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Stark-induced anapole magnetic fields in atoms
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We show that a paramagnetic atom with spin polarization S, in an electric field E, will have an anapole
moment in the direction EX 5, with magnitude of order nEao. There is a corresponding toroidal magnetic
field inside the atom in the direction rX(EXS), with strength of order aF. As an e. xample, we evaluate

exactly the toroidal field and its anapole moment for hydrogenic atoms to first order in E, using both the

Schrodinger and Dirac equations, We also use the calculated electric polarizabilities to estimate the toroidal

magnetic fields and anapole moments for the ground states of the alkali-metal atoms and for Rydberg states.
We show that the Stark-induced toroidal magnetic fields of atoms will have no influence on their hyperfine

structure. However, they can change the direction of the nuclear spins of electron-spin polarized molecules.

PACS number(s): 31.10.+z, 31.90.+s, 31.15.+q

I. INTRODUCTION

Atoms that have symmetry under both space inversion
(P) and time inversion (T) can have only a limited variety
of multipole moments: electric multipole moments E(l) with
l even and magnetic multipole moments M(l) with l odd.
Vaks and Zel'dovich [1] asserted that if the atom does not
have symmetry under P (but does have symmetry under T),
then other multipole moments can also be present: toroidal
magnetic multipole moments T(l) with l odd. They invented
the term "anapole moment" to describe the toroidal dipole
moment T(1). It is conventionally defined [2] as either a
second moment of the current density or a first moment of
the magnetic field of this current

t=( —vr/c) d r r j = —,
' dsr rXB.

We see that the anapole moment t is a polar vector that
changes sign under P and T. We also see that the current
density must have a component that is even under space in-
version; this component generates a toroidal magnetic field
that is odd under space inversion. The anapole moment t is a
convenient measure of the strength and orientation of this
magnetic field. For an isolated atom with conserved total
angular moment J, the vector t must be oriented along J;
since these two vectors have opposite transformation proper-
ties under space inversion, there must be some mechanism
for breaking P invariance. By the same reasoning, T invari-
ance can be preserved; we will not consider the further pos-
sibilities that arise if we also break the symmetry in time.

In the customary multipole expansion of the magnetic
vector potential, Khriplovich [3]has shown that the toroidal
dipole moment (TDM) occurs together with the magnetic-
quadrupole moment and therefore has the same dimensions

(e cm ) and the same signature under inversions. He gave a
general estimate of the magnitude of t as the product of three
parameters of the atom: the magnetic dipole moment p, , the
radius R, and the dimensionless parity mixing amplitude

t= p,R y.

The magnitude of t is therefore a sensitive measure of the
mechanism for parity nonconservation in the atom.

There is extensive literature on the calculation of TDMs
induced by parity-nonconserving weak interactions. Particles
such as the nucleons [4] and leptons [5] have been analyzed,
as well as complex nuclei [6] and atoms [7].In each of these
cases, the weakly induced TDM is oriented along the spin of
the particle

and has magnitude of order

(3)

t=eGF IAc=5 X10 e cm . (4)

Chiral molecules also have broken inversion symmetry and
are candidates for having anapole moments [8] if they also
have an unpaired spin. The moment can be characterized in
terms of a tetrahedral structure of four atoms in the molecule,

t~(n n2&&n&)(S n&)(f(rt, r2)n2 f(r2, rt)n&). (5)—

(t)~(nt n2&&ns){f(rt, t r2)(n2 ns) f(r2, r&)(n& n3))(S—),

Here the unit vectors n$23 give the displacements of three
atoms from the fourth atom and S is the unpaired spin; the
quantity f(r, , r2) is a certain function of the internuclear
distances. If the molecular sample has random orientation,
the average anapole moment is in the direction of the spin
polarization
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assuming that (nt ns) and (n2 ns) are nonzero. The magni-
tude of the TDM is estimated to be
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t=uea =2X10 ' e cm

and the toroidal magnetic field is of order

Btor= ae/ap = 1 X 10 G.

(6)

(7)

This is comparable to the strength of the magnetic dipole
field in the vicinity of the molecule.

However, chirality is not a necessary condition for mo-
lecular anapole moments: inversion symmetry can also be
broken in diatomic molecules that have no chirality, Polar
diatomic molecules with an unpaired spin also have anapole
moments [9] in the direction

t~SXn,

where n is the internuclear axis. If spin-dependent forces are
neglected, the vector t is proportional to a product of the
magnetic-dipole moment p and the intrinsic electric-dipole
moment d of the molecule

t—= (2~/e) p, X d. (9)

The anapole moments and anapole magnetic fields have
about the same magnitude as in chiral molecules, but they do
not survive the average over molecular orientation.

In this paper, we will add to the above list by considering
the breaking of inversion symmetry in toms by an electric
field. The Stark mixing of opposite-parity states will be
shown to induce anapole fields in polarized paramagnetic
atoms, satisfying the same product rule (9) with the Stark
induced dipole moment in place of the intrinsic dipole mo-
ment.

From the transformation properties under P and T, an
atom with spin S in a static electric field E can have a TOM
in the direction

II. CLASSICAL THEORY

Previous papers on toroidal multipoles have, in our opin-
ion, overemphasized the role of the toroidal dipole moment
and said little about the toroidal magnetic geld. This comes
from treating the source as a "point particle, "

suppressing its
internal structure. This is appropriate for the interaction be-
tween nuclear anapole moments and atomic electrons be-
cause the nuclear dimensions are very small on the atomic
scale. But for analyzing anapole effects of the electrons in
atoms, we must consider the variation of the toroidal mag-
netic field over atomic dimensions. Our plan is to calculate
first the toroidal magnetic field; it is then relatively easy to
get the anapole moment t by integration,

t=2 d r rXQ. (14)

The basic equation needed for evaluation of this field has
been derived by Boston and Sandars [10]and in Ref. [11].It
directly relates the toroidal magnetic field, whose form is

The plan of this paper is as follows. In Sec. II we will
state the basic relations needed for calculation of the toroidal
magnetic field of an atom. In Sec. III we will evaluate this
field in nonrelativistic hydrogenic atoms to first order in the
electric field, using the Sternheimer method. In Sec. IV we
will calculate the relativistic corrections to these results, as a
test of the product rule. Sections V and VI contain estimates
of the anapole moments of alkali atoms and of Rydberg
states, using the known electric polarizabilities and the prod-
uct rule. In Sec. VII we will discuss the experimental conse-
quences of these results, especially in the hyperfine structure
of spin-polarized atoms and molecules. Finally, we will sum-
marize our conclusions in Sec. VIII.

t~EX S. B„,=g(r)rXm

The electric field will mix atomic states of opposite parity
with amplitude

r/= E/(el ao)

to a poloidal current density varying like

j~„=( llr)(df /dr)[r(r m) —r m] —2f.m. (16)

According to the estimate in Eq. (2), the anapole moment is
expected to have magnitude

Notice that the radial function f(r) can be obtained by evalu-
ating the radial component of this current

t= ~mao4 (12)
r j~,&= —2fm. r.

and a toroidal magnetic field of order

B„,= uF. (13)

Even for strong laboratory fields of 3 X 10 V/cm, this would
give toroidal magnetic fields weaker by five orders of mag-
nitude than the intrinsic effects in the molecules discussed
above. The direction and strength of t in atoms can be rec-
onciled with the results for diatomic molecules by noting that
the internal electric field in a diatomic molecule is along the
molecular axis and approximately five orders of magnitude
greater than this laboratory field. The underlying mechanism
for inducing the anapole moment in atoms is essentially the
same Stark effect, caused by external rather than internal
electric fields.

g(r) = (4~/c)f(r). (17)

The anapole moment is in the direction of the dummy
vector m; its magnitude is proportional to the fourth moment
of f(r),

f oo

t= —(16' /3c)m dr r f(r)
do

Here m is a fixed vector giving the orientation of the anapole
moment. As a prototype, we can picture the toroidal field
inside a torus, with a poloidal current flowing on its surface;
m is along the symmetry axis. Insertion of these formulas
into Maxwell's relation shows that, within a factor, these two
vector fields have the same radial form
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This implies that the toroidal magnetic field is confined to
the region of current and has no "long-range" part, like the
ordinary magnetic dipole field. This is the main distinguish-
ing feature of toroidal dipole fields and explains why they
are hard to detect. We also notice that if the current density
remains finite at the origin f(0) 40, then the toroidal mag-
netic field must vanish linearly with r. For the torus, the
current density and field will vanish identically in the
"hole;" we can also see that the radial component of the
surface current, and therefore the magnetic field, vanishes
along the equatorial circles.

To summarize these results, one can evaluate the toroidal
dipole field of any current density by first finding the poloi-
dal dipole component of the current [Eq. (15)].The toroidal
magnetic field is everywhere proportional to the radial corn-
ponent of this current density. The anapole moment is given
by the first moment of the magnetic field.

III. NONRELATIVISTIC HYDROGEMC ATOMS

0. 8 ~

0. 6

0. 4

0.2

FIG. 1. Radial dependence of the toroidal magnetic field of the
Schrodinger hydrogen atom, in units of n(EXS)sin8, versus the
radial distance in a.u.

turbed by P, and response functions by P'. The solution for
the hydrogen atom is well known [14],

We can convert the classical relations to quantum theory
by inserting the appropriate current densities. For the Schro-
dinger equation, the current density can be split into "or-
bital" and "spin" parts [12]

3=JL+3s

/Is= —(E r/Z )(1+Zr/2) Pts

so that the first-order wave function is

+,s
——[1—(K r) (1+Zr/2)/Z ]6s,

(22)

(23)

defined as

j =(1/2i)[(V'Ir)*'Ir —'P*(V'Ir)],

js= —
—,
' V x [P*rrg ].

(19a)

(19b) n~=9/2Z . (24)

which no longer has even parity. The electron is pushed in a
direction opposite to K and the atom acquires an induced
electric dipole moment d= nzE, corresponding to a polariz-
ability

These are given in atomic units, which will be used through-
out this section. We will denote the perturbed wave function
as W and the unperturbed as P, in order to distinguish them.
For the unperturbed ground state of a hydrogenlike atom

The same distortion of the wave function also changes the
current density and the magnetic field. The current density
acquires an additional poloidal component

=(Z'l )'"

the spin current density is

(20)
j',= (2Z/7r) [(1+Zr/2) EX S

—Z(3/2+ Zr)(E. r) rX S]e (25)

js=(2Z /vr)rxSe (21)

where S=(rr)/2 is the atomic spin in units of /i and r is a
unit vector. This current results from the nonuniform distri-
bution of the magnetic moment of the electron. It is a toroi-
dal current, odd under inversions, that generates the ordinary
magnetic dipole field of the electron. The orbital current in
this state is zero because of reality (T invariance).

We can evaluate the effect of an applied E field on the
ground state using the Sternheimer method [13],writing the
perturbed wave function as

+1S t ls+ Pls

I Hs h +ts] Pls ( 'r)t ls

where Hs, h is the Schrodinger Hamiltonian. The notation
used here denotes perturbed wave functions by W, unper-

The "response function" P' satisfies the inhomogeneous
equation

—2f( )r. m—= r j' =(2Z/vr)(1+Zr/2)e "[r (EXS)].
(26)

If we identify I with EX S, then the radial function is

f(r) = —(Z/m)(1+ Zr/2) e

We find for the toroidal magnetic field,

B„,= (4uZ)(1+ Zr/2) e "[(EXS) X r].

(27)

(28)

It has strength of order o.E, with field lines that are circles
around the direction (KX S); the dependence on r is shown
in Fig. 1. It decreases exponentially at large distance and is
zero at the origin. Equations (15)—(17) show that this latter
property is a general feature of toroidal dipole fields for any

It is even under inversions and proportional to the electric
field. This spin current density generates the toroidal mag-
netic field. The orbital current remains zero.

The radial function of the poloidal current f(r) can be
found by evaluating its radial component
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t= ts = (97m/Z )EX Sao. (29)

As we found in diatomic molecules [9], this result for the
anapole moment can be expressed as a product of the mag-
netic dipole moment (/M, = —neaoS) and the induced electric
dipole moment (d= azE)

current density that remains finite at the origin; there is no
field in the "hole" of the donut.

We can easily evaluate the first moment of this field to
obtain the anapole moment (in cgs units)

Fr cosset/ 1 Am—@(P 1u+1 tg 1u 1)

+B 5'(P, u 2, 1Q 1u+2), (33)

In the presence of the electric field, the spin and orbital
angular momentum are no longer conserved separately but
are coupled together. The Sternheimer equation (27) must be
decomposed into a sum of terms with the angular depen-
dence of pi/2 and p3/2 states and then solved separately. The
inhomogeneous term of the Sternheimer equation is a linear
combination of pi/2. p3/2 states,

t= (27rle) gs&& d. (9') where

This relationship comes from the separability of space and
spin factors in the wave function and the neglect of spin-
dependent forces. It is useful approximation valid for light
atoms, to order (nZ) To .leading order in nZ, the anapole
moment can be predicted from the better known electric and
magnetic dipole moments. We would like to use relation (9)
to survey anapole moments of other atomic states, but will
first examine its accuracy by considering corrections coming
from the spin-orbit interaction and other relativistic effects.

IV. RELATIVISTIC HYDROGENIC ATOMS

A =~-,', B =+2/3.

We parametrize the response function in a similar way,

P'
1

=—A P ~+1B (P' 2,

where

/+1 =—(1/v)(P+1(r) u 1'ig+1(r) u —1)

0—2 ( v)( —2(v)u —2 ~1Q —2(v)u+2)

(34)

The presence of the spin-orbit interaction and other rela-
tivistic effects makes significant corrections to the toroidal
magnetic field. These can be obtained in one-electron atoms
by repeating the above derivation with the Dirac Hamil-
tonian. The principal reason for doing this is to assess the
accuracy of the "product rule, "which we want to use as the
basis for estimating anapole moments in other atoms.

As in the nonrelativistic theory, we can find the first-order
change in the ground-state wave function by solving the
Sternheimer equation

The Sternheimer equation is now separated into two portions
with common angular factors

(yc' HD) 0+7— +( —lu+1 Q —1™1)
( yc HD) 0 2+(P—1u——2 ~1Q —1u+2) (35)

[(y —1)/n+ uZ/r]P+1+ [dldr llr]Q—+1

This reduces the problem to finding four new radial func-
tions, satisfying inhomogeneous radial equations. For the

p1/2 response we have

[HD F-ts]A'= —(—E r) 1/1s (30) = n&N r~+'e—1

where HD is the Dirac Hamiltonian. The calculation of ana-
pole moments in Dirac theory has been discussed by Boston
and Sandars in Ref. [10]; we will use the same notation as
these authors. The toroidal magnetic field and the anapole
moment are derived by the general procedure in Sec. III,
using the poloidal current density induced by the electric
field

—[(y+ 1)/n+ nZ/r] Q+1+ [dldr+ llr]P+1

=[u Z/(1+ y)]FN, rt'+'e

and for p3/2 we find

[(y —1)/n+ nZ/v]P ' 2+ [dldr+ 2lr] Q
'

2

(36)

j ' = c 1/J, sa/' + H.c. (31)
= ngN r'+'e z~-—1

=(1/r)(P (r)u, ig (r)u (32)

In order to simplify the discussion, we neglect hyperfine
structure terms of order n/M. This suppresses the role of the
nuclear spin, leaving a hydrogenic atom with only electronic
variables. We choose the electric field with strength 4 along
the quantization axis, E= 8z. The electronic wave functions
are written in the form of four-component spinors

—[(y+ 1)/a+ nZ/r]Q' 2+ [dldr 2lr]P' 2—
=[a Z/(y+1)]FN 1r~+'e (37)

The p1/2 response function has already been constructed
by Sandars in Ref. [16];we will just restate the results. The
solution can be written in closed form as a polynomial mul-
tiple of r~e

where u is the normalized two-component spinor with
quantum numbers ljrn, and u is the corresponding spinor
for the state with the same j [15].The eigenvalues and wave
functions of the unperturbed states are well known.

P+1=(a+br+cr )r~e

Q~, =(a'+b'r+c'v )r~e

The coefficients are given in Ref. [16].

(38)
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The p3/Q response function is more difficult to construct
than the p1/z. The underlying difficulty is that the homoge-
neous differential equation has indicial behavior
8= g4 —n', while the inhomogeneous term has power law

y= gl —u . This difference arises because the unperturbed

1s1/z state doesn't have the same angular momentum barrier
as the p3/p response function. The solutions are not given
exactly by polynomial multiples of r e ', the power series
do not terminate. The inhomogeneous term has a radial fac-
tor r ~+', whose exponent y —6+1=—3u Z /8 is small
and negative, leading to a logarithmic singularity at r=O.
This is a familiar situation in Coulomb problems [17]and it
is usually handled by evaluating this factor at a smaH radius
R,

1 ~ 6-

0. 8

0 ~ 6

0 ' 4

0 ' 2

Zz

Ry —6+1 —(3u Z /8)lnR

replacing the slowly varying factor p by a constant.
Writing the response functions in the form

P ~(r)=p(r)r e z", Q ~(r)=q(r)r e ", (39)

the radial equations are

[(y—1)/u+ uZ/r]p+ [dldr+(8+2)lr Z]q= nF—N, p,

—[(y+1)/n+ uZ/r]q+ [dldr+(~ —2)/r Z]p—

FIG. 2. Radial dependence of the toroidal magnetic field of the
Dirac hydrogenic uranium ion, in units of n(EXS)sin8, versus the
radial distance Zr in a.u.

—2f3/Qm r=( c/6~)( tr EXr)[P,Q', —Q,P', ]/r'.

Once again, we evaluate the logarithmic factor ry +'—=p at
the radius R. It is interesting to notice that the quantity p
cancels oui. of the current density; the value of the small
radius R does not appear in our final answer for f3/p(r)

=[n Z/(1+ y)]8Ã-, p. (40)
fs~q(r) = [Z/3vri (2y+1)](2Zr) ~

X[(8—2y+1)/(6 —y+ l)]e "". (45)
These equations have polynomial solutions of the form

p(r) =(d+er), q(r) =(d'+e'r),

where

d= —8'N
& p[(6—2y+1)(8'+2)/Z (8—y+1) ],

e= —CN t p[y/(Z)(B —y+1)],

d'=n@X p[(8—2y+1)/Z(B —y+1) ],

—1p[y/[(~ y+1)(y+—1)]

Combining the p1/z and p3/Q parts, we get
(41)

f(r) = —K(2Zr) ~ [(2y+1)+2Zr
—2Zr(B —2y+ I)/(8 —y+ l)(1+ y)]e

(46)

where the constant K is

K—=Z(1+ y)/3vri'(2y+1).

(42)

The difference between these two response functions already
shows that the polarization of the atom is affected by the
fine-structure splitting of the excited p states.

The next step is to evaluate the toroidal magnetic field

The radial dependence of B„, is shown in Fig. 2 for the
extreme relativistic case of hydrogenic uranium, with
HZ=0. 672. It resembles the nonrelativistic (NR) result, but
with a stronger peak field occurring at a smaller radius.

The final step is to evaluate the anapole moment using the
toroidal magnetic fields above,

B„„=(4m/c)f(r)rxm, (43)

where f(r) is obtained from the radial component of the
poloidal current density. Once again, we must do this as a

f P 1/2 and p3/z terms. For P 1/z we get

goo
t= —(16m l3c)EXS dr r f(r)

do

The radial integrals all involve integrals of the form

—2ft~~m r"=(c/6')(cr Kxr)[Q &P+t —P,Q+, ]lr

Inserting the radial functions and identifying m=EX o./2,
we find with s=2,3. The final results are

f t~z(r) = —[Z(1+ y)/3m'I (2y+1)](2Zr)
X [(2y+1)+2Zr]e

Repeating this for p3/p we get

(44)

tt~~= [4m'n/9Z )(KX S)(y+1) (2y+1),

ts~q= —[erat/9Z ][(2y+3)(y+1)(2y+1)
X(8—2y+1)/(8 —y+1)](EXS).

(47)
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TABLE I. Estimates for the alkali-metal ground states, based on the product rule Eq. (8). The entries

marked with an asterisk and those with a dagger are estimated; the others are taken from the literature.

Element

H

Li
K
Rb
Cs
Fr

'Reference [23]
Reference [24

'Reference [25]

rp (units of ap)

1.7
4.22'
5.61'
6.01'
6.71'
7.83'

ns(units of ap)

4.5
163.7
295.6'
330.0'
413.7'
326

t(units of a, )

0.103
3.75
6.78
7.57
9.49
7.48

B „(nF.)

0.47
0.48
0.28
0.24
0.19
0.08

Before comparing this with the product rule (9), we must
also recalculate the electric dipole moment (EDM) and mag-
netic dipole moment (MDM) using the same relativistic
wave functions; they will change slightly from the NR val-
ues, The EDM is defined by the matrix element

d=(p-ilr cosol p —t)=(tt/ t r cos elt// —t)+H.c.,
(49)

which separates into two portions

d 1/2 y( y+ 1 ) (2 y+ 1 ) (4 y+ 5 )/36Z

d3/p ( y+ 1 )(2 y+ 1 )[y(2 y+ 3)(8—y+ 1 )

+(y+ l)(8—2y+1)(8—y+3)]/[9Z (8—y+1) ].
(50)

An expansion in powers of nZ gives a correction factor that
slightly reduces the electric dipole moment [18]

[1—28n Z /27+ 631n Z /5184+ +nZ) .

The MDMD involves the expectation value of an operator
even under space inversion; it only acquires a Stark correc-
tion quadratic in d; which we will ignore. In the ground
state, the magnetic moment is [14]

M= —~(+lr&& n ~l P) = —[(2y+1)/3]n/2 (51)

which is also slightly reduced by binding, by a correction
factor 1 —n Z /3.

Combining these results, we see that the product rule is
not exactly satisfied spin-orbit coupling is included: the
TDM, EDM, and MDM are each reduced, but by different
factors. To leading order in nZ, the reduction of the TDM is
by 1 —1.255n Z and the product of EDm and MDM is
reduced by [1—1.037n Z ][1—0.333n Z ]=1
—1.370n Z . Thus the product rule slightly underestimates
the anapole moment by a factor 1 —0.115n Z . This small
discrepancy is really a measure of how well the rule works.
We will use the product rule to continue our discussion, sur-

veying other states and other atoms.

Combining these, the total moment approaches the correct
NR limit Eq. (29). An expansion of (47) and (48) in powers
of nZ shows that the relativistic effects reduce the NR value
of t by a factor

[1—271n Z /216+2785n Z /10 368+0(nZ) ].

V. ALKALI ATOMS

The results of the preceding section give precise predic-
tions for the toroidal magnetic fields of the hydrogenic atoms
with arbitrary Z, but this result is not particularly useful. It
would be more interesting to learn about the fields of the
ground states of other neutral atoms. It would take a major
effort to repeat this method precisely for a list of atoms. It is
more practical to get an approximate overview by estimating
the anapole moment rather than the toroidal magnetic field,
using Eq. (8) with either the calculated or measured electric
polarizabilities. There is probably a corresponding rule for
relating the radial dependence of the field to the electron
density. Instead, we will roughly estimate it from Fig. 1 by
assuming that the form of the field is universal and scaling
the distances according to the rms radius of the valence elec-
tron ro.

The electric polarizability n, is the largest for a closed
shell plus one electron, so we only consider the alkali-metal
atoms. We have included estimates for francium, although
the data are poorer and the relativistic corrections larger. The
relevant information is summarized in Table I. The atomic
radii ro in column 2 are calculated rather than measured;
they increase by a factor of 3.9 over the table. They are taken
from the rms radii of the valence electrons in the Hartree-
Fock method. In column 3, we have also used calculated
polarizabilities rather than measured; there is little difference
between theory and experiment on these data.

The anapole moments in column 4 are calculated from the
product rule, using one Bohr magneton as the magnetic mo-
ment of each atom. The entries show an increase by a factor
of 92 between hydrogen and cesium. In column 5, we have
estimated the maximum toroidal magnetic field in units of
nF. , by assuming that Fig. 1 is a universal graph of its radial
dependence with abscissas scaled according to the size of the
atom. Knowing the anapole moment, we can estimate the
maximum strength of the field from the hydrogen results.
Thus we set

8,„—=B,„(H)[t/t(H)][rp(H)/rp].

This estimate predicts a slow decrease of the maximum tor-
oidal field with increasing Z. All considered, we conclude
that Li or Na would be the best candidate for the study of
anapole effects.
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VI. RYDBERG STATES

n~ = n "(n + 7I2)~ n (52)

for n ~) 1. By scaling from the 1 5 state of hydrogen, we es-
timate the anapole moments of Rydberg state in other neutral
atoms to have the same dependence on n

Polarizabilities and anapole moments also become very
large in Rydberg states, due to the close spacing of opposite
parity states. We can use the product rule again to estimate
how the anapole moments of excited states depend on the
principal quantum number n. The polarizability in nS states
in hydrogen is known to be [19]

This vanishes as r—+0; we have already shown the field at
the nucleus to be zero. There should be no linear Stark shift
in hyperfine intervals of atoms. This is confirmed by rnea-
surements on the hydrogen maser [22], which show a qua-
dratic Stark shift in hydrogen; they would surely have seen a
linear shift had it been present at the same level.

Although this effect vanishes in atoms, it should be
present in spin-polarized molecular radicals since their nuclei
experience a toroidal magnetic field transverse to the anapole
moment. In a diatomic molecule, the hyperfine interaction
has the form

H=(g(r)(IXr) (EXS))~(IXn) (EXS). (57)

t=—0.130n .

The mean-square radii of these states also grow with n,

(r )„&=n (5n + 1)(2~5n l2

(53)

(54)

We can crudely estimate the magnitude of this interaction by
assuming the toroidal magnetic field at one of the nuclei has
"typical" strength nE

—O~ B„,=(eAIMc)(nE),

Using the same scaling law as before, the maximum toroidal
magnetic field decreases like

B,„=( .015/ n)uE. (55)

VII. EXPERIMENTAL CONSEQUENCES

The general requirement for detecting anapole magnetic
fields is that some "test charge" should interact with the
toroidal magnetic field inside the atom. For example, the
nuclear spin could interact through its magnetic-dipole cou-
pling with the field at the nucleus. This would result in an
energy shift

(O'N B o lN)
= —(g(r)O~ r&& (E&& S) l~) (56)

These estimates are very preliminary, but indicate that Ryd-
berg states are good candidates for studying toroidal mag-
netic fields.

There would also be Stark-induced anapole effects for
molecular free radicals and other polarizable systems with
unpaired spins. The presence of an electric field breaks in-
version symmetry and the unpaired spin provides a sense of
time. These are the two general requirements for the exist-
ence of anapole fields.

We could leave the discussion at this point, but some
comment is required on the problem of observing these ef-
fects. To our knowledge, the only experimental evidence for
the existence of toroidal magnetic fields in in quantum sys-
tems concerns the existence of nuclear anapole moments.
Parity-nonconserving transitions in heavy atoms have been
analyzed for the presence of weak-induced nuclear anapole
moments, where they contribute to the nuclear spin-
dependent transitions. The current evidence is marginal: a
2o result is reported in cesium [20] and upper limits have
been set in thallium [21].However, anapole fields are a clas-
sical concept that is easily transcribed into quantum mechan-
ics; it should not be necessary to invoke weak interactions to
make them appear. In the next section we will look to ordi-
nary atomic physics for evidence of their existence.

much smaller than a typical hyperfine splitting. Clearly, the
direction of the nuclear spin will be influenced by the applied
electric field. There is no linear Stark shift in the hyperfine
interval because the toroidal field is transverse to the hyper-
fine field; furthermore, it averages to zero for free molecular
rotations. There should be similar terms in the hyperfine
structure of chiral radicals, with much larger magnitude. We
intend to explore the consequences of these interactions in
subsequent work.

VIII. CONCLUSIONS

We have shown that there is a toroidal magnetic field
induced in the interior of paramagnetic atoms when an ex-
ternal electric field is applied, breaking inversion symmetry.
The internal fields have odd symmetry under inversions and
strengths of order nE (atomic units). The external magnetic
fields of these atoms are even under inversions and have
strength of order n (atomic units).

This represents a curious kind of' "mixed polarizability"
of atoms having unpaired spins, in which a laboratory elec-
tric field induces a change in the internal magnetic field

B„,~(EX S) X r.

This is a straightforward consequence of electromagnetism
and quantum mechanics, which results from an asymmetric
distortion of the current density in the atom giving a poloidal
term. The first moment of this toroidal magnetic field is
called the anapole moment; to a good approximation, it is
proportional to the cross product of the (intrinsic) magnetic-
dipole moment and the (induced) electric-dipole moment.

We have presented a detailed calculation of the field in
hydrogenic atoms and have estimated the fields in other al-
kali atoms and in Rydberg states. The methods could be ac-
curately extended to other atoms; a prediction of these ef-
fects in molecules and complex atoms is feasible. There is at
present only marginal experimental evidence for such fields;
the situation clearly calls for some new experiments.
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