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Hardness of molecules and the band gap of solids within the Kohn-Sham formalism:
A perturbation-scaling approach
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The finite difference expression for the hardness of atoms and molecules, i.e. half the difference between the
ionization potential and the electron affinity according to Parr and Pearson [J. Am. Chem. Soc. 105, 7512
(1983)], is expressed here as an explicit functional of the Kohn-Sham orbitals, of the Kohn-Sham eigenvalue
differences, of the Coulomb potential, and of certain parts of the exchange-correlation potential. The functional
is derived by exploiting the relationship between uniform coordinate scaling of the electron density and a
perturbation theory with respect to the electron-electron interaction. The hardness is obtained as a perturbation
expansion consisting of terms which each are connected to a specific order of e with e being the electronic
charge. This allows one, in principle, to determine the hardness exactly within the Kohn-Sham method or, in

actual applications, up to some chosen order in e . The actual expansion is displayed through second order. To
some extent the results are also valid in the case of band gaps of solids.

PACS number(s): 31.15.Ew, 71.10.+x, 31.25. —v

I. INTRODUCTION

The band gap of solids is the difference between the ion-
ization potential and the electron affinity. The finite differ-
ence expression for the hardness of atoms and molecules is
identified by Parr and Pearson as half of this difference [1,2].
However, in this work, for notational simplicitly, the hard-
ness shall be defined, like the band gap, as the full difference
between ionization potential and electron affinity. The hard-
ness is essential for characterizing the chemical behavior and
reactivity of a species. The band gap determines the elec-
tronic conductivity of solids, a point, which especially for
semiconductors, is of great technical importance. Therefore,
calculations of hardness and of band gaps are of great inter-
est.

For the theoretical investigation of the electronic structure
of atoms or molecules, the Kohn-Sham (KS) procedure [2,3]
of the density-functional theory (DFT) [2,3] is quite preva-
lent. As far as solids are concerned, the KS scheme is the
dominant theoretical method to describe electronic structure.
However, the KS approach suffers from the so-called band-

gap problem, i.e., the fact that even the exact KS band gap,
as determined by orbital energy differences, differs from the
physical band gap [4—6]. Similarly, the hardness of an atom
or molecule is not just given by the difference between the
eigenvalues of the lowest unoccupied and the highest occu-
pied KS orbitals.

In this work, we express the physical hardness as a func-
tional of the KS orbitals, the KS eigenvalues, and the
exchange-correlation potential. These quantities are obtained
in any KS procedure. The perturbation-theory expression de-
rived in this work for the hardness allows its calculation in a
straightforward manner after a KS calculation for the neutral
compound has been performed. Additional KS calculations
for the positively or the negatively charged species are not
necessary. We only require that the employed approximate

correlation functional and potential obey certain scaling con-
ditions that are known to hold for the exact correlation func-
tional. The energy difference between the eigenvalues of the
lowest unoccupied and the highest occupied KS orbitals rep-
resents the zeroth-order contribution to the perturbation-
theory expansion of the hardness derived here.

The results of this work are valid for all finite electronic
systems, including those with periodic boundary conditions.
Solids are usually described as systems with periodic bound-

ary conditions in the limit of the system size approaching
infinity, i.e. , the thermodynamic limit. To some extent the
results obtained here are also valid in this limit. The work we
report on here exploits relations between uniform coordinate
scaling of the electron-density and perturbation-theory ex-
pressions of the exchange-correlation energy [7—9].

II. BASIC FORMALISM AND FORMULAS

We consider electronic systems characterized by the
Schrodinger equation

[T+V„+u]%'(M) = E(M)qr(M),

with electron numbers M=N, M=N —1, and M=N+1. In

Eq. (1), T stands for the operator of the kinetic energy V„
for the operator of the electron-electron repulsion. The exter-
nal potential, v( r) leading to the operator U, is usually gen-
erated by the nuclei of the system under consideration. The
ground-state wave function W[N] with energy eigenvalue
E[N], shall yield the density n(r). The ionization energy
IP(N), the electron affinity EA(N), and the hardness or
band-gap A„[n] are given by
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IP(N) =E(N 1)——E(N),

EA(N) =E(N) —E(N+ 1),

(2a)

(2b)
[n]=g c;[n],

i=p
(4)

[n] = IP (N) —EA (N) =E(N+ 1 ) +E(N 1)——2E(N) .

(3)

The hardness or band-gap A„[n] is developed in a series
expansion

consisting of terms c,[n] which, like 5 [n], are functionals
of the ground-state density n(r) of the ¹lectron system and
which are connected to the ith order in e with e being the
electronic charge. The terms c,[n] are given by

c;[n]=H; +'[(yj[n]),(ej[n] —ej [n]),tvt[n], . . . u; t[n])] +H, '[jcpz[n]j, (ez[n] —ej [n]),(v&[n], . . . v; ~[n])]
—2H, [(q&J[n]),(e~[n] —

e~ [n]),(u&[n], . . . u; &[n])]—[&y~+t u;[n] yz+t) —
&y~ u;[n]ly~)]. (5)

The expressions H, +, H, , and H, are explicit function-
als of the KS orbitals (q [n]), differences tej[n] —ej [n])
between KS eigenvalues, and of potentials v&([n];r) with
1 k~- (~i

—1). The KS orbitals ( cpj [n]), the differences
(eJ[n] —e, [n]), and the potentials uz([n];r) all belong to
the N-electron system with density n (r). The potential
vq([n];r) with k~ 1 is the contribution of order k in e2 to the
exchange-correlation potential. This contribution can be ob-
tained from the exchange-correlation potential by a simple
projection technique [8] described later on. Because the KS
orbitals, the KS eigenvalue differences, and the potentials
vk([n];r), are functionals of n(r), the expressions H, +',
H, ', and H, also are functionals of the ground-state den-

sity n(r). A crucial property of the expressions H, +',
H, ', and H, and subsequently of the terms c;[n] is that
they are not affected by an addition of an arbitrary constant
to the potentials v&([n];r). We emphasize that only quanti-
ties belonging to the N-electron system and its density n(r)
appear on the right-hand side of Eq. (5). Quantities of the
(N 1)- and (N+1—)-electron systems are not involved.

Before Eqs. (4) and (5) are derived, and the expressions

H, +, H, ', and H, as well as the potentials uk([n];r) are
defined exactly, we exhibit Eq. (5) for zeroth, first, and sec-
ond order. The zeroth-order potential uo([n];r) is the nega-
tive of the KS potential u, ([n];r), and Ho ', Ho, and

Ho are given by the kinetic energies of Slater determinants
4(N+ 1), 4(N —1), and &P(N). The determinant &b(N) is
the ground-state KS determinant corresponding to the
ground-state N-electron system described by the Schrodinger
equation (1), i.e. , the KS determinant of n(r). The Slater
determinants 4(N+ 1) and 4(N 1) are ob—tained from
4(N) by occupying the energetically lowest unoccupied KS
orbital associated with 4(N) and by leaving the energeti-
cally highest occupied KS orbital of 4(N) unoccupied, re-
spectively. Note, that whereas 4(N) is the KS determinant
corresponding to W(N), and where Ii'(N) ~n(r), the deter-
minants 4(N+1) and 4(N —1) are not the KS determi-
nants related to W(N+ 1) and 5"(N 1). —

Equation (5) for zeroth order, or the co[n] in Eq. (4), is

co[n] = &@'(N+1)
I TI C (N+ 1))—&+'(N)

I
TI ~'(N)) —[&+(N)

I
Tl @(N))—&@'(N—1)

I
Tl @(N—1))]

[&'PN+1 uo[n] 0 N+1) &@Nl vo["]I v )],

&0 N+ t T pN+ I) —
&v w Tl v ~) —&~++ i I

uo[n]l ~~+ i) + &a wluo[n]l v ~)

=&vw+t 7+v.[n] qA. +t) —&q'xlT+u. [n]led) =en+i[n] —ew[n] (6)

Equation (6) shows that the difference in the energy eigenvalues of the lowest unoccupied and the highest occupied KS
orbitals, i.e., the KS hardness, is just the zeroth-order contribution to the physical hardness with respect to e .

The potential v &([n];r) is the sum of the classical Coulomb potential u([n];r) and the exchange potential v, ([n];r), which
are the functional derivatives with respect to the density n(r) of the Coulomb energy U[n] and the exchange energy
E,[n], respectively. Equation (5), for first order, gives

c il:n] = «'(N+ 1)
I
1'., I

+'(N+ 1))—&~'(N)
I
&., +(N)) —[&~'(N)

I
1'..I @(»)—&

~'(N —1) I V..l
@(N—1))]

[&I N+ 1 I
u 1[n] I VN+ I) —( v Nl u 1[n] I 0 N)].

=
& ~x+ t u."'[n]

I ~++ i) —
&~~l u."'[n] v ~) —

& v x+ flu. [n] I ~w+ i)+ & v flu. [n]
I ~~),
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where v [n] is equal to v ([n];r) and where v, [n] is equal
to

when coordinate space is employed. The operator v, [n]
belonging to the nonlocal potential fdr' v, (r,r') is a
"Hartree-Fock-like" exchange operator built from KS orbit-
als. Note that v, [n] is different from v,[n]

Equation (7) shows that c,[n] can be considered as the
exchange contribution to the hardness b, ~[n]. In the limit of
systems of infinite size, Eq. (7) for the contribution c,[n] to

[n] was previously derived by Perdew [6]. Li, Krieger,
and Iafrate [10] derived Eq. (7) for finite systems with
boundary conditions that require the electron density to as-
ymptotically decay exponentially. Moreover, for the latter
systems, the above authors showed [6,10] that

with the uniformly scaled density ni, (r) being defined by

v2([n];r) = lim v, ([ni, ];r/)i. ).
gazoo

(14)

The third-order potential v 3([n];r) is accessible by subtrac-
tion of v2([n];r) from v, ([n];r), multiplication of the re-
mainder by k, replacement of r by r/X, and consideration of
the result for densities n~(r) in the limit )i.~~. The higher-
order potentials v;([n]; r) can be constructed in an analogous
way. Equations (11)—(14) follow from similar equations for
the correlation energy E,[n], namely, from

ni, (r) = X3n()~.r).

The second-order potential v2([n];r) can now be obtained
as

(~~lv, '[n]IV ~) =(V~lv. [n]IV~). (9)

E,[n]=g F;[n],
1 =2

(15)

for which a very quick derivation has recently been provided
by us [11],for the case of finite systems, through coordinate
scaling. Further, the above equality simplifies expression (7)
to

and

F;[n„]= X 'F;[n],

F2[n] = lim E,[ni, ],
g~oo

(16)

(17)

c i[n] = (V ~+ i lv."'[n)
I ~N+ i) -(~~+ i I v.[n]l V ~+ i).

(10)

Equations (9) and (10), in contrast to all other equalities
appearing in this work, are not invariant with respect to the
addition of a constant to the involved local potential, namely,
to v, ([n];r). In this paragraph v, ([n];r) is instead com-
pletely defined within the more general ensemble DFT al-
lowing noninteger electron densities. This definition leaves
no freedom of additive constants and gives the potential
v ([n];r) as the functional derivative with respect to the
density of the exchange energy taken from the electron defi-
ciency side of the density n(r) integrating to N. Finite sys-
tems that require the electron density to asymptotically decay
exponentially constitute a special case. For those systems,
the definition of v, ([n];r) given above is equivalent with the
condition that v, ([n];r) goes to zero asymptotically. The
latter can be achieved by the addition of an appropriate con-
stant to v, ([n];r) if necessary.

While the zeroth- and first-order potentials v i([n];r) are
connected to the KS potential and the sum of the Coulomb
and the exchange potentials, the higher-order potentials sum

up to the correlation potential

because v, ([n];r) and v;([n];r) are the functional deriva-
tives, with respect to n(r), of E,[n] and F;[n], respectively
[8].The noninteracting kinetic energy, i.e. , the kinetic energy
of the KS determinant ill(N) corresponding to the density
n(r), is identified with Fo[n], whereas the sum of the Cou-
lomb energy U[n] and the exchange energy E,[n] is identi-
fied with Fi[n]. The sum of the F;[n] to all orders then is
equal to the Hohenberg-Kohn functional [2,3] for the density
n(r).

Equation (15) is a special case of the equation

E, [n] = g u'F, [ ],n
l =2

where E,.[n] is identical to E,[n]. The energy E, [n] is the
correlation energy corresponding to the density n(r) if the
electron-electron interaction is scaled by a coupling-constant
a(n=0 corresponds to a noninteracting system, a= 1 to a
fully interacting one) [8]. Combination of Eq. (18) with the
following relation [7]:

E, [n] = k E,'[ni, ]= P E,[ni,]= u E,[n„],
with X=1/n (19)

v;([ni, );r) =)i. 'v;([n];)i.r), (12)

The various contributions v;([n];r), with i~2, can be gen-
erated from v, ([n];r) by a projection technique exploiting
the behavior of the v;([n);r) under uniform coordinate scal-
ing of the density n(r) [8],

leads to the fundamental Eq. (16) which connects perturba-
tion theory with respect to the electron-electron interaction
and uniform scaling of the electron density. Equation (18),
and subsequently also Eqs. (15) and (16), as well as Eqs. (11)
and (12), are based upon the assumption that the correlation
energy, and therewith also the total energy of an electronic
system, can be developed in a Taylor series with respect to a
coupling constant u=e of the electrons for O~u~ l. This
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assumption is reasonable and generally made in many-
electron theory. Equation (17) is derived in Ref. [7] without
making this assumption. Equation (17) explains why the first
term in the series expansion of E,[n] is of second order
in a.

Approximations to the correlation functional and potential
should allow a decomposition into components E;[n] and

v;([n];r), respectively. In fact the question to what extent
this decomposition is possible can be used as a criterion for
the quality of approximate correlation functionals and poten-
tials. The limits (14) and (17) exist for some approximate
functionals [12] and do not exist for others including the
common local-density approximation (LDA) [2,3]. The vio-
lation of Eq. (17) by the LDA is not surprising because the
LDA originates from the homogeneous electron gas. For the
latter model system a norm conserving uniform coordinate

scaling of the density is not possible. However, real systems
are always finite.

The theoretical treatment of solids formally can be split
into two steps. First, a finite system with periodic boundary
conditions is considered and later, the thermodynamic limit
is taken. As long as the theoretical treatment is based on
normalizable wave functions, including those with periodic
boundary conditions, the described projection technique
should be applicable. Therefore, approximate exchange-
correlation functionals should be designed in such a way that
they allow the use of the projection technique. This require-
ment is especially important because the same approximate
exchange-correlation functionals are used to treat solids as
well as atoms and molecules.

Using the operator U2[n] corresponding to the potential
U2([n]; r) of Eq. (14), the second-order contribution c2[n] to
the hardness b ~[n] is given by

[(4(N+ I)JV„—u[n] —U, [n]/4 (N+ I))/ /(4(N —I)/V„—u[n] —
U [n]/4 (N —1))fc2[~]=

k EO(N+ 1)—Eo(N+ 1)k
k Eo(N —1) EO(N —1)—

~(cy(N)~ V, —u[77] —
U [yz]~(p"(N))~

Ek N [(9 N+ 11U 2[+]I 0 N+1&
—

& V Nl U 2[+]19N)].
k

(2o)

In Eq. (20), 4 (M), with M being N —1, N, or N+ 1 de-
notes excited Slater determinants which are obtained by sub-
stituting occupied orbitals building the Slater determinants
4(M) by unoccupied ones. The index k runs over all single
and doubly excited determinants, i.e., all determinants in
which one or two occupied orbitals are substituted. For
higher excited determinants the expectation values in Eq.
(20) vanish. The energies Eo(M) are given by the sum of the
KS eigenvalues of the KS orbitals building the correspond-
ing determinant 4 (M). Similarly, Eo(M) is the energy as-
sociated with the basic Slater determinants 4(M). The sub-
script 0 attached to the energies Eo(M) and Eo(M)
symbolizes that the energies belong to Slater determinants
which can be associated with model systems of hypothetical
noninteracting electrons. Because the determinants 4"(M)
are built by the KS orbitals (y;[n]) and the energies
Eo(M) as well as Eo(M) are sums of the KS orbital eigen-

III. DERIVATION

In order to derive the basic Eq. (5), we consider the
Schrodinger equations

[T+uV„+U [n]]W (M)=E (M)W (M), (21)

with M =N, M =N —1, and M =N+ 1 and with the coupling
constant u taking on values between zero and one. The po-
tential v ([n];r) is given by [8]

values a;, Eq. (20) has, as required, the form of Eq. (5). If
the single parts on the right-hand side of Eq. (2) are ex-
pressed by KS orbitals (q&;[n]) and by eigenvalue differ-
ences (aj[n] a, [n]) —then a large number of the emerging
terms cancel. This simplifies the employment of Eq. (20) in
actual calculations.

BT,[n] 6([U[n]+ E~[n]) 2 8E,[n ~~~]

BT,[n] B(U[n]+E [n]) E, [n]
Bn(r) Bn(r) Bn(r) '

=v, ([n];r) —uu([n];r) —uu, ([n];r) —n v, ([n~q ];ar),

n'U; n;r,
i=o (22)



52 HARDNESS OF MOLECULES AND THE BAND GAP OF SOLIDS 4497

with

(23)

and with up([n];r) = —v, ([n];r), vi([n];r) = u([n];r)
+u ([n];r), and u, ([n];r) for i)2 being defined by Eqs.
(11)—(17).

If, as in this work, densities are constrained to yield inte-
ger electron numbers, then the functional derivatives appear-
ing in Eqs. (22) and (23), and subsequently also v ([n];r),
are defined only up to an additive constant. Therefore, the
energy E [M] of Eq. (21) is undefined at this point. To
remove this ambiguity we chose, for each order of u, one
arbitrary member out of the one-dimensional manifold given
by the functional derivatives BF;[n]/Bn(r) to define the po-
tentials u;([n]; r) completely. The only condition in this oth-
erwise arbitrary choice is that the equation

v '([n];r) = u (r) (24)

T+ aV„+ v fn]

= T vp[n]+ n[V„—v —i[n]]—g u'u;[n],
i=2

is obeyed. Because of condition (24) the equation
E'(M) =E(M) holds with E(M) coming from the original
Schrodinger Eq. (1). Of course, 'I' (M) = 4(M) and
9"'(M) ='P(M) are also valid.

In a DFT for ensembles, which allows densities to inte-
grate to arbitrary electron number, no ambiguities due to ad-
ditive constants in functional derivatives occur. At integer
electron numbers, where derivative discontinuities appear,
functional derivatives can be defined completely as the limit
coming from the electron deficiency or surplus side. One
then has to add a constant p, to the right-hand side of Eq.
(22) in order to define the potential v ([n];r) in such a way
that Eq. (24) is obeyed. If the functional derivatives are taken
from the electron deficiency side the constant p, turns out to
be the ionization potential IP(N) [of the system described by
Eq. (21)j which can be shown not to change along the
coupling-constant path, i.e., not to change for different val-
ues of the coupling constant u in Eq. (21). The electron
affinity EA(N) on the other hand does change with the
coupling-constant u if the potential u ([n];r) is defined in
this way. (These aspects are taken into account if the results
of this paper are derived within the ensemble DFT frame-
work [13].)

The Hamiltonian operator T+ aV„+v [n], the wave
functions 'P (M), and the energies E (M), can be devel-

oped with respect to n= e into

H, [(cpj[n]),(a1[n] —e1 [n]),(ui[n], . . . v; i[n])j
= E;(M) —('Pp(M)

~
v;[n] ~'Pp(M)). (27)

The functionals H, and the energies E;(M) for second-order
(i = 2) can be found in Ref. [8].Equation (27) demonstrates
the close relation of the functionals H, to the perturbation-
theory expressions E;(M). The calculation of higher-order
functionals H, is somewhat tedious but straightforward. All
functionals H, for orders i)2 contain integrals of the type

which are not encountered in standard KS procedures. How-
ever, the evaluation of such integrals is well known from
Hartree-Fock methods. Once the integrals are determined,
the calculation of the functionals H, requires basically only
summations that can be carried out highly efficiently on
modern computers. Therefore, the calculation of the contri-
butions c;[n] to the hardness seems feasible, at least to sec-
ond order.

Next, we have to show that the value of the functionals

H, is independent of our arbitrary choice of an additive
constant in the potentials u;([n];r). For this, assume we add
a constant p to the potential v;([n]; r). This is tantamount to
adding a constant u'p to the potential v ([n];r) in Eq. (21)
and therefore shifts by M n'p the energy E (M) of Eqs. (21)
and (26b) and by MP the energy E,[M] of Eq. (26b), i.e. ,

the first term on the right-hand side of Eq. (27). The same
energetic shift Mp occurs in the second term on the right-
hand side of Eq. (27) and the two energetic shifts cancels
each other. Therefore, H, , as well as all terms to orders of
n other than i, are not affected by the addition of a constant

p to a potential v, ([n];r).
Now the ionization potential and the electron affinity are

expressed as

IP(N) =E'(N) —E'(N+ 1)

The contributions 'Il', (M) and E;(M) are accessible by
the perturbation theory [8]. The only difference from the
standard perturbation theory is that the perturbation is not
linear in u but contains terms to all orders in o. . The unper-

turbed Hamiltonian operator T vp—[n] is equal to
T+ v, [n] because up([n];r) = —u, ([n];r). Therefore, the
corresponding N-electron eigenstates, for n=o, are Slater
determinants built of KS orbitals (for the ground-state
'P (M) = Ij'p(M) = @[M]).Remember, that the determinant
@[M] is the KS determinant of the interacting system de-
scribed by the Schrodinger equation (1) only for M =N The.
KS orbitals, of course, are the eigenstates of the one-electron
equation corresponding to the Hamiltonian operator
T+ v, [n]. The terms H, appearing in Eq. (5) are defined as

W (M)= g n'9";(M),
i=o

(26a)
and

EA(N) = E'(N 1) E(N);— —(28)

E (M)=g n' (E)M.
i=0

(26b)

then energies E'(M) are developed in the perturbation series
of Eq. (26b), and finally IP(N) and EA(N) are substituted
into Eq. (3). The expressions (5) for the components of the
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band gap result if one uses that, for +=0, the Hamiltonian

operator of Eq. (21) turns into T+ v, [n].

IV. CONCLUDING REMARKS

Equations (4) and (5) allow one, in principle, to determine
the exact hardness within a KS scheme. Of course, the exact
exchange and correlation potentials are unknown and one
therefore has to resort to approximations that inevitably in-
troduces inaccuracies. However, for given approximations to
the exchange and correlation functionals, application of Eqs.
(4) and (5) results in the physical hardness or band gap as-
sociated with these approximations, i.e., the best possible
hardness or band gap to these approximations. In actual cal-
culation, clearly, only a certain number of terms of expansion
(4) may be taken into account [as mentioned above, evalua-
tion of Eq. (5) should be possible up to second order]. How
rapidly expansion (4) for the hardness converges remains to
be seen and may depend on the type of the electronic system
being considered.

The treatment of band gaps in solids according to the
formalism introduced in this work leads to an additional dif-
ficulty because in this case one takes the thermodynamic
limit, i.e., the limit of the system size approaching infinity.
For a finite system with periodic boundary conditions all of
the results of this work are valid. The thermodynamic limit
of the zero- and first-order contributions to the band gap pose
no problems and they can be calculated according to Eqs. (6)
and (7) (compare also Ref. [6]). To evaluate the right-hand
side of Eq. (7), techniques known from Hartree-Fock calcu-
lations for solids [14] have to be employed. From second
order on, the question remains to be investigated whether
individual contributions c;[n] to the band gap 6 [n] diverge
if the size of the system is increased. At this point similar
problems might occur as for the treatment of the electronic
energy of the homogeneous electron gas for which
perturbation-theory contributions to each single order in e
also diverge for orders higher than one. The approach of
surruiiing to infinity certain parts of expansion (4) also re-
mains to be investigated. For alternative approaches to tack-
ling the band-gap problem see, for example, Ref. [15].

Besides being used in their present form in actual calcu-
lations, the results of this work may be the starting point for
further developments. So one could try to take into account
higher-order contributions in Eq. (4) in an approximate way.
This might lead to computationally more efficient proce-
dures. Also, as already mentioned, techniques to analytically
sum up terms or parts of terms of Eq. (4) may be investi-
gated.

Of importance also is that the results presented give in-
sight into formal aspects related to the hardness and band
gap. For example, they illustrate that the hardness of a finite

electronic system, such as an atom or molecule, is a func-
tional of KS orbitals tp, [n], KS eigenvalue differences
e,[n] —a, [n], and potentials vk([n];r) emerging exclu-
sively from the KS treatment of the N-electron system. The
corresponding (N+1)- and (N 1)-—electron systems are not
considered explicitly. Because the KS orbitals q&, [n], the KS
eigenvalue differences e,[n] —e, [n], and the potentials
vk([n];r) are functionals of the ground-state density n(r),
this illustrates that the hardness is a functional of the ground-
state electron density of the N-electron system alone, despite
the fact that in the definition of the hardness the ground-state
energy of the (N —1)- and (N+1)-electron systems appears.

Insight is also gained into the common separation of the
hardness and band-gap 6 [n] into the difference
e~+, [n] —etv[n] between the lowest unoccupied and the
highest occupied KS eigenvalues and the derivative discon-
tinuity of the exchange-correlation potential at the integer
electron number N in an ensemble DFT formalism. This de-
rivative discontinuity is identified as the sum of the terms
c,[n] for i ~1 as determined in Eqs. (4) and (5).

The correlation energy and potential in the ensemble DFT
also can be developed into a series of the form of Eqs. (18)
and (22). For densities integrating to integer electron num-
bers, the functional derivatives BF;[n]/8n(r) = v;([n];r)
with i ~1 exhibit a discontinuity in ensemble DFT which is
given by the constants c;[n] [13]. Similarly, the potential
vo([n];r) which is related to the KS potential and the ex-
change potential, within ensemble DPI; are associated with
discontinuities co[n] and ci[n], respectively. Thus all con-
tributions c;[n] to 5 [n] correspond to derivative disconti-
nuities.

A comparison of values for the hardness calculated by the
scheme given in this work with values obtained by perform-
ing separate KS calculations for the corresponding neutral,
ionized, and negatively charged species, and subsequent em-
ployment of Eqs. (2) and (3), would be interesting. Such a
comparison may be used as a test of the quality of approxi-
mate exchange-correlation density functionals because both
approaches, of course, should lead to the same value for the
hardness. [This requires that all nonnegligible terms of ex-
pansions (4) be taken into account. ]

This work is a continuation of previous investigations of
KS perturbation theory expansions of the exchange and cor-
relation energies and their relations to a coordinate scaling of
the electron density [7—9].
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