PHYSICAL REVIEW A

VOLUME 52, NUMBER 6

DECEMBER 1995

Causality and quantization of time-delay systems: A two-body model problem

R. A. Moore
Guelph-Waterloo Program for Graduate Work in Physics, Waterloo Campus, University of Waterloo,
Waterloo, Ontario, Canada N2L 3G1

T. C. Scott
Mathematical Institute, University of Oxford, 24/29 St. Giles, Oxford, OX1 3LB, England
(Received 12 June 1995; revised manuscript received 7 August 1995)

A model problem consisting of two isolated particles with a mutual interaction depending upon retarded and
advanced positions and constrained to one-dimensional motion is analyzed herein. This system has a number
of features in common with a previously considered one-particle double-delay model problem. The equations
of motion have closed-form solutions and the systems are both deterministic and causal. In both cases, standard
low-order approximations to the exact problem, in general, have spurious solutions, which must be recognized
and removed in order to extract the physically meaningful parts and to proceed reasonably with quantization.
In addition, the two-particle system has specific characteristics. The center-of-momentum motion separates out.
The dependence of the solutions on the mass ratio of the two particles can be examined. Further, not only does
the relative motion have the ordinary solution, in which the two particles move out of phase, it can also have
an extraordinary solution, in which they move in phase with each other. Finally, the total generalized linear
momentum and Hamiltonian can be evaluated and seen to be constants of the motion.

PACS number(s): 03.65.Bz, 03.20.+i, 02.90.+p

L. INTRODUCTION

In an earlier work [1], hereafter referred to as I, it was
noted that, at the present time, there is considerable interest
in a diverse range of physical theories involving Lagrangian
structures containing entities with higher than first-order de-
rivatives. The reader is referred to I for references. A classic
example is the Fokker-Wheeler-Feynman theory of electro-
dynamics [2] and its generalizations [3—5]. The exact formu-
lation is multitimed, the particles’ variables appearing not
only at a common central time but also, pairwise, at rela-
tively retarded and advanced times. Now, to obtain a canoni-
cal form and to proceed with quantization using conventional
procedures, all quantities are power series expanded about
the central time, yielding a single timed but, in general, in-
finite order formulation. Finally, the expansions are truncated
at some low order, and either an order reduction technique
([6-10] and references therein) is used, resulting in an ap-
proximate first-order formulation, or the truncated form is
treated exactly [11-17]. These two approaches can yield dif-
ferent results, in general. Unfortunately, no criteria or tests
presently exist to determine the accuracy or validity of these
approximations relative to the exact problem. The present
work represents a further investigation of the relationship
between the exact solutions to multitimed problems and their
approximate solutions, as indicated above.

A one-particle model problem, introduced by Feynman
and Hibbs [18], involving a central time and relatively re-

tarded and advanced times and constrained to one-
dimensional motion, was examined in I. Herein, the model is
generalized to consist of two particles, again constrained to
one-dimensional motion, and with each particle’s variables
appearing with the three times. This model problem is de-
fined in Sec. II, which also contains its closed-form solu-
tions. Although some features are similar to the one-particle
problem, others are characteristic of a two-particle system
with a mass ratio dependence and with specific relative mo-
tion relationships. The constants of the motion, being the
total generalized linear momentum and the generalized
Hamiltonian, are verified in this section also. Some details
are relegated to appendices. In Sec. III, a few low-order ap-
proximate solutions are given and compared to the exact
solutions. The steps required for quantization are summa-
rized in this section, along with some discussion. Again the
situation is similar to the one-particle case, with spurious
modes being obtained in the approximate problem, in gen-
eral. The existence of an extraordinary mode produces an
added complication. Section IV closes with a summary, an
analysis of the results, and further discussion.

II. THE MODEL PROBLEM AND ITS EXACT SOLUTION

The model problem considered herein is a simple exten-
sion of a one-particle model problem proposed by Feynman
and Hibbs [18] to a two-particle model. The action is taken
to be

sz {3m %1 (6)2+ 5moxo (1) + 15 klx (£) —x,(t+ 7) = [p]* + 15k[x, (1) —x,(t — 1) — 1o ]?

+ e k[xo(0) —x 1 (t+ 7) +1oP+ T k[xo(2) — x, (1 — 7) + 15 1%} dr.
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TABLE 1. £ as a function of \ for various mass combinations.

Approximate
solutions for
Exact solutions my=m,
First Second
A my=m, m;=9m, m;=99m, order order
0.1 0.9988 0.9996 0.9999 0.9988 0.9987
693.69
1.0 0.9004 0.9968 0.9965 0.8944 0.9005
7.6934
2.0 0.7391 0.9551* 0.9958% 0.7071 0.7420
2.3344
2.3 0.6962 0.9696% 0.9972% 0.6562 0.7008
0.7851% 1.8688
0.7438*
3.0 0.6099 0.9991% 0.9999* 0.5547 0.6200
0.9972% 1.2416
0.8607%
3.5 0.5588 0.9949% 0.9994% 0.4961 0.5744
0.9876% 0.1768* 0.9847
0.8122%
6.0 0.3900 0.9958 0.9996 0.3162 (Goes
0.9794 0.3046 complex
0.8877 at \=
0.7596* 5.085)
0.5443%
11.0 0.9950%
0.0671%

*Denotes instantaneously parallel motion; otherwise indicates the usual antiparallel motion.

The symbols have their usual meanings: m; and m, are the
constant masses of the two particles, and k, [y, and 7 are
fixed constants. The variational procedure is carried out as
indicated in I, with the end-point regions being treated in a
like manner. The two equations of motion are

mx;= ik[in(t)—xj(H- 7)—x;(t—7)—28;1]. (2.2)

Here, i=1 or 2 and j=2 or 1, respectively; S;=+1 and
S2: —1.
There is a net “center-of-momentum’ motion for this sys-
tem with
x;()=X;(t)=1y6;;+Xo+Vt (i=1,2), (2.3)
with X, and V being constants. This suggests that the com-
plete solution can be written as

x () =X (1) +SA,y(), (2.4)

with
mAy(t)= %k{ZAiY(t)+Aj[}’(f+ 7)+y(t— 7)1}, (2.5

where i=1 or 2 and j=2 or 1. As for the previous model
problem in I, the physical solutions are taken to be

y(t)= cos(wt+ ). (2.6)

This is consistent with the generalized Hamiltonian being a
constant of the motion and results in the two coupled equa-
tions

[m;w*+k/2]A;+[(k/2)cos(wT)]A,;=0. 2.7
Setting k= —2;Lw3, with w=mm,/(m;+my)=mm,y/M
being the usual reduced mass, the condition for a nontrivial
solution yields

cos*(wr)=[1-Mw?/m0i][1—Mw*/mywi]. (2.8)

Notice that the relative amplitudes are frequency dependent.
Converting to dimensionless variables A=wy7 and
= wl/wgy, gives

E'— 2+ (w/M)sin?(\ ) =0. (2.9)
Although similar to the previous one-particle model problem
in I, the allowed frequency spectrum for the two-body prob-
lem has some distinctive features, being dependent not only
on A\ but also on u. A sampling of the allowed frequencies is
given in Table I. An interesting point is that these solutions
imply that the equal mass system is the most likley candidate
for extra modes. This is fortuitous, since many expressions
simplify for this case. For example, here A, becomes equal
to = A, and is independent of frequency, apart from the sign.
The positive sign is the ordinary solution, in which the two
particles move out of phase, occurring at small A (7) and
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continuing for all N (7). The minus sign is an extraordinary
mode, in which, instantaneously, the two masses move in
phase; but because of the time delays, they both undergo
oscillatory motion with zero net displacement. This mode is
not supported until the delay time becomes sufficiently long.
This problem has the standard constants of the motion,
which can be identified as follows [7,8,12—17,19]. The total
generalized linear momentum is (see Appendix A)

P=p}+p;, (2.10)

where

a"—? 9L
tmpﬂ(m)

E (—1)m-r (p=1). (2.11)

Here x{™ denotes the mth time derivative of x;. Notice that
this form assumes that the solutions belong to C*, consistent
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with (2.3) and (2.6). To evaluate these quantities the La-
grangian, being the integrand of (2.1), must be repesented by
its power series about ¢. After some straightforward algebra,
one obtains (A9)

wes
pl=maV+ o ,,21 (n+1),[1 (= DI+ x).
(2.12)

Hence (A10),

2 o
k 7,2n-+—2
= (1
,Zl mixity 2 o 2n+2) >

xZrrDE - (2.13)

For the solutions given by (2.3), (2.4), and (2.6) this reduces
to

P=[m+my+ k7 1V—(1/0){[(m,0*+k/2)A |+ (k/2)cos(wT)A,]
—[(myw*+k/2)Ay+ (k/2)cos(wT)A, |} sin(wt+ 6)]

=[m;+my+ %sz]V.

The last step follows from (2.7). Thus, the total generalized
linear momentum is a constant depending solely upon the
center-of-momentum (CM) motion. Since the equations of
motion are linear, this result is valid for any linear combina-
tion of solutions for different allowed frequencies.

We remark that, if the usual classical result is used for the
total linear momentum, one has

P(classical) =m1x(11)(t) +m2x(21)(t)

=(m;+my)V—w(mA,—myA,)[sin(wt+ 5)].

(2.15)

Now, although it is true that P(classical) is not instanta-
neously a constant of the motion, its time average is, and
hence the internal time delays do not generate a macroscopic
motion of the system in the absence of external forces.

The generalized Hamiltonian is given by [7,8,12—-17,19]

(2.16)

H=2 Z (P) n__

j=1p

and is a constant of the motion by definition. As for the total
linear momentum, it becomes (see Appendix B)

(2.14)
[
H=Heyt He, (2.17)
where
Hoy=3(m,+my+ k7)) V? (2.18)
and
Hyg=im 0?A?+ im,w?Al— tkowT sin(wr)A,4,.  (2.19)

We conclude this section by noting that this two-particle sys-
tem is just as deterministic and causal as the one-particle
system considered in I. This is consistent with the results
found earlier [20] for the Fokker-Wheeler-Feynman model
[2] and the Weiss model [4]. A center-of-momentum motion
exists, which separates out from the relative motion. It is
interesting that, along with the ordinary relative motion in
which the two particles move out of phase, in some circum-
stances an extraordinary relative motion can exist in which
the two particles move in phase. Further, constants of the
motion exist, being generalizations of the no-time-delay
problem.

III. APPROXIMATE SOLUTIONS

In this section we consider the consequences of truncating
the expansion, given by (A3), for the Lagrangian at various
low orders of 7. Equation (A3) can be rewritten as
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2 2 d
L=%m1x(11) +%m2x(21) +ik(x1~x2~10)2+ tkr? Zx(ll)x(zl)-l- E[(xl—xz—lo)(x(ll)—x(zl))]]

1d
- 4—18-k1'4 x(lz)x(zz)— ) E[Sx(ll)x(lz)-kx(ll)x(f)+x(12)x(21)+ 3)c(2l )x(zz)]

Here the Lagrangian has been put into minimal form, as
discussed in earlier papers [1,15—17]. The equations of mo-
tion are the same as those given by (2.2) on expanding in 7
and truncating at the same order. Thus,

mix§2)= ;—k(xi—xj— 1pS;)— }kazxf)— 4]—8k74x§-4>+ e
(3.2)

The zero-order approximation, that is, the first three terms of
(3.1), gives the standard two-particle linear coupled oscilla-
tor problem, the only solution being

A2=(m1/m2)A1, §=w/w0=l (33)
This solution is valid only for A =wy7=0, as one should
expect. For comparison with higher-order approximations,
the quantization process for this case is briefly reviewed.
Rewrite (2.4) as

x;=1ly0y+X(t)+Sy;, (3.4)

with

X(t)=Xy+Vet, y,=A)y. (3.5)
The conversion to center-of-momentum and relative coordi-
nate requires the use of the definition of the relative coordi-
nate

X1—xp—lg=y +y,=Y, (3.6)
as well as the condition of conservation of total linear mo-
mentum, the latter being

myy;—myy;=0. (3.7)
Hence, as usual,
yi=(m;/M)Y. (3.8)
Thus,
Lo=3MX"2+ L uy W24 Ly?, 3.9)

The canonical coordinates are the center-of-momentum and
relative variables X and Y, respectively. The canonical mo-
menta, Hamiltonian, and quantization are standard.

The second-order solution, that is, using the first four
terms in (3.1), gives
AyJA1=0, E=[1—uN>/M]/[1—ur*/4M]. (3.10)
For my=m,, €=1/[1+\?%/4], which is defined for the en-
tire range of A and is tabulated in Table I. This gives a
reasonable approximation to £ for the entire range of A con-

(3.1)
e

sidered. No indication of the extraordinary mode is seen. For
my#m,, &€ goes negative for N\?>M/u, occurring before
the zero in the denominator and giving cutoffs for A at 3.3
and 10.1 for m{=9m, and m;=99m,, respectively. From
Table I, this indicates that this approximation is actually only
valid for A=< 1. The reduction to canonical form is similar to
that for the zero-order approximation. Equations (3.4), (3.5),
and (3.6) are the same. In (3.7), (3.8), and (3.9), m;, M, and
w are replaced by m;, M, and p', where

m!=m;+ ik and M'=m,+m), (3.11)

w'=(mimy)IM' — k7> (3.12)
The internal mode frequency (3.10) is included exactly.
Thus, conversion to canonical form and quantization are
again standard for the region of validity; i.e., A< 1.

The fourth-order equations, that is, using all terms in (3.1)
except the total time derivatives, corresponding to (2.7), are

[(m; /)= 11A=[1=-INE+ HNENA;. (3.13)

For m,=m, as for the exact problem, one has solutions for
A,=A, the ordinary case, and for A,=—A,, the extraor-
dinary case. In the first case, the solutions are

24
& ==+ N2/4)£[1+N2/2—\*48]"2). (3.14)

&+ are given in Table I, one sees that £ is a reasonable
approximation for one exact root for A<5, whereas £, al-
ways represents a.spurious root. The approximation breaks
down for A=5. In the second case, there is a single nonzero
root

(3.15)

12
ge=yal\’-4].
&, becomes real at A=2 and by N\=2.3 is a moderate ap-
proximation to the extraordinary exact root for the remaining
values of N. For m,<m, the secular equation from (3.13) is
a fourth-order polynomial in &2, with one root being £2=0.
For m;=99m,, for example, the three remaining roots, for
A =10, consist of one approximating the true root and of two
spurious roots, one giving & real and large and the other
giving ¢ pure imaginary and large. In this instance, some
order reduction technique [6—10] would be appropriate, al-
though care would be required to get the phases correct.

To proceed to a canonical form, the Lagrangian must be
put into a suitable form. Equations (3.4), (3.5), and (3.6)
apply unchanged. The corresponding conserved total gener-
alized linear momentum [see (2.10) and (2.11)] now gives
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mixP+mixP+ kAP +xP1=0  (3.16) w'=pu(1+2\2/4), (3.25)
or 2 g2 42 g2 g2
4 f al=§+§7/(§+-§4)s (3.26)
miy = myy,+ wkrilyP—y1=0.  (3.17)
2 . .
Although (3.6) and (3.17) can be solved for y, and y, as £ being given by (3.14). H, reduces to
power series in 7* for unequal masses, the algebra becomes - vo o
lengthy and it is no more informative than the equal mass H,=[(12p)p1+ 2 pwpé”q7]
case. Thus, for the remainder of the disussion for this ap-
P ~[(172)p3+ s rwyE g5]. (3.27)

proximation, only equal masses are considered. In this case,
the solution is

yi=Y/2. (3.18)

Now, one finds (k= —2,u,w(2))

Ly=3M' X2+ 30y D2 Lyl Y2 — e pad rty 22,
(3.19)

Notice that, to arrive at this form, one must explicitly
invoke the condition X‘®=0. This is necessary to maintain
consistency with the equations of motion. It is also consistent
with the translational invariance of the Lagrangian [21]. The
relative part is similar to a model problem discussed previ-
ously [17], with the most straightforward method being a
conversion to a problem of Lagrange. This is achieved by
defining the constraint

YW —w,Z=0 (3.20)
and the effective Lagrangian
I,=iu 0gZ? =5 uwgY?—gs un*zM?
+ (Y~ w,2), (3.21)

where 7y is a Lagrange multiplier. Formally, I, is a first-order
Lagrangian, and all of the standard procedures apply. The
canonical coordinates are Y and Z, and the canonical mo-
menta are

Py=—gzuN*zM),

Py=v, (3.22)

The corresponding Hamiltonian is

H,=woPyZ— (24 uN*) P~ L' 03Z%+ L pwly?.
(3.23)

The four canonical equations of motion contain the con-
straint, the second part of (3.22), and the original equation of
motion. Thus, this problem has exactly the same information
as the original problem. In principle, (3.23) can be quantized
directly. However, H, is not at all informative in its present
form. Thus, we first apply a canonical transformation that
diagonalizes it. This is now known to be possible [17] and is
done by setting

Y=aq,+(a;/pwyé)ps,
Z=a 1§ qr+ (a)/pwo)py,
Py=pwo(a;/€)gr+(a /E2)py,
Py=nwo(ar/€)qi+ (e /6.62)ps,  (3.24)

with, for equal masses,

As for the exact problem, the Hamiltonian is a constant of
the motion and separates for the two allowed solutions. It is
not the total energy of the system; however, there is no guar-
antee that if one starts from a particular Lagrangian, this will
be the case. Nevertheless, the total energy can now be iden-
tified and quantization achieved by standard procedures.

At this point, it is useful to discuss the above derivations
in terms of two scenarios. The first scenario, which is the
usual situation for physical problems, is that no essential
information is available about the exact solutions. In this
case, no value judgment can be made about the physical
reality of either mode and no basis exists for the rejection of
the one mode. Some additional information must be invoked,
such as comparison with a physical system. Furthermore, no
indication of the extraordinary mode appears and we would
have no basis to include such a mode. The second scenario,
being the present situation, is that considerable information
is known about the exact problem. In the present case, it is
known that the £, mode is spurious and must be rejected. To
include the extraordinary mode, (3.18) needs to be replaced
by

y;=Y2+S8Y,, (3.28)
where Y, gives the extraordinary contribution. Now (3.6) is
still satisfied; however, (3.17) cannot be satisfied. Also, the
direct substitution of (3.28) into (3.4) and then into (3.1)
gives

Li=sM'[XV+ Y P+ L pwjrty P2

+ %,LL'Y(I)Z— %,u,ngz— ;—sﬂw%TzY(z)z. (3.29)

Thus, the center-of-momentum motion and the extraordinary
motion do not separate, contrary to the exact problem. There-
fore, to include the extraordinary mode, it is necessary to
invoke some ad hoc procedures. For example, if one states
that Y, is purely an internal coordinate and that it must be
considered in the center-of-momentum frame, X!’ would be
set to zero in (3.29). This gives the additional Lagrangian for
the extraordinary mode

Ly, =iM'YD2+ L pwdry??. (3.30)

The equation of motion yields (3.15), and quantization can
be achieved in the standard way by setting

Y(l):(12)1/2

e )\2 wOZe7 M,=_lu'()\2_4) (331)
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The fact that M’ goes negative with the onset of the extraor-
dinary mode also suggests that, at this point, this approxima-
tion is no longer valid for a description of the center-of-
momentum motion. Now

Ly=5pZ? ~ fpa €2 . (3.32)
Thus, quantization proceeds in the standard way, giving a
reasonably valid result. Again one sees that some knowledge
of the exact solutions is essential in properly extracting the
correct information from such approximations, allowing the
identification of spurious modes and the inclusion of omitted
modes.

We close this section by noting that (2.14) and (2.18) also
suggest that this model inadequately describes a center-of-
momentum motion with equal masses for A2>2. Alternately,
this could be interpreted as a physical limit on A. Thus,
ultimately a physial constraint will be required to fix this
parameter.

IV. DISCUSSION

An analysis of the model problem introduced by Feynman
and Hibbs [ 18], consisting of a single particle constrained to
move in one dimension with an interaction dependent upon
both a central time and relatively retarded and advanced
times, was given in I. Herein, this model is generalized to the
case of two particles constrained to move in one dimension
and with a mutual interaction having a similar time depen-
dence in both particle’s variables. There are a number of
similarities between the two models. Both have exact closed-
form solutions. Thus, both the deterministic and causal na-
ture of the equations of motion can be clearly demonstrated
[20,22,23]. Also, in the usual approximations, where power-
series expansions are made about the central time and trun-
cated at some order, in general spurious solutions are gener-
ated. These must be identified and removed at some suitable
point in the analysis. Of course, the two-particle system in-
troduces a number of new characteristics. In this case, a
center-of-momentum motion and the relative motion can be
identified and their respective solutions obtained indepen-
dently. The total generalized momentum is a constant of the
motion and is a function solely of the center-of-momentum
motion. The generalized Hamiltonian separates into the
center-of-momentum and relative contributions, each of
which is a constant of the motion. The dependence of the
solutions on the ratio of the two masses has been determined
(Table I). This model indicates that the most likely candidate
for additional modes to exist, apart from the ordinary modes,
is the equal mass case. In this instance there can be an ex-
traordinary mode. It is hoped that the analyses of these
model problems will assist in the study of more complex
realistic models.

Perhaps at this point a few more general comments are
appropriate. Our objectives have been much more modest
than those of Hoyle and Narliker [24] (and references
therein). Their objective has been to consider the possibility
that the Fokker-Wheeler-Feynman-like models [2-5,23]
provide complete cosmological theories. We, on the other
hand, have considered that at this time the lack of an ac-
cepted Lagrangian-based relativistic classical dynamics
theory on a par with the nonrelativistic case is anomalous
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and represents a gap in our understanding of physical reality.
Our first objective has been to remove this gap. Thus, the
questions asked and the answers sought are, in general, quite
different for our different objectives. For our purposes, the
only available candidates are the Fokker-Wheeler-Feynman—
like models. These models, by construction, satisfy time-
reversal symmetry, the equations of motion for each particle
can be written in proper covariant form, and the theory can
be seen to have a particle symmetric structure [2-5,25]. In
addition, one requires the equations of motion for a finite
number of particles in a local region and without external
influences to be both deterministic and causal, just as in the
nonrelativistic case. We have accomplished this in a series of
preceding works [5,15-17,20,25]. Of course, the simple
Newtonian interpretation of the equations of motion must be
abandoned. However, the variational principle does not guar-
antee any particular interpretation. The next step we have
considered is the quantization of such a theory, this being a
major motive for I and this work. Thus, we are proceeding
just as in the nonrelativistic case. One attempts to employ the
conventional rules of quantizing classical descriptions, and
external interactions are added in the same way. This last
step automatically suppresses the possibility of these models
yielding cosmological theories and ignores the questions
asked by Hoyle and Narliker.

There is another fundamental point that has not yet been
adequately addressed in any of the general discussions
[2,24]. This is the question of the physical content or inter-
pretation of any particular form of the Lagrangian, that is,
the integrand, appearing in the variational integral. We have
shown [5,25] that these Lagrangians can be written as

L=Ls+3(Viy+ Vi) (4.1a)
=L;+3(V5+V3) +dF, /dt (4.1b)
=L+ H(VE+ VL + VR + VA +dF, /dt (4.1¢)
=L+ 3(Viy+V3) +dF3/d (4.1d)
=L+ 5(V+ Vi) +dF,/dt. (4.1e)

Here L, represents the two free-particle parts; Vfi-(A) repre-
sents the interaction of the ith particle with the retarded (ad-
vanced) fields of the jth particle. The expressions have been
written for two particles merely for simplicity. All arguments
can be extended straightforwardly to any number of par-
ticles. Note that, similarly, all advanced times can be re-
moved from the model problem considered herein (see I).
Each of the divergences satisfies the generalized Euler-
Lagrange equations of motion exactly; that is, they produce
identities that can be removed. Now, the straightforward ap-
plication of the variational principle to (4.1a) for particle 1
leads to the standard form of the equation of motion; that is,

dp . .
P LR+ Py, 42)

dt

Next, when the variational principle is applied to (4.1a) for
particle 2, its equation of motion does not take a form similar
to (4.2) until the identity contained in dF/dt is removed, in
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one way or another. Now, asserting that (4.2) has a valid
physical interpretation is equivalent to claiming that (4.1a) is
physically meaningful for particle 1 but contains an unphysi-
cal part for particle 2 through dF,/dt. We consider this po-
sition to be unacceptable and that, in fact, a particle symmet-
ric form will most likely produce the correct physical
interpretation. Quite probably (4.1d) without dF/dt will be
the physical form. It contains no advanced terms and yet
retains all of the features of the other forms. In this case, the
radiation reaction comes from terms like (V5 —V%)/2
coupled with the characteristics of the local universe.

Although many of these comments are speculative, they
are allowed within the context of these models; we consider
them more physically acceptable than invoking the concept
of the future affecting the present, a concept that is unneces-
sary in all of these models. We also consider this feature of
the theory to be fundamental in making it deterministic and
causal. Although it is often convenient to display and work
with the time-symmetric equations of motion, they can
clearly be cast in time-asymmetric forms with no advanced
terms appearing by adding identities. Both forms of the
equations of motion necessarily have identical solutions.
This raises the possibility that absorber theory may contain a
nonphysical component and that subsequent conclusions
may be unphysical.

We close by noting that Schulman [26] has recently ex-
amined, from a completely different perspective, another
one-dimensional one-particle double—time-delay model sys-
tem to the one discussed in I. His model also belongs to the

same class as the Fokker-Wheeler-Feynman—like models in
the sense that the advanced times can be removed from the
Lagrangian by adding divergences.
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APPENDIX A

To consider the constants of the motion, it is necessary to
assume that the exact Lagrangian, that is, the integrand of
(2.1), can be converted to an infinite order Lagrangian. This
requires the solution to belong to C*, being consistent with
(2.3), (2.4), and (2.6). It is thus convenient to set

o 7
xi(t+ 1) =x,()+Ax; =x,(1)+ >, n—,xg'“(z) (A1)
n=1 .
and

x(1= T =x)+Ax; =xi(0)+ 2 <~1>"§x£"><t>,
(A2)

where xﬁ”)(t) represents the nth time derivative of x;(¢). The
Lagrangian then becomes

L=3my[xV1+ 5mo[ x5V + 5kxy (1) = x2(1) = o1+ 5k [x1 (1) = xa(1) = Lo H{[ Axy + Axy 1= [Ax; +Ax; 1}

+fgk{[Axy P +[Axy P+[Axy P+[Axy 1%

Now, in this form, the equations of motion become [7,8,12—
14]

dp ,1 JL (Ad
dt - ox i ’ )
where the first-order generalized linear momentum is defined
by

= d™ L
p}=mE:O(—1)'”WW. (AS)

It follows immediately from (A3) and (A4) that P=p|+p)
is a constant of the motion. It is useful to verify this relation-
ship and to examine the form of P.

Because x!!) appears uniquely in (A3), it is convenient to
evaluate the partial derivative of L with respect to this quan-
tity separately. The manipulations are straightforward, and

one obtains

JL kTen T
S ema g 2 1= (- D" (A6)

8 n=1

(A3)

Further, for m>0,

oL k7!
oxmTD T 8(m+1)!

[1+(=1D)" M (x;—x,—1p)S;

+ 21 [1+(—1)"+m+1];x§">}, (A7)

where S;=1 and S,=—1. Thus,

an oL k!
dr™ 9x" D T g(m+1)!

f[1+<— D" = x5S,

Tn
+ 2 [1+ (=D " (A8)
n=1 .

Hence,
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pl,lzmixfl)+é—krgl [1-(—=1)" ]( +1)' 5")+ LV

n—2

—1)4(n+1)
41 sz [1_(_1) ]( +1)' Z ( )(Yl )

(g+2)!1(n—g—1)!

(n)

a0+ kTE [1-(—1)"] [x{ +x{M1. (A9)

(n +1)'

The last step follows by recognizing that the sum can be evaluated as n+(—1)" by comparing to (1—1)""!, that only odd
n contributes, and by combining terms. Finally,

n+2

2 +1 2
P=2 {mx{V+] kE [1-(-1)"] <">] > [mx<1>+ kE —Tz—x@"“) (A10)

=1 (n+1)! = 0 (2n+2)!

Now, using the solutions (2.3), (2.4), and (2.6), we see that (2.14) follows.

APPENDIX B

This type of system also has a generalized Hamiltonian, which is a constant of the motion, by definition [7,8,12—-17,19], and
which is

H=2 2 x("p}'~ (B1)
where
d oL
PTZ%(—I)IWW' (B2)

The expressions for m=1 are given in (A9); those for m>1 can be readily found by using (A7) and are

:—[1+(—1>m]—(x1 x=l)Sitg E (= D"+ (= )" D =218,
k (m+n)!
_ _1\ym _ (n) mtq) 7
tg LD 2( D gt
k " e +n—1)!
=g+ (DM im0~ § 5, L= 17+ (1o e - (B3)

We derive the first expression by identifying the coefficients of xf") and the second expression by evaluating the sum, which
can be done as follows. Recognize that

m—1

== (=" =3 (=1)
=o

n—1
o (m+n)!
D T CET

(m+n)!

N(m+n—1)! (B4)

by comparing to (1—1)""". Next evaluate the remaining sum by noting that
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(m+n—1)!
Nim+n—1-0)!

m—1
> (m+n—1,m)= ;O (—1)!

_mz_l 1y (m+n—1)! (m+n—1I)
= (=1 N(m+n—1-0)! (m+n—1)
m+n—1)!
=> (m+n,m)+ >, (m+n—1,m)—(—1)m41¥-. (B5)
(m—1)!n!
This gives the desired sum, Z(m+n,m).
Now, the generalized Hamiltonian becomes
+n .
H=3m VP + dmol) P = ik —xp= 1) = 5k 2 2 [(= 1)+ (= 1) YoV (B6)
For the solutions of the form (2.3), (2.4), and (2.6),
x; =X (1) +S,A; cos(wt+8)=X,(t)+S;y;; (B7)
then
ot
= Hmi+myt sk IV2 4 miy(D = maySD+ ik 2 1= (= D"y +1),(y“')—yé")) v im [y
n=1
Tm+n
+ iy = ik y) ik 2 2 (= D)™ (D) T e (BY)
m=1 n=

The linear term sums to zero by virtue of (2.7), and thus, H reduces to the sum of a center-of-momentum contribution and of

a relative contribution, where the former is

Hoy=3(my+my+ k) V2 (B9)

and the latter is

Hre1: %ml[y(l

= %mlsz%+ ;—mzsz%—

thkoT sin(wT)A A,.

+n

Tm
VP oy P k(i y) ik 2 2 (= D™ (= 1) T sy
(m+n)!

m=1 n=1

(B10)

The last form comes by substituting the solutions for y;(z) into the first form.
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