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Semiclassical expansion theory in phase space
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We study the fi, perturbation expansion of the quantum Wigner equation. It leads to a unified formulation of
semiclassical approximations based on the phase-space representation of quantum mechanics. We derive the

016 ) quantum corrections to the finite-temperature Bose and Thomas-Fermi phase-space distributions. Both
reduce, in the high-temperature limit, to the known quantum corrections of the classical Gibbs-Boltzmann
probability density. Within this approach, moreover, we obtain a very simple derivation of the extended
Thomas-Fermi theory. Finally, the limits of applicability, the convergence problems, and the possibility of
improving or defining new semiclassical approximations are discussed.

PACS number(s): 03.65.Sq, 05.30.Fk, 05.30.Jp, 24.60.—k

In recent years a renewed interest has developed in the
semiclassical formulations of quantum mechanics [1].These
approaches, indeed, combine a clearer interpretation of the
resu1ts with very reduced computational efforts. One of the
most utilized, especially in the context of the many-body
theory, is based on the phase-space representation of quan-
tum mechanics, proposed by Wigner in 1932 [2,3] while
studying the quantum corrections to the Gibbs-Boltzmann
statistical distribution. This formalism has been used in the
development of a new approach to the quantum collision
theory [4]. In conjunction with it, powerful numerical meth-
ods have been developed to solve nonequilibrium problems,
first in the classical limit (that reduces to solve the Liouville
equation) [5—8] and, recently, including O(fi ) quantum cor-
rections [9—11].

Here we study the semiclassica1 expansion in 6 and the
general solution up to second-order terms of the Wigner
equation. This leads to a unified view of semiclassical ap-
proximations based on the Wigner representation of quantum
mechanics. We derive the quantum corrections to the phase-
space Thomas-Fermi and Bose distribution functions for fer-
mions and bosons, respectively, and we show how both re-
duce, in the high-temperature limit, to the well-known
quantum corrections to the Gibbs-Boltzmann distribution.
We investigate, moreover, the relation that exists between the
fermion phase-space distribution derived in this framework
and the extended Thomas-Fermi (ETF) theory at zero and
finite temperature. We discuss, finally, the limit of applica-
bility of this method and the convergence problems and we
give some hint to the possibility of improving or defining
new semiclassical approximations.

The Wigner representation of quantum mechanics is
based on a shifted Fourier transform of the quantum density
matrix p(l, r ):

1f (r, p, t)= s dq e '" q Pp(r+q, r —q, t). (1)(~f )'~

The Wigner function Eq. (1}is real and can be interpreted as

a phase-space distribution; nevertheless it can acquire nega-
tive values and cannot be interpreted as a probability density.

The von Neumann equation of motion for the density ma-
trix 1s

B
ifi —p=[H, pj,Bt

(2)

which in the Wigner formalism is expressed as

B
if& f =H*f —f *H. — (3a)

The "*"indicates the so-called twisted product [12], which
is an operator product in the Schrodinger representation de-
fined by

/ Ii)
/1*8=A(r, p)exp i —(8„8~—

c7~ 8„) B(r,p). (3b)

The twisted commutator has a well-known asymptotic ex-
pansion in even power of A, , hence the Wigner equation be-
comes

c/f p c/f BV c/f+- = jV
BE I Br Bl Op

( 1)k
Fq= ~ (2k+ 1) ~ 2

H(r, p) ~ ~ f (r, p, t)

a' / a a I'= ——H(r, p) ——' f (r, p, t)+O(fi. )+. . . ,24 *
l, Br oIp)

(3c)

where H(r, p) = p /2m+ V(r) is the classical Hamiltonian of
the system and the arrows on the partial derivatives indicate
the function on which they act. Note that for a harmonic
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f(r, p) =fo(r, p)+ &'f2(r, p)+ O(&') (4)

Replacing f in Eq. (3c) by its expansion Eq. (4) and order-

ing the O(A, ) and O(k ) terms, we obtain

potential all terms in the A, expansion disappear and the cor-
responding quantum equation of motion is identical to the
classical one: all quantum effects are in the initial conditions.
However, in some cases (such as for potentials with sharp
edges or systems at low entropy), the series might not be
convergent, and a partial resummation [13—15] or a smooth-
ing procedure [10,16,17] is necessary. The technique of ex-
panding Eq. (3a) in an asymptotic series, collecting terms,
and then obtaining quantum corrections has been studied in
detail in [18].Results on the asymptotic expansion Eq. (3c)
and its classical limit can be found in [12].

In the following we will address our discussion to the
one-body problem in a local mean-field potential. Our goal
will be to solve perturbatively the quantum Wigner equation
(QWE) Eq. (3c) in the stationary case (Bf /Br=0), neglect-
ing O(A, ) terms.

Let us expand formally the Wigner function Eq. (1) in a
power series in 6

p Bfo BV BfoI OIr Br BP
(Sa)

p Bfz BV of2 1

m Br Br Bp 24 LBr Bp)
(5b)

fz(r, p)=fog[(r)+fo'g2(1)+fo P p p g3
' (r) (6)

n, m

where p; represents the components of momenta and the
primes indicate the derivatives of fo(E) with respect to the
energy.

Replacing Eq. (6) in Eq. (Sb), we can solve the resulting
equations for the g;(r) obtained by ordering and equaling to
zero the terms with the same power in the momenta. The
general solution of Eqs. (5a) and (5b) becomes

Equation (Sa) implies that fo can be an arbitrary function of
all constants of motion of the system, but here we will as-
sume it to be a function of the Hamiltonian alone,
fo=f.(H(r, p))

It is not difficult to figure out that the solution of Eq. (5b),
imposing as boundary conditions that the distribution van-
ishes for large distances, must be written in the form

fi2
f(r, p) =fo(E)+

8m

B V(r) 1)BV(r) 1 ) B)
fo(E) —— + p —V( ) f'."(E) +O(~')Br' ' 3 ( Br 3m( Br)

(7)

It is interesting to note that for a central potential it is possible to solve Eq. (5b) by simple quadratures, as we will show in the
Appendix. The resolution of Eqs. (5) including high-order terms on fi is a bit more intricate but does not present any special
difficulty.

As we have already stressed, the reference state fo(H(r, p))=fo(E) is an arbitrary function of the classical Hamiltonian
that we have to choose judiciously to approximate the exact stationary solution of the quantum Wigner equation (3).

Let us pick, as first example, a Thomas-Fermi distribution:

fo(E) =frF= exp
'(H(rp) —I ) '

I+1
T 1

(8)

where p, F is the Fermi energy and T the temperature of the system.
Inserting Eq. (8) into Eq. (7) and noting that Bf(E p, F)IBE= —Bf—(E p, F)IBILF we o—btain

A,
2

f(r.p) =fo(H(r p) PF)+
8 (9)

B V(r) 1 t BV(r) 1 ) B \

Br' ' F 3 l Br 3m' Br)fo(H I F)+ ——+ p —V(r) fo'(H IF). -

In this case, the derivatives of fo(H ILF) have to be taken —with respect to the chemical potential p,F .
This fermion phase-space distribution, integrated over the coordinates or over the momenta, leads to a mass density and a

momentum density that coincide with the one obtained in the ETF theory [15,19—23], which, then, is just a particular solution
of Eqs. (5). Moreover, we can interpret the singularities that appear in ETF in the limit T~O: they arise from the derivatives
of Eq. (8) which, at T= 0, reduce to a step function O(E —p, F) .

As a second application, we consider as a reference state the Bose distribution:

fo(E) =fr= exp
) (H(r, p) —I,)

T

Inserting this expression into Eq. (7) we have found out its quantum corrections in analogy with the previous case.

When the boundary conditions are independent of fi, the odd powers of the 6 expansion Eq. (4) can be equal to zero [4].
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higher-order fite, rms in Eq. (9) are still important, or the
same expansion is not yet convergent. The smoothing is
clearly necessary and it should increase the diffusivity in the
tail of the momentum distribution on the nuclear surface
[27], which could be important, for example, in the study of
the subthreshold production of particles in heavy-ion reac-
tions. However, we can see in Fig. 2 as the oscillations of the
distribution at T= 7 MeV are already quite reduced respect
to the previous case. At high temperatures we can expect that
the semiclassical expansion converges quite rapidly, though
this depends both on the form of the reference state and the
potential. It would be interesting, for this purpose, to com-
pare the phase-space ETF Eq. (9) with the exact quantum
Wigner distribution calculated numerically with the static
Hartree-Fock wave functions using Eq. (1) [28].

In summary, we have solved perturbatively the quantum
Wigner equation including second-order terms in the 6 ex-
pansion. We have obtained a clear and unified view of the
semiclassical methods based in the phase-space representa-
tion of quantum mechanics.

We have illustrated a very simple derivation of the ex-
tended Thomas-Fermi theory, discussing the origin of the
unpleasant singularities that appear at zero temperature and

suggesting their elimination through an appropriate smooth-

ing procedure.
We have derived, for the first time, the quantum correc-

tions to the phase-space boson distribution in a mean-field
potential.

We have shown how, approaching the classical limit, both.
distributions reproduce the known quantum corrections to
the Gibbs-Boltzmann probability density.

We have discussed, finally, the convergence of the semi-
classical expansion studying the quantum corrections to the
phase-space Thomas-Fermi distribution of a nucleus at dif-
ferent temperatures.

This method may open a route to new improvements of
the actual semiclassical approximations, but it can also sug-
gest new approaches, all of them based on the Wigner rep-
resentation of quantum mechanics.
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Baym, Dr. A. Bonasera, Professor M. Di Toro, and Dr. M. T.
Lopez-Arias are acknowledged. This work was supported in
part by the U.S. National Science Foundation under Grant
No. PHY-94-21309.

APPENDIX

For a central potential it is possible to solve Eq. (5b) by
simple quadrature. This will be useful if we consider as ref-
erence state fp a more complicated function of the constants
of motion of the system.

Since we are considering a central potential, the term f2
can depend only on three variables that we conveniently
choose to be the radius r, the total energy E, and the modu-
lus of the angular momentum A= rX p. Indeed, because the
energy and the angular momentum are constants of the mo-
tion, two partial derivatives in Eq. (5b) disappear. This can
be easily understood by writing

(A1)

where [ ] is the classical Poisson bracket and c is a new set
of independent variables. If some of these are a constant of
the motion, the corresponding Poisson bracket of right-hand
side of (Al) is equal to zero.

The integral over the phase space can be transformed into
integrals over the new variables by calculating the Jacobian
of the transformation [29]:

f oo

dr dp= 16~2 dr
Jo

dE
Jo JO

AdA, (A2)

where v(r, E,A) is the radial velocity:

2 f

v (r, E,A) = —E V(r)——
2II.

J
(A3)

~ a &
|' a ~ ~aE~ ~ a 1

+ I

l Bx) ( Bx~ 1 Bx) t BE~
(A4)

(

=v(E,x)
1, BE(

3 8
3 v(E) ) xp +v(E)tx) 3

~gP f I
and the resulting equation is

A factor 2 has been added in Eq. (A2) to take in account
that positive and negative momenta correspond to the same
energy for a given value of the radius r.

Let us consider, first, the one-dimensional problem: in this
case only two variables are independent and we can choose
the coordinate x and the energy E. The gradients are ex-
pressed as

There is another interesting aspect associated with the smoothing
procedure. Note that in Figs. 1(a) and 2(a) the phase-space ETF
distribution acquires negative values. In general, with a smoothing
over, for example, phase-space cells of volume ~(27rfi), the

Wigner function Eq. (1) becomes positive everywhere and could be
interpreted as a probability density [10,16].

Bfz(x,E)
Bx

1 d V(x) 3 d fp d fp
24 dx I dE ' dE

(A5)

which can be solved by a simple integration imposing as
boundary condition that the distribution function vanishes at
large distances:
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d fo(E) d V(x) 1 d fo(E)
8m dE dx 3 dE

d V(x) i d V(x)
mU (x,E) 2 + (A6)

The calculation in the three-dimensional case is more involved but straightforward. Equation (5b) can be written as

with the solution

af, (r,E,A)
Br

fi~ d fo(E) ( 2 dV(r) 2 d V(r) d V(R) ~

+ +
Sm dE I, r dr r dr dr

d f&(E) t A dV(r) A d V(r) m d V(r) ~

+ 3 4 + 3 2 + —U (r, E,A) 3dE ( mr dr mr dr 3 ' ' dr (A7)

fi d fo(E) (d V(r) 2 dV(r) 1 d f&(E) 1 l dV(r)l A dV(r) m d V(r)

(A8)

which is the same as Eq. (7) expressed in new coordinates.
In Figs. 1 and 2, Eq. (9) is plotted as a function of the moduli of radius and momentum at a given angle B between these

two vectors. Using these coordinates, Eq. (A8) becomes

fi d fo(E) l d V(r) 2 dV(r) ~

Ii f2(r, E,A)= —
2 ~

+-
8m ds

~
dr

d fo(E) 1 ldV(r)\ p d V(r) p sin (0) (1 dV(r) d V(r)~
+ + +

dE 3 I dr ] 3m dr 3m (r dr dr (A9)
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