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We propose a measure of entanglement between two subsystems of arbitrary (but finite) number of levels.
This measure is invariant under unitary transformations of the subsystems and varies between 0 (product states)
and 1 (maximum entangled states). The case of two two-level systems is worked out explicitly, where the

known complementarity between one- and two-particle interference results in a very natural way from a sum

rule. Generalizations to more than two subsystems are discussed. Here we show that for three particles there

cannot exist a pure state that is completely characterized by three-particle entanglement alone. For the example
of the Greenberger-Horne-Zeilinger (GHZ) state, an experimental setup is proposed, in which its corresponding
two-particle entanglement would show up.

PACS number(s): 03.65.Bz, 07.60.Ly, 42.79.Ta

I. INTRODUCTION

One of the most striking features of quantum mechanics is
the concept of entanglement. Here the word entanglement is
used for states of composite systems that cannot be separated
into product states in terms of the subsystems ("particles" ).
The term "particle" is interpreted to denote a subsystem with
which we can associate a classical index (i.e., for which
index-selective measurements are possible). In typical situa-
tions this index will be related to discrete spatial areas (de-
fined, e.g. , by the interaction range of the respective detec-
tors and/or the localization range of the states in question):
This is to guarantee that entanglement becomes accessible to
experiment, even if the basic entities (such as photons) are
indistinguishable.

Those entangled states can have properties associated
with nonlocal information, which are out of range of classi-
cal physics and therefore often hard to understand intuitively.
So the results of (gedanken) correlation measurements tend
to appear as paradoxes, culminating in the famous paradox
of Einstein, Podolsky, and Rosen [1].Although the paradoxi-
cal character of this result was originally regarded as an in-
completeness of quantum mechanics describing nature, it be-
came clear after the discovery and experimental verification
of Bell's inequalities [2—4] that the nonlocal character and
therefore the entanglement is not an artifact of quantum
theory but rather an experimental fact. So, in order to de-
scribe nature appropriately, one has to abandon the locality
of physical laws.

Besides the question concerning fundamental properties
of physics, there has recently been a growing interest also in
applications of entanglement. Examples are quantum cryp-
tography [5] and teleportation [6], where the nonlocality
shows up in a very direct way, as well as quantum computa-
tion [7], in which the additional degrees of freedom related
to nonlocality are taken for speeding up computation.

Due to the importance of entanglement, a general descrip-
tion would be highly welcome. In the case of a two-particle
system, several descriptions have already been proposed
[8—12] ([8,9] also consider the general case of n particles),
each having their own advantages and disadvantages. We
will give a brief discussion of those in Sec. III. The situation

simplifies if the particles involved are two-level systems. The
state, and so the entanglement strength, can then be specified
by a single real number. In the case of subsystems with more
than two levels, there are already discrepancies between the
various definitions [9].The situation becomes even more in-

volved when more than two particles are entangled. The de-
scription then concerns not only the strength but also the
possible subsets of particles involved. Special cases are, for
example, products of a single-particle and a two-particle en-
tangled state, which are used in quantum teleportation, or
states with no single-particle properties such as the so-called
Greenberger-Horne-Zeilinger (GHZ) states [13].So a classi-
fication scheme of different entanglement possibilities should
be made available. This of course raises the question whether
the resulting entanglement features are independent or
whether there are relations between them.

In this paper, we propose a general description of en-
tanglement. This definition is entirely based on the decom-
position of a given state without necessity of any diagonal-
ization or maximization procedure. This simplifies the
calculation and can make the results more transparent. We
also consider unitary transformations on the single particles
and show that the corresponding transformation properties of
the entanglement are of tensorial character. In the case of two
particles, we introduce a measure of entanglement satisfying
certain upper and lower bounds as well as invariance prop-
erties under the above-mentioned unitary transformations.

For a description of coupled quantum systems we use the
density-matrix formalism rather than state vectors. Within
this description there is, in addition to the possibility of an
extension to mixed states, the advantage that single-particle
properties and correlations between the particles can conve-
niently be separated. This separation can easily be done by
constructing the reduced density matrix for each subsystem
and comparing the resulting product of reduced density ma-
trices with the matrix of the total system. This difference is
then interpreted as -the entanglement between subsystems.
Depending on the number n of subsystems involved, one can
then distinguish between two-particle, three-particle, ...,
n-particle entanglement: Together with the respective local
(i.e., reduced) state descriptions, this hierarchy of nonlocal
properties uniquely specifies the n-particle state.
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This paper is organized as follows. In Sec. II we first give
a short review of the SU(N)-algebra formalism of the single-
particle density matrix and analyze the transformation prop-
erties of the corresponding coherence vector. We then intro-
duce in Sec. III our definition of entanglement in the two-
particle case and finally specialize on two two-level systems,
where, in particular, interference effects are discussed. In
Sec. IV we give a short discussion of the three-particle en-
tanglement and an outlook to the general case. The above-
mentioned relations between the different orders of entangle-
ment will be demonstrated in an example of the 6HZ state
vector, where also an experimental setup is proposed to ob-
serve the yet unknown two-particle interference property of
this state. In Sec. V, we give an outlook to questions on the
further development of entanglement measures.

(7)

X=(k ) is an (N —1)-dimensional vector, the coherence
vector or generalized Bloch vector, which is real due to the
hermiticity of p.

In this formalism, the unitary transformation U

p~p'= UpU+

can also be described as a rotation of the coherence vector
X. Decomposing p' in the form (6) with coefficients X,

' and
using the invariance of the trace under cyclic permutation,
the components k,

' of the transformed coherence vector are
found to be

X,
' =tr(k;p') = tr(U+k; Up). (9)

II. SU(N) DESCRIPTION

Since any Hermitian operator on a discrete N-dimensional
Hilbert space M can be expanded into the unit operator and
the generators of the SU(N) algebra, we can specify any
density operator by the coefficients of these generators. Such
a description has been introduced by Hioe and Eberly [14].

To obtain the generators of the SU(N) algebra, one can
introduce the transition-projection operators

A A A

Since U+ X;U is a Hermitian operator it can be expanded into
the SU(N) generators, leading to

U k; U= —,'tr(U+k;U)1J))1J =:T;,)1J . (10)

T;, defines a real (N —1)X (N 1) matrix. —Finally, insert-
ing (10) into (9) and taking into account (7) one gets the
result

where ln) are the orthonormalized eigenstates of a linear
hermitean operator on,~. Constructing the N —1 operators,

Using the completeness relation for SU(N) matrices

2

I(f + 1)(P11+P22+ ' ' ' + ll l+1 l+1) i

+jk ~jk+ Pkj ~

Vil 1(PJ/, PIP)i' (2)

one can show that T is an orthonormal matrix, i.e.,

N —12 N —12

T;JT,k= B&k, g T~;Tl,; = 6~k.

(12)

where 1~l~N —1 and l~j&k~N, the set of the resulting
operators

I~jf. —l 812 81ii3. . . i V 12iV 13 i. . . iW1 iW2i. . . iWN 1)

(j= 1, . . . ,N 1)—
Furthermore, as the special case U= 1 implies, the determi-
nant of T is equal to unity.

Applying two consecutive unitary transformations U1 and

U2 to the density matrix, the corresponding transformation
matrix T obeys

fulfills the relations T;„(U1U2)=T;~(U, )T)„(U2). (14)

(4)

(5)

In other words, T describes an (N 1)-dimensional repre-—
sentation of the special unitary group SU(N). This can be
used, e.g. , to investigate invariant subspaces.

thus generating the SU(N) algebra. In the case N=2 these
operators can be represented by the Pauli matrices.

The density operator then has the representation

(6)

where the factor 1/N expresses the normalization condition
tr(p) = 1 and

III. TWO PARTICLES

A. Arbitrary number of levels

In this section we consider the case of n = 2 particles de-
fined in the Hilbert spaces M~1 and M2 with dimension N,
and N2, respectively. We extend the results of [15—17],
which are briefly reviewed.

The direct product of the base states of the single particles
serves as a basis in the composite system. The density op-
erator then reads
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N —1
1 . 1

p= (iei)+ g X,(1)(&,el)
1 2 l= 1

2

1
N2

—1

+ g a, (2)(1e a, )
] i=1

N) —1 N2-12 2

1
+—g g K,,(1,2)(k, e&,).

1=1 J= 1
(15)

Particle 2 Particle 1

X;(1)=tr{p &i;)31}

X;(2)= tr{p 1)8)X;}, (16)

determine the properties of the individual particles, while the
second-rank tensor

K; (1,2) =tr{p &).;)3X~}

Again, the factor 1/N1N2 is due to the normalization condi-
tion tr{p}=1.The two coherence vectors X(1) and & (2), re-
spectively, with

FIG. 1. Schematic two-particle interferometry experiment

(l»=ll&, l»=lt&)

correspond to the two states necessary to describe each par-
ticle. The different directions ("modes") of the emitted par-
ticles define the subsystem index m = 1,2 and are necessary
to distinguish the photons by the location of the measure-
ment apparatus.

The unitary transformation (20) on the two-particle den-
sity matrix amounts to the following transformation of the
coefficients:

accounts for correlations. Performing the partial trace over

subsystem 2, one obtains the reduced density operator for
system 1,

&). ;(m) ~T;k(m) Xk(m),

K,~~ T;t,(1)TJ„(2)Kk„, (21)

N —1
1 1

p&"=tr,{p}= 1+—g &,(1)&, .
N1 2

(18)

where m= 1,2 labels the single particles and T(m) denotes
the rotation matrix corresponding to (11) [with U= U(m)].
From these properties and the definition (19) the transforma-
tion of the entanglement tensor is the same as that of K;, ,

The reduced density operator p for subsystem 2 is calcu-
lated in an analogous way. Comparing the direct product

p
' )8)p with (15), one can identify the difference by a

tensor M(1,2),

M;J~ T;t,(1)TJ„(2)Mk„. (22)

Let us now consider an invariant of any unitary transforma-
tion, the expectation value of the density operator itself:

M;,(1,2): =K;,(1,2) —k;(1)k, (2). (19) (P)=t{P }. (23)
[For the remainder of this section we will drop the redundant
pair index (1,2).] It follows from Eq. (19) that M vanishes
for any product state. Hence M can be regarded as an en-
tanglement tensor. Any two-particle state is uniquely speci-
fied by M;, and the Bloch vectors X;(1),k, (2).

Based on M, we go on to introduce a measure of en
tanglement, i.e., a number p, consistent with the following
requirements. (i) p should vanish for any product state and
be positive else. (ii) P should be maximal for any pure state
with vanishing Bloch vectors k(1) and k(2). Such states have
no single-particle properties, i.e., any reduced density matrix
is in the maximal mixed state. (iii) p should be invariant
under local unitary transformations, by which we mean any
unitary transformation on the single particles separately. For-
mally, these are transiormations of the type

i'

U)= U(1) U(2).

Here U(m) is supposed to act on Hilbert space of particle m

only. An example of this kind of transformation is imple-
mented in two-particle interferometry [11,12], where each
particle is a two-level system (Fig. 1).A source S emits two
particles (e.g. , two photons with two polarization states),
each in the opposite direction. The outputs of the source

In the single-particle case, tr{p }expresses the conservation
of the length of the generalized Bloch vector X.. The corre-
sponding expression for the two-particle case reads

+2U=—
2

+2 Q2 0

1 —1 0
—1 0

(25)

0 0 0 2

This transformation cannot be decomposed into the product
form (20); it transforms the product state

f
r/i) =

f
T1') to the

singlet state lg)=1/+2(fT$) —l$'t)). The product state has

1 1
2

1
«{P'}=~~ +2~1~(1)l'+2 I~(2)l'

N1N2 2N2 2N1

+ —,'[fA.(I)f fA(2) f
+2)P(1)MX(2)+tr{M M}].

(24)

This expression is invariant as a whole, whereas the indi-
vidual terms may change in general. This can be seen in the
case of the unitary transformation
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X (1)MA(2) ~0 (26)

for any state vector in M(1)SM(2). To show this, we use
the fact that this term is also invariant under local unitary

the coherence vectors X,(1)= ll. ,(2) = 1, while all other com-
ponents vanish. The singlet state, on the other hand, is com-
pletely described by M«=MYY=M«= —1, so the indi-
vidual components of (24) are obviously not invariant.
However, in the case of the above-mentioned local unitary
transformation, each term in (24) turns out to be invariant. To
prove this, one has to perform the transformation (21) and
(22) using the orthonormality conditions (13). Finally, we
show that each term in (24) is positive definite, i.e. , also

transformations. So we can use the Schmidt decomposition

I 19,20]

(27)

where N=min(Nl, N2). The expansion coefficients n; can
be chosen as real numbers and the state vectors
Iii): = Ii(1))SIi(2)) are direct products of state vectors of
the individual particles. Of course, these single-particle state
vectors in general do not have the same direction in the cor-
responding coordinate system. The density operator of this
state vector reads

N Nl —1

IA)((iiI=2 n; N N
1S1+

2N g wi' wiS1+ g wi 1Swi+4 g g wi' wi' wiSwi ~

i=1
~

l 2 2 l=l 1 1=1 rl=1

N

+ 2 ixi i'(tiij S ttij Uij SUij )
l,J = 1i(j

(28)

with X, , o. ,
= 1. The coherence vectors and the correlation

tensor K;j can be read off from this expression. It is remark-
able that the only nonvanishing coefficients of the coherence
vectors are those associated with the diagonal matrices wl.
This is consistent with the fact that the reduced density ma-
trix of a state vector written in Schmidt decomposition must
be diagonal I IO]. Calculating now the corresponding expres-
sion for the entanglement tensor M and applying the sum
rule (A4) one obtains

A. (1)MX(2) =4 g n, n, I n, —n, ].
l,J = 1

(29)

Both indices have the same range, so for every index pair
(i,j) there also exists a pair (j,i) . Summing such a couple of
index pairs, one obtains

(3o)

N

4(N2 1)
trf M™), —

so that

0( (1 (32)

The sum (29) can thus be decomposed into single terms,
which are all )0. This proves the positivity of (26).

As an appropriate measure of entanglement we now use
the last term in (24), tr{MTMJ: This term vanishes for prod-
uct states, is invariant under local unitary transformation, and
is maximal for zero Bloch vectors for any pure state. To get
rid of the explicit dependence on the number of levels N, we
normalize according to

where p= 1 corresponds to the maximal entangled pure
state.

For a geometrical interpretation of p, we write the en-
tanglement matrix M as a vector m. This can be done by
considering the index pair (i,j) as one index. The compo-
nents of m are then given by

m(; ).=M; . (33)

From (22) it follows that under local unitary transformation
the components of m transform as

The orthonormality of the transformation matrix V follows
from the orthonormality of T(m). Hence, in the vector form
(33) the local unitary transformation (20) corresponds to a
rotation of the (N, XN2)-dimensional vector m. p is then
the normalized square length of m, which, of course, is in-
variant under rotation.

Other measures of entanglement are possible. Barnett and
Phoenix [10] considered a quantum-mechanical system par-
titioned into subsystems by partial tracing over the variables
of the other system. The difference between the entropy of
the total system and the sum of the partial entropies was then
introduced as an index of correlation It also satisfies .our
three requirements. However, due to the logarithm function
in the definition of the entropy, this measure is often difficult
to calculate analytically and furthermore has the disadvan-
tage that it is not accessible to direct physical measurement.
It is more pertinent to the problem of the information content
of physical systems.

On the other hand, at least for special cases, such an ex-
perimental interpretation exists for p: In Sec. III B it will be

m(ijl~ V(ij l(km) m(kml With V( jHkil:mTi k( 1 ) Tg m(2) . ''
(34)
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shown that in a network of two two-level systems, p is for
pure states related to the two-particle interference. Another
approach to this subject has been given by Jaeger, Shimony,
and Vaidman [12].Since their approach is directly described
in terms of physical measurements, there are no interpreta-
tion problems. In the case of two two-level systems their
definition is related to ours, while it lacks a straightforward
generalization to three- or more-level systems. A description
of entanglement completely based on a comparison of the
state vector with product states was recently given by Shi-
mony [8,9]: The entanglement Mi[~@)] of a state vector

~ P) in the product Hilbert space of n particles
=.W~, SMUTS. SM„ is defined as the distance of ~p)

to the nearest product state:

three states are in a genuine entangled state. So, with the
different approaches to describe entanglement, different as-
pects of it are illuminated.

~ P) = cos(n) (TT)+ sin(ct)(] $) (38)

B. SU(2) @SU(2) states

In this section we will apply the above formalism to the
case of two two-level systems. Special emphasize will be
given to the problem of complementarity of one- and- two-
particle interference.

For pure states there is a simple relation between p and
the Schmidt decomposition

M i [I @)]= glblll 0)—
I
ti) II. (35)

[cf. (28)]. The nonvanishing Bloch vectors and entanglement
tensors are

where
~ P) varies over all possible product states in Wcf. Ap-

plied to the case of two particles, M, [~ P)] depends only on
one coefficient, namely, that u~ with the largest absolute
value in Schmidt decomposition [8). The measure of en-
tanglement is then defined as

P, (1)= k,(2) =cos(2u),

M, = —M~~= sin(2n),

M„=sin (2n). (39)

M, [~ P)] = [2(1—n, )]". (36)

In the case of two two-level systems, this measure is equiva-
lent to the above-mentioned ones and also to our measure

p in the sense that for any sequence of state vectors with
nondecreasing M, [~ P)], the other measures are also nonde-
creasing. However, in the case of two three-level systems,
different orderings may occur. As an example, consider the
two three-level state vectors

~ P, )= a, ~11)+u, ~22)+ n,
~
33),

with

1
l
4i):~ii= u'2=

1
~ p2): n, = + 8', n2 = n3 = —,

' (1 —+28),
+2

(37)

where 6)0 is regarded as being arbitrary small, so that all
terms proportional to - 6 can be neglected. Clearly,
M, [~ P, )])M,[~$2)] since ai is in both cases the largest
coefficient. Calculating p, however, we find p[~@,)]=0.84
and P[l @2)]= 0 93 «r ~= 0. so P[l @z)]s=oo P[l @i)] Due
to the continuity of p, this ordering will not be reversed with
finite but sufficiently small 6. Thus the two definitions, one
expressing the distance to the nearest product state, the other
depending on the length of a vector based on comparison
with the reduced density matrices, turn out to be of different
character. Of course, the reason is that Mt[~@)] depends
only on the largest coefficient of the Schmidt decomposition
of

~ @), whereas p is sensitive to all coefficients, so p takes
also into account the distribution of the entanglement on the
different levels. For example, in the above example the dif-
ference of p[~@,)] and p[~ @2)] is due to the fact that in

~ @i) there are only two states entangled, whereas in
~ @2) all

[P($ )] ..—[P($ )];.
[P($ ) ] ..+ [P($ )];.'

[P(s is2)],„—[P(s is2)]
U12

[P($1$2)],„+[P($1$2)]
(4o)

Here s (s = T, ]) refers to the spin component of the mth
particle as found in some local measurement basis, P(s )
denotes the probability that a measurement of the particle m

will yield the result s, and P(sisz) is defined as

The coefficient p is a function of the angle a'.
p(n) = I/3sin (2n)[2+sin (2u)]. Knowing the Schmidt de-
composition, we also know p. However, there are two ad-
vantages to prefer p. First, it can be generalized to mixed
states. Second, in the calculation of the Schmidt decomposi-
tion, one has to perform a diagonalization in the single-
particle Hilbert space [10], while for the determination of
p, only decompositions are necessary. This diagonalization
yields more information than necessary, i.e., the directions of
the single-particle coordinate systems in the respective Hil-
bert spaces are also determined, which in turn make the cal-
culations more involved. However, due to the invariance of
p with respect to local unitary transformations, this addi-
tional information is not necessary in our approach.

The above-mentioned invariance of p under local unitary
transformations further implies that for a given pure state
with nonvanishing p, there exists no state vector in the form
of a product state, so due to the theorem of Gisin [21], every
pure state with a finite p violates a Bell inequality. In the
case of mixed states, however, the situation is more compli-
cated. We do not discuss this problem in this paper; the in-
terested reader is referred to [22,23].

Considering now interference experiments, one has to
take into account the fringe visibility U of particle m in
ordinary one-particle interferometry and visibility of two-
particle fringes v &2, which are defined in the following way
[11,12]:
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( i z) — (~i z) — (~t) ( 2)+' (41)

P(J, m) =trtP&&(m) pj= -'[I —k, (m)]. (42)

Taking into account the equivalence of the groups SU(2) and

SO(3), there is a unitary transformation, which transforms
the whole vector X(m) into the single component kz(m). So
we have

(43)

where P(s, s2) is the joint probability of measuring the spin
component s& on the first particle and s2 on the second. The
subtraction of the product of the single-particle probabilities
is performed to ensure that this quantity really measures the
two-particle correlations; the term —,

' was introduced to ensure
positivity. The suffix min and max denote the minimal and
maximal values of the corresponding terms with respect to
any unitary transformation of the form (20), respectively
(i.e., with respect to any measurement basis).

To be explicit, we consider the measurement probabilities
of the spin component in the z direction and assume to mea-
sure, without loss of generality, the states J, (m)). The mea-
surement probability of particle m is then given by the ex-
pectation value of the projection operator of the ground state

P))(m), i.e.,

Considering the decomposition (39) of a general 2C32
state vector and performing the variation of M„under the
local unitary transformation (20), the maximum of M« is
given by (M„),„=sin(2a). So we have the visibilities

v = cos(2n),

v, 2= sin(2 n) . (48)

The complementarity

2 =Vm+V]2= 1 (49)

is then seen to be trivially fulfilled. However, it must be
emphasized that in order to get this result, the most general
form of the single-particle unitary transformation should be
considered. An example was given in [11,12], where it was
shown that there are state vectors with interference properties
being very sensitive to the full generality of the manipula-
tions performed on the single particles. We want to describe
this briefly in terms of Bloch vectors in order to demonstrate
the simplicity of interpretation in our approach. The transfor-
mation matrix corresponding to the proposed interferometry
experiment in [11] is given by (B2) with 0= —m/4, 2q&=@,
and y+y=3~/2. Written explicitly, this reads

from which

v =
l x, (m) l,„=la(m) l

(44) A.(m) ~ A. '(m) =
I' cos( P )k, (m) + sin( P )k Y(m)

X,(m)

I, sin(@ )X,(m) —cos(P )XY(m)

(50)

follows. Hence the fringe visibility of a single two-level par-
ticle is completely determined by the length of the corre-
sponding Bloch vector.

In the same way, one can determine the two-particle in-
terference (41). P( J 1/2) is defined as the expectation value

of the two-particle projection operator P& &( I)P&&(2). Insert-
ing this into (41), one gets

P($1,J, 2) = —,'(1+M„). (45)

(M„),„=—(M„) (46)

and the two-particle visibility can be written as

v 12 (Mzz)max z (47)

where the extremum is to be sought by the most general local
unitary transformation (20). We note in passing that the re-
sults (44) and (47) are also valid for mixed states.

[Measurements in the i direction of particle 1 and j direction
of particle 2 yield, correspondingly, P = 4(1 ~M, ), with the

plus sign for measuring on both particles spin up or spin
down in the corresponding direction i and j, respectively,
and the minus sign for mixed spin directions; see also [15].
The equations below can be formulated correspondingly. ]
Performing now a unitary transformation on particle 1 and
choosing the parameters so that the corresponding orthogo-
nal transformation has the form T= diag(1, —1,—1), the ma-

trix element M„ transforms to —M„. From this consider-
ation it follows that

IV. THREE PARTICLES AND THE GENERAL CASE

The definition of entanglement can be generalized to more
subsystems. In this section we define the three-particle en-
tanglement explicitly and give a brief outlook to the general
case.

The general three-particle density matrix can be defined
extending the two-particle case (15). It is described by three
generalized Bloch vectors A.(m), m = 1,2,3, three two-
particle correlation tensors K; (m, n), 1 ~(mn3(, and one
three-particle correlation tensor K; „(1,2,3) defined by

K/k(1, 2,3) = tr(k;(I) IIX/(2) IRK&(3) p). (51)

From this equation it can be seen that in the case of state
vectors with a nonvanishing z component, it is no longer
possible to transform this vector completely into the z direc-
tion. So the equality v + v, 2= l cannot be verified for arbi-

trary states; the general unitary transformation is necessary
here [12].

Finally, we remark that this complementarity can already
be visualized by inspecting the sum rule (24). For a maximal
length of the Bloch vectors, the relation tr( p )= 1 is already
fulfilled by the terms without the entanglement tensor, so this
tensor must vanish due to the positivity of (26). On the other
hand, however, with a maximum value of P= 1, which leads
to a maximal v &2, this relation can be fulfilled only when all
components of the Bloch vector vanish, so there is no fringe
visibility of the single particles.



4402 J. SCHLIENZ AND G. MAHLER

To get the corresponding entanglement tensors, we subtract
from the correlation tensors the products of all the general-
ized Bloch vectors and entanglernent tensors of lower order:

Af xyy Myzy AI yy&

M„(1,2) =M„(1,3) =M„(2,3) = 1. (55)

M;, (m, n) =A;, (m, n) —X;(m)X,(n),

M; q(1,2,3) =K; k(1,2,3) —k, (1)M k(2, 3) —k (2)M;k(1,3)

—)t.k(3)M;J(1,2) —X;(1)P )(2)kg(3). (52)

This decomposition of the correlation tensors can be consid-
ered as a kind of cluster expansion as in statistical mechanics
[18].M;~z(1,2,3) is zero if K;)k(1,2,3) can be expressed in
terms of two-particle entanglements and local Bloch vectors.
In general, any three-particle state is uniquely specified by
the tensors M;~k(1,2,3), M,,(1,2), M,,(1,3), M;J(2,3), and

k, (m), m = 1,2,3. Performing the partial trace over sub-

system 3, say, one obtains the reduced density operator
pt'2) as given by Eq. (15): M; (1,2) and k, (1)P (2) are the
pertinent parameters, which can be read off from Eq. (52).

One may ask whether there could exist pure states, which
only show three-particle entanglement without having any
entanglement of two particles or single-particle coherence.
Considering the special case for three N-level systems, this
state would have the following density matrix:

p=
&
1S1S1+—,'I; IX;SX SX&, i,j,k=1, . . . ,N.

(53)

To see that such a state cannot exist as a pure state, one
considers this three-particle system in terms of two parts and
calculates the corresponding reduced density operators. For
example, one can construct the two reduced density opera-
tors p

' and p: Due to the vanishing trace of the genera-
tors of the SU(N) algebra, both are proportional to the unit
operator, so they both represent maximal mixed states. The
entropies of these parts are then lnN and lnN, respectively.
This, however, contradicts the theorem of Araki and Lieb
[24], which states that the entropies of the two parts (irre-
spective of their "size") must be equal when the composite
system is in a pure state. So a three-particle entangled state
necessarily involves second-order entanglement and/or
single-particle coherence.

The generalization to an n-particle system is now straight-
forward. One has to generalize the density matrix (15) to n

subsystems and perform the subtractions on the resulting cor-
relation tensors analogous to (52) in the three-particle case.
The explicit presentation of this procedure will not be given
here.

As an example of three-particle entanglement let us con-
sider the following state, proposed by Greenberger, Horne,
and Zeilinger [13]:

All other entanglement tensors vanish as well as the Bloch
vectors X;(m), i =x,y, z. So this state contains genuine
three-particle entanglement, but also entanglement of two
particles, as expected.

Note that the reduced single-particle density operators
p~ ~ can be written as a mixture of local states; likewise, the
reduced density operators p™n)for any pair subspace (m
(n) can be written as a mixture of pair states

p' '"'= -'[I T T)&T T + Ill)(ill]. (56)

M'( l,2) = diag(0, 1,0). (57)

This tensor does not vary with the phase shift of the single
particles, so despite a nonvanishing Myy there is no two-
particle fringe visibility, not even in the y direction, as can be
seen from (40) and (45). The apparent contradiction between
this result and Eq. (47) is simply resolved by observing that
this unitary transformation is not general enough to yield
(46). The two-particle entanglement can be seen by replacing
the phase shifter and the symmetric (50:50) beam splitter by
a unitary transformation of the form

cos
2

Pl
isin

thus allowing an entirely "classical" interpretation: Bell in-
equalities are not violated. (This classical interpretation, to
be sure, would be inconsistent when seen from the complete
space point of view. )

How can this residual two-particle entanglement be made
observable' The often used interferometric arrangement with
a phase shifter in one state branch and a following symmetric
beam splitter is not sufficient to show the desired interfer-
ence effects. This is, on first sight, somewhat surprising be-
cause this arrangement seems to yield all the necessary con-
ditions for an observation of interference effects: The beam
splitter makes the single paths indistinguishable and the
phase shifter can give an arbitrary phase difference between
them. To see, however, the insensitivity of this arrangement
to an important parameter, let us consider the corresponding
rotation matrix, which can be read off from (50), where the
same arrangement has been discussed. For definiteness we
will consider interference effects between particles 1 and 2.
Performing the corresponding transformation (22) of the en-
tanglement tensor of these particles, one obtains

1
I 0) = ( TTT) —1111) (54)

(y
csin'

I 2
cos

(5g)

Decomposing this state into the entanglement tensors, one
gets

for particle m, which can be realized, e.g. , by a nonsymmet-
ric beam splitter. The entanglement matrix will be trans-
formed to
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(0
M'(1,2) = 0 sin(p, ) sin($2) —sin( P&) cos( Pz)

cos( (6 t )cos( @2) )
(59)

the entropy of the subsystems [10] also fulfills them. So an
investigation of the general properties of these requirements
alone without referring to a special choice of an explicit re-
alization would be highly desirable.

So a variation of the entanglement tensor is now seen to
occur with the variation of the symmetry (i.e., of the reflec-
tivity) of the beam splitter. It must be mentioned, however,
that this is no single-particle effect, as the Bloch vectors of
the single systems remain zero. It is remarkable that the
strength of this effect is the same as for a maximal entangled
two-particle pure state: Regarding, for example, measure-
ments of the z component in both particles, we obtain a
maximum M„(1,2) = 1, which, due to the complementarity
relation v +U,2=1, would be the maximal possible value
for a pure two-particle state.

V. CONCLUSIONS AND OUTLOOK

In this paper we have investigated some concepts pertain-
ing to the description of entanglement. The SU(N) formal-
ism applied to the density matrix turned out to be a powerful
tool to find general properties of composite quantum sys-
tems. Within this formalism we found for a system com-
posed of two subsystems a measure of entanglement, which
fulfills some reasonable requirements. This measure has sev-
eral advantages over other proposals known to us. First, it is
completely based on the decomposition of the density ma-
trix. There is no need for any diagonalization or maximiza-
tion procedure. Second, like in the entropic definition [10], it
is applicable for pure states as well as for mixed states. The
original definition of entanglement as a state in the product
Hilbert space, which cannot be factored into product states of
the respective local systems, is naturally generalized in this

way. Third, a generalization to the case of more than two
subsystems is done in a straightforward way. This allows the
investigation of such systems without need for ever new con-
cepts. Such an unbiased generalization is necessary because
systems composed of more than two subsystems show prop-
erties that are sometimes hard to classify by intuition. An
example was given by the GHZ state, where the three-
particle entanglement is inevitably connected with that of
two particles. So the question has been raised of the indepen-
dence of the different entanglement tensors in a complete
description of an n-particle state. In the case of only two
subsystems, this question was trivial in the sense that en-
tanglement necessarily involves these two particles. Having
more particles, however, the classification of the different
kinds of entanglement is not a priori clear. There can be
two-particle entanglement between arbitrary pairs of sub-
systems, three-particle entanglement, and so on. The problem
of their mutual dependence should be of great importance in
applications of composite quantum systems. An investigation
of the general three-particle state, with each particle having
only two levels, could already hint at such constraints.

Returning to the two-particle system, there remains an-
other question concerning our three requirements on the en-
tanglement measure. These requirements do not determine
this measure uniquely: for example, the approach based on
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APPENDIX A: DIAGONAL MATRICES IN SU(N)

The SU(N) algebra is of rank N 1, so t—here are N 1—
matrices of the SU(N) matrix representation that can simul-
taneously be diagonalized. In our convention (2), these are
the N —1 operators w&. Their eigenvalues follow from the
definition (2) as

(zz)
wi

2 l~n~ll(l+1)'

(i+ &)

l(l+ 1)
=l

w~&"~=0, l+ 1&n~N.

Denoting in (2) the basis states
~ j) as the eigenstates of the

density matrix, its diagonal representation then reads

with k&=tr(w&p). Applying the eigenvalue equation

p~n) = p„n)

g w'-'w'"'=2a
z'= 1

APPENDIX B: ROTATION MATRIX
FOR THE SU(2) DENSITY MATRIX

For the general unitary matrix in a two-dimensional Hil-
bert space one can make the ansatz

cos( 0)exp(i y) sin( iZ) exp(iy)
U= (B1)

[ —sin( tZ) exp( —iy) cos( 0)exp( —i y) )
'

where 0, y, and y are real numbers. The overall phase fac-
tor was set to zero due to (10). The corresponding 3X3
rotation matrix (11) then reads

to the projection operator J',„, the following sum rule of the

eigenvalues w&' results:
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cos ( 0)cos(2 tp)

—sin (8)cos(2y)

sin (8)sin(2y)

cos (0)sin(2tp)

+sin (iJ)sin(2y)

cos (8)cos(2tp)

—sin(28)cos(y+y)
)

sin(28) sin(y+ y)
(B2)

+ sin ( 8)cos(2y)

l

—cos (0)sin(2y)

sin(2 0)cos(y —tp) —sin(2 0) sin(y —
q ) cos(2 0)

In group theory, an analogous matrix is known as Cayley parametrization of the group SO(3) [25].The above matrix describes
a rotation with respect to the axis

by the rotation angle g with

( sin(0)sin(y) )
sin( 8)cos(y)

cos(8) sin(q ) )

(gl
cos —= cos( 8)cos( y) .

(21

(B3)

(B4)
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