expectation values. We
are going to show that the ECG yield energies 1—2 orders of
magnitude more accurate than any other variational wave
functions and allow us to narrow the uncertainty in the value
of E„,. This, in turn, will enable more detailed analysis of all
the corrections.

The nonrelativistic Hamiltonian and the ECG functions
are defined in Sec. II, together with a short description of the

optimization strategy. This is the choice of the explicitly cor-
related wave functions and the effectiveness of the optimiza-
tion algorithm, which enable obtaining an accurate energy
with basis-set size several times smaller than those used in
previous variational calculations. Section III presents results
concerning the ground-state energy as well as several expec-
tation values. In 1988 Wen et al. [21] reported measurements
of isotope shifts in the spectrum of beryllium. They remarked
that "Accurate ab initio calculation of this quantity poses a
challenge to theory which, to our knowledge, has not yet
been met. " In Sec. III C, we derive the theoretical isotope
shift and compare it directly with the experimental one. Fi-
nally, Sec. IV contains the conclusions.

where ez = ~ 1, depending on the parity of the electron co-
l

ordinate permutation, M~, . Os M is a four-electron spin
S

eigenfunction fulfilling two eigenequations simultaneously

S Os, M, =S(S+1) Os, M,

and

z OS'Ms MS HS'Ms (6)

For the singlet state of a four-electron system, there are two
orthogonal spin functions, both corresponding to

Ms=0, e.g. ,

l
1

0' ' = [npnp —pnnp —np—pn+ pnpn]

and

1

0'ohio~=

[—pnpn nppn+2—ppnn+2nnpp
2+3
—npnp —pnnp].

It has been proven [14] that only one such function is
needed to ensure convergence of eigenvalues to the exact
root of the Hamiltonian. The former one has been adopted in
these computations. The spatial part of the basis function is
of the form

4 5

2
tj k( 1 r2 r3 r4) exp a ij,kriji= 1 j=i+1

(9)

where i, j label all the five particles: four electrons and the
Be + nucleus. a;J I, denote nonlinear variational
parameters —ten per each basis function.

II. METHOD

The nonrelativistic Hamiltonian employed in this calcula-
tion, when expressed in atomic units, has the form

1 '1

Optimization of the wave function

Obviously, the variational energy of the system

(W~H +)
&(( ) (,, ))= (~~~) ~ (10)

+(rl ~r2 ~F3 ~F4) —Ms Os Ms X ck Pk ',)' (3)

where K is the number of basis functions, cI, are variationally

determined expansion coefficients, and .M~ represents the
four-particle antisymmetrizer

41

e~&(,
1=1

(4)

It does not include mass polarization contribution, and cor-
responds to an infinite-mass nucleus. Our trial wave function
can be written in the form of an antisymmetrized linear com-
bination

depends on the set of linear and nonlinear parameters of the
trial function, 'P. To find the global minimum of the func-
tional (10) with respect to all these parameters is practically
an impossible task and no universal algorithm solving this
problem exists. For instance, with the 1000-term wave func-
tion of the ansatz (3), energy becomes a function of 10 000
nonlinear parameters, and it is not feasible to perform the full
optimization of such a function and find the global mini-
mum. On the other hand, as experience shows, proper opti-
mization of these nonlinear parameters is crucial to obtaining
highly accurate results. Several ways of solving this problem
have been proposed. Thakkar and Smith [22] developed the
random tempering method allowing us to reduce the number
of the optimized parameters. To find the minimum,
Koz1owski and Adamowicz employed analytical first deriva-
tives of the variational energy with respect to the nonlinear
parameters [23].A simple method of sampling has also been
used with some success [24].
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TABLE I. The energy convergence with the wave function expansion increase. Ez is the energy obtained
from the K-term wave function, AEtr E——

tr&2
E—tr. L(0.01) is the convergence factor described in Sec. III A

and —(V)/2(T) is the virial coefficient.

Etc /EH 0 E„(cm ') L(0.01) (v)
2(T)

50
75
100
150
200
300
400
600
800
1200

—14.665 053 934 4
—14.666 444 767 0
—14.666 892 195 7
—14.667 185 772 5
—14.667 271 964 6
—14.667 317 471 6
—14.667 335 166 9
—14.667 350 194 8
—14.667 353 426 7
—14.667 355 021 7

403.457
162.634
83.351
28.905
13.872
7.182
4.008
1.059

4.84
5.63
6.01
4.02
3.46
6.78

370
410
397
118
75
35

0.999 998 195 9
1.000 002 669 1

1.000 002 168 5

0.999 996 215 3
0.999 998 386 7

0.999 999 264 0
0.999 999 764 4
0.999 999 865 4
0.999 999 972 5

0.999 999 973 4

In this work we used some limited form of the optimiza-
tion leading to local minima with sufficiently low energy. In
one step we optimize simultaneously only ten nonlinear pa-
rameters in a given term Pq of the K-term wave function
using Powell's conjugate direction method [25].A cycle con-
sisting of K such steps is then repeated as many times as
needed to fulfill an imposed criterion. The domain for the
parameters search has been limited by the square-
integrability condition and negative values of the individual

a;~ z parameters were allowed. During such an optimization,
only one row and one column of the Hamiltonian and over-
lap matrices need to be updated as the nonlinear parameters
of the selected term change. Without the savings resulting
from this observation, the computations are simply not fea-
sible. One has to emphasize that the set of the parameters
found in each step is optimal only with respect to the fixed
set of the other parameters and one cycle alone is not able to
give the required accuracy. Only repeating one cycle after
another makes these parameters converge to a minimum. Of
course, in practice one has to compromise between the num-
ber of reoptimizing cycles and the cost of this calculation.

III. RESULTS AND DISCUSSION

A. The ground-state energy

The computations were carried out for several expansion
lengths, ranging from %=50 to K=1200 basis functions.
The energies obtained are listed in Table I. The first conclu-
sion that can be drawn from the table is a significant im-
provement in energy over any variational calculations re-
ported to date. Already the 150-term wave function yields
better energy than the lowest previous result of Fisher [26].
Energies obtained from the longest expansions give errors at
least one order of magnitude smaller than any other varia-
tional results. The best previous variational calculations
come from Sims and Hagstrom [27], Bunge [19], Clementi
et al. [28], and most recently from Chung et al. [29] and
Fisher [26] (see Table II). The reported upper bounds to the
nonrelativistic ground-state energy of Be are, respectively,
177cm ', 99cm ', 86cm ', 68cm ', and53cm
above the "experimental" energy (1) published by Lindroth
et al. Our 1200-term wave function gives energy even lower
than this reference.

Apart from the variational computations, many perturba-
tional results have been presented. Correlation energies, cal-
culated directly from a perturbation method or as a differ-
ence E EH„, wh—ere E= min( E„a, E„„),are displayed in
Table II. EUB, listed in the first column of the table, is an
energy computed directly from variational calculations, and
represents a strict upper bound to the exact nonrelativistic
energy. E„„ is estimated either from perturbational compu-
tations or from extrapolation to an infinite basis set. Broad
discussion of difficulties in obtaining microhartree accuracy
for E„can be found in Ref. [20]. The most accurate esti-
mates of the correlation energy are close to
—94.3X10 EH, e.g. , —94.29X10 EH computed by Al-
exander et al. [4], —94.35X10 EH by Olsen and Sund-
holm [30], —94.34X10 EH by Davidson et al. [31] or,
most recently, —94.249X10 EH by Noga et al. [32]. For
comparison, our 1200-term wave function yields
Et OII: 94.332X 10 EH .

The expansion lengths, K, listed in the first column of
Table I, comprise two geometrical series:
@=50, 100, 200, 400, and 800, and @=75, 150, 300,
600, and 1200. Except for K=50 and @=75, for each
Ez—the energy obtained from the wave function of the size
K—we can determine Ez&2 and calculate the difference
AE+=E«2 —Ez. The effect of the basis-set doubling with
increasing K allows one to assess the convergence rate with-
out referring to any external value of the energy. This is
particularly important when no exact reference energy exists.
As can be seen from the third and fourth columns of the
table, where values of AEz and AEz&2/AEz are displayed,
each doubling of K gives energy lowering three or more
times smaller than that of E/2. Assuming that this tendency
is preserved for still longer expansions, and that the function
(3) is complete in pertinent Hilbert space, we can estimate
the true eigenvalue of the Hamiltonian (2). The extrapolation
leads to the conclusion that our upper bound computed from
the 1200-term wave function lies about 1 cm ' above the
exact lowest eigenvalue of the Hamiltonian. Our estimate for
the nonrelativistic ground-state energy of Be is

E„,= —14.667 360(2)EH

and the correlation energy corresponding to the new value is
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TABLE II. Comparison of nonrelativistic energies and correlation energies obtained with various theoreti-

cal methods.

&UB '~&0 b~.St; t'&0 10 F„~'/FH Ref.

Gentner and Burke [37], 25-term Hylleraas wave function

Sims and Hagstrom [27], 107-term Hylleraas CI wave
function

Fisher and Saxena [38], MCHF, 52 configurations

Clary and Handy [39],40-term Hylleraas CI wave function

Sims and Hagstrom [40], 57-term Hylleraas CI wave
function

Bunge [19],650-term CI wave function

Lindgren and Salomonson [41], coupled cluster method

Alexander et al. [42], estimated

Urban et al. [43], coupled cluster method

Salomonson and Oster [44], coupled cluster method

Olsen and Sundholm [30], MCHF
Clementi et al. [28], CI wave function

Davidson et al. [31],estimated

Liu and Kelly [45], coupled cluster method

Schwegler, Kozlowski, and Adamowicz [36], 150-term
ECG

Chung et al. [29], CI wave function

Fisher [26], MCHF, 3381 configurations

Weiss et al. [46], CI wave function

—84.7
—93.524

—14.6577
—14.666 547

—92.847
—92.85
—93.30

—14.665 870
—14.665 87
—14.666 32

—94.305
—92.260
—94.29
—87.768
—93.667
—94.35
—93.9
—94.34
—95.15
—89.811

—14.666 902 —14.667 328
—14.665 96

—14.660 613
—14.666 69

—14.665 570 —14.667 37
—14.666 960

—14.667 36
—14.671 05

—14.662 834

—14.667 043 —14.667 349
—14.667 113 —14.667 315
—14.666 89

—94.326
—94.292
—93.87
—94.249
—94.337
—94.330

—14.667 261 Noga et al. [32], R12-coupled cluster method
—14.667 355 —14.667 360 This work, 1200-term ECG

—14.667 353(2) Lindroth et al. [18], "experimental" nonrelativistic
a
EUz—energies computed directly from variational calculations, representing a strict upper bound to the exact

eigenvalue s.
E„„—energies estimated either from perturbational computations or from extrapolation to an infinite basis

set.
CE„—correlation energies computed by means of a perturbation method or calculated as a difference

E E„F, where E—HF= —14.573 023EH [20,31,47] and E= mi (EnoEs„„j.

—94.337X10 FH. In light of these results, the "experi-
mental" energy by Lindroth et al. (1) seems to lie slightly
too high.

As mentioned in the previous section the optimization
procedure has a limiting threshold imposed. The procedure
performs as many cycles as is needed to obtain the energy
lowering smaller than 0.01' 10 EH per cycle. The fifth col-
umn of Table I contains a cycle number, L(0.01), at which
this condition has been fulfilled. As we can see, longer ex-
pansions ensure faster convergence. The 1200-term wave
function needs only 35 cycles to converge below this thresh-

old, whereas for the 50—150-term wave functions, we never
managed to gain such convergence and stopped after 500
cycles.

The convergence of the energy with growing K is rela-
tively fast and compares favorably with any CI calculations.
Nowadays dealing with dense matrices of order 1000 is a
routine and not a very costly task. The calculations presented
here have been performed on regular workstations. Two
completely different and independent programs have been
used in these calculations. Each program implements differ-
ent integral formulas in the matrix elements routines. Also
several independent diagonalization routines have been ap-
plied to check the computational process. The energies ob-
tained from these two sources, and additionally computed in

both 16- and 32-digit precision, differ at most on the 14th
significant figure.

An atomic wave function can be additionally optimized
through a scaling procedure. Such a new scaled wave func-
tion

6+„=V +(Vri Vr»mrs W4) (12)

(v)
2(T)

(13)

where (V) and (T) are the expectation values of the potential
and kinetic energy operators, respectively. The exact wave
function describing a stable state of an atom has y= 1. The
scale factors computed from Eq. (13) for each K are dis-

played in the last column of Table I. The multidimensional
optimization of the ECG wave function is not uniform in all
r coordinates, hence, the virial theorem does not have to be
satisfied automatically. It turned out, however, that after ex-

would yield still lower energy if the scale factor g is chosen
properly. The optimum rg can be determined from the virial
theorem, which gives
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TABLE III. The expectation values of the ground-state beryllium atom. r„and r,„are the electron-
electron and electron-nucleus distance operators, respectively, 6(r) is the Dirac 8 operator. A11 the expecta-
tion values are in atomic units. A digit in parentheses following each E= ~ entry is an estimated deviation on
the last decimal figure.

50 1.595 075
75 1.590 633

100 1.590 231
150 1.589 914
200 1.589 745
300 1.589 566
400 1.589 53 j.

600 1.589 505
800 1.589 495

1200 1.589 487
1.589 458(7)

14.387 61
14.391 40
14.395 14
14.398 12
14.398 66
14.398 79
14.398 92
14.399 30
14.399 36
14.399 39
14.399 52(4)

0.729 575 1

0.729 283 0
0.729 217 9
0.729 169 0
0.729 145 1

0.729 132 3
0.729 124 9
0.729 118 3
0.729 116 5

0.729 115 9
0.729 112 1(9)

2.106 725 7
2.106 781 8

2.106 814 3
2.106 843 5

2.106 841 4
2.106 840 7
2.106 839 2
2.106 838 4
2.106 837 9
2.106 837 9
2.106 837 4(5)

2.539 034
2.541 794
2.543 191
2.544 334
2.544 779
2.544 956
2.545 100
2.545 234
2.545 269
2.545 279
2.545 35(2)

1.490 370
1.491 569
1.492 151
1.492 662
1.492 870
1.492 945
1.493 009
1.493 076
1.493 092
1.493 097
1.493 14(2)

K (r„)
50 8.743 38
75 8.770 56

100 8.785 23
150 8.797 66
200 8.802 68
300 8.804 62
400 8.806 12
600 8.807 65
800 8.808 04

1200 8.808 16
GQ 8,809 0(3)

(",.)
4.030 42
4.044 13
4.050 59
4.056 47
4.058 92
4.059 80
4.060 47
4.061 24
4.061 41
4.061 48
4.061 9(2)

(r,',)
36.5323
36.7420
36.8681
36.9760
37.0222
37.0393
37.0520
37.0669
37.0705
37.0718
37.081(4)

(r.'.)
13.9228
14.0368
14.0911
14.1427
14.1653
14.1734
14.1791
14.1865
14.1882
14.1888
14.193(2)

("„)
177.371
178.875
179.946
180.838
181.249
181.392
181.495
181.640
181.672
181.685
]81.79(5)

(",.)
55.875
56.736
57.168
57.593
57.792
57.862
57.910
57.982
57.997
58.003
58.05(3)

K (6(r„))
50 0.279 76
75 0.272 44

100 0.271 29
150 0.270 39
200 0.269 70
300 0.268 80
400 0.268 49
600 0.268 19
800 0.268 04

1200 0.267 84
0.266 9(6)

(@,.))
8.6219
8.6441
8.7054
8.7753
8.7846
8.7935
8.7938
8.8170
8.8229
8.8279
8.86(2)

—(V;V, )
0.465 272
0.462 297
0.461 263
0.460 701
0.460 468
0.460 351
0.460 286
0.460 247
0.460 234
0.460 229
0.460 205(3)

Kinetic energy

14.665 106 848
14.666 366 475
14.666 828 585
14.667 296 795
14.667 319 289
14.667 339 061
14.667 342 077
14.667 354 144
14.667 354 234
14.667 355 803
14.667 360(2)

tensive optimization the wave functions have the scaling fac-
tors so close to one that the scaling brings practically no
further energy lowering.

(@
I
o I@)

(+I+) (14)

The expectation value of the operator representing the in-

verse electron-nucleus distance r,„' has the fastest conver-

B. The expectation values

The wave functions obtained as described in previous sec-
tions have been subsequently employed in determination of
expectation values of several simple operators:

gence of all the expectation values listed in Table III. Only
the eighth significant figure appears to be uncertain. Five
decimal digits seem to be stable for the expectation value of
the inverse interelectron distance operator, r, ,'. Both the
operators are the components of the Hamiltonian, which ex-
plains the best convergence of their expectation values. The
other moments, (r,"„)and (r"„), with n = —2, 1, 2, 3, and 4,
converge slower but still, for the values computed from
1200-term wave function, at least four significant figures can
be accepted. The uncertainty grows when n increases. The
higher the power of r, the more distant regions of the elec-
tron density distribution are sampled, hence, the more sensi-
tive to the quality of the wave function is the expectation
value. The (r,"„) values are also known from Esquivel and
Bunge's calculations [331 who employed a 650-term CI
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wave function [19].Their density moments differ by no more
than 0.5% from those listed in Table III for E= 1200.

The Dirac 8-function operators, 8(r,„) and 8(r„) exhibit
the poorest convergence of their expectation values. It is well
known that Gaussian-functions have unphysical asymptotic
behavior. It concerns not only distant regions of the electron
density distribution, affecting higher moments of r, but also
the closest surrounding of the nucleus which, in turn, is im-

portant for obtaining accurate energy. An exact wave func-
tion should obey pertinent cusp conditions. The Gaussian-

type functions can never fulfill such conditions despite using
infinitely long expansion. The relatively slow convergence of
(&(r,„)) and (&(r„)) is another evidence of this feature.
Nevertheless, the poorly represented region of space around
the nucleus can be arbitrarily minimized in the process of the
optimization as has been shown in case of the energy. The
expectation values of B(r,„) and 8(r„) are the components
of the relativistic Hamiltonian responsible for penetration ef-
fects. (8(r,„)) gives also raise to the electron density at the
nucleus, p(0) = 16'(8(r,„)).The value calculated from the
extrapolated expectation value is

Table III, (V;V, ) converges quite fast and five significant
figures can be recognized as stable. The 1200-term wave
function yields 5= 0.460 229 a.u. , the extrapolated value is

S= 0.460 205(3) a.u. (17)

and the SMS derived from (17) for 9Be and for ' Be, the
unstable but long-lived nuclide, are

AEs~'q 28.0——182(2) X 10 EH (18)

and

AEsMs 25.21——59(2) X 10 EH . (19)

Obviously, the isotope substitution affects the ionization en-

ergy, resulting in the transition isotope shift (TIS), the quan-

tity which can be obtained also experimentally. The replace-
ment of Be by ' Be in the neutral atom and in the beryllium
cation, Be+, gives

p(0) = 445(1) bohr (15) Be Be 8 8
~ETIs (~EsMs ~EsMs) (~EsMs ~EsMs)

This value can be compared with 444.472 bohr ' of Bunge
[34] and 444.466 bohr ' of Esquivel and Bunge [33]. It is
worth noting that all the expectation values reported in Table
III converge monotonically. This important feature enables
application of a similar extrapolation procedure that has been
used in the case of the energy as described in Sec. III A. The
expectation values extrapolated for K~~ can be found in
Table III with each entry followed by an estimated error bar.

3 4

v, v, e ,
i=1 j=i+1

(16)

where 9' is the eigenfunction of the clamped nucleus Hamil-
tonian. For beryllium, the specific mass shift parameter,
S= —(V;VJ), has been estimated by Fisher [26] using the
multiconfiguration Hartree-Fock (MCHF) method as equal to
0.460 69 a.u. Chung et al. [29] obtained S=0.4618 a.u. ap-

plying CI wave function. This expectation value depends
strongly on how much of the electron correlation is taken
into account, therefore, it comprises another sensitive check
on the quality of the wave function. As can be seen from

C. The finite nuclear mass correction

The effect of the finite mass of the nucleus can be treated
as a perturbation in m, /M, where M is the nuclear mass and

m, =m, M/m, +M is the reduced electron mass. Because
Be, the only stable nuclide of beryllium, is over 16000

times heavier than the electron, it is sufficient to consider
only the first-order terms in the perturbation series. In this

case, the normal mass shift (NMS), the major part of the
nuclear mass correction, can be obtained simply by rescaling
the total energy. The normal mass shift is the same for all the

energy levels. The specific mass shift (SMS) is much smaller
than NMS and changes from state to state. It has its origin in

the mass polarization term, —m, /MX;Xj~;V;Vj, of the fi-

nite mass Hamiltonian. The SMS, as a first-order correction
to the energy, has the form

(20)

For Be the S parameter has been calculated by King [35].
His value S= 0.452 926 3 a.u. in combination with (17) give
an estimate

AETI&=0.0443& 10 EH=292 MHz. (21)

The uncertainty of AE»z comes primarily from the King' s

S parameter, which is converged to at most four significant
figures. The TIS between Be and ' Be has been measured

by Wen at al. [21] by means of the resonance-ionization
mass spectroscopy. They reported AE»&=270~40 MHz,
which can be compared directly with (21).

4~= 3,2 (r,.') (22)

and

D. The magnetic properties

The nuclear magnetic shielding constant o. and the mag-
netizability y are, in general, tensor quantities composed of
diamagnetic and paramagnetic parts. However, because of
the spherical symmetry of the Be atom in 'S state, the num-

ber of independent tensor components reduces to just one.
The paramagnetic contribution is a second-order parameter
and hence difficult to determine from a theoretical point of
view. Another problem encountered in quantum-mechanical
computations of o. and y is their gauge dependence. It origi-
nates from an incompleteness of the space spanned by a
basis-set defining the wave function applied. The symmetry
suggests a natural choice of the gauge origin —the position of
the nucleus —for which the paramagnetic terms in n. and y
vanish. Hence, both quantities have only first-order diamag-
netic components expressed by the expectation values (in
atomic units)
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1
2X= —

3 (r,.) (23)

We also believe that our high-quality wave function is able to
produce practically gauge independent results.

The expectation value of the r,„' operator extrapolated for
K=~ and inserted to Eq. (22) yields the nuclear magnetic
shielding constant,

a.= 149.589 28(4) ppm. (24)

Similarly, the same wave function and Eq. (23) give

cm
y= —1.353 97(7) a.u. = —12.8683(6) X 10

mol
'

(25)

IV. SUMMARY

The capability of producing very accurate results by the
ECG functions has been proven many times for two- and
three-electron systems [3—15]. This paper presents high-
quality calculations on a four-electron system: the beryllium
atom. It shows that the ECG functions are able to yield an

energy converged up to 1 cm '. lt exceeds the accuracy of
any previous variational calculations by 1—2 orders of mag-
nitude. The lowest variational upper bound to the ground-
state energy of the nonrelativistic infinite-mass beryllium
atom is —14.667 355EH. The energy predicted by an ex-
trapolation amounts to —14.667 360(2)EH . Corresponding
correlation energies are —94.332 && 10 FH and
—94.337(2) X 10 sEH, respectively.

At this moment the importance of the optimization proce-
dure ought to be emphasized because it makes possible to
speed up the convergence rate and apply shorter expansions
of the wave functions. Already the energy obtained from our

150-term wave function is only about 38 cm ' in error,
which is better than any other variational energy published to
date. The comparison with the energy obtained from 150-
term ECG of Schwegler et al. [36] reveals that the former
yields an error over 25 times smaller. The other variational
wave functions yielding energy close to that obtained with
our 150-term function have several times larger expansion
lengths ranging from 650 up to several thousands. The above
shows the efficiency of our method also in applications
where small basis sets have to be applied. In fact, the con-
vergence acceleration comes from two equally important fac-
tors:

(a) The explicit inclusion of the interelectron distances
into the basis function definition, Eq. (9);

(b) efficiently programed optimization algorithm.
The wave functions optimized with respect to the energy

have been applied to evaluate expectation values of several
operators. The easiness of evaluating integrals with
Gaussian-type basis functions allowed us to compute a wide
range of the expectation values of powers of distance opera-
tors as well as Dirac 6', and the products of the nabla opera-
tors. These computations lead to highly accurate values of
the magnetic shielding constant, o.= 149.589 28(4) ppm, the
magnetic susceptibility, y= 12.8683(6) X 10 cm /mol, the

'ae
specific mass shifts, AEs~'z = 28.0182(2) X 10 EH,

10B
EEsMs=25. 2159(2) X 10 6EH and the transition isotope
shift, AE»z= 293 MHz. These values are the most accurate
computed to date, and together with the ground-state energy
could serve as a reference for these quantities.
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