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The number-phase uncertainty relation based on the Pegg-Barnett Hermitian phase operator formalism is
discussed for generalized squeezed states of the harmonic oscillator. The corresponding number-phase uncer-

tainty product is calculated for the magnitudes of the squeeze and displacement parameters ranging from 0 to

2 in the former case and from 0 to 4 in the latter case for the first few classes of generalized squeezed states

(m = 0, 1, and 2) and for different values of their combined phases. It is found that for a given magnitude of the

squeeze parameter, the number-phase uncertainty product tends to the fixed limiting value m+ 2 when the

magnitude of the displacement parameter tends to infinity. On the other hand, for a fixed magnitude of the

displacement parameter, the uncertainty product grows indefinitely as the magnitude of the squeeze parameter
increases. It is also observed that the number-phase uncertainty product tends to zero for few photon g-eneral-

ized squeezed states (when the magnitudes of both squeeze and displacement parameters tend to zero) so that,

according to the Pegg-Barnett Hermitian phase formalism, it is possible to have generalized squeezed states

with a number-phase uncertainty product smaller than 2.

PACS number(s): 03.65.Bz, 42.50.Dv

I. INTRODUCTION

The question of the proper dynamical variable corre-
sponding to the phase of a quantum field has been the subject
of discussion for a long time. The problem appeared to be
solved for the first time by Dirac in 1927 [1] only to be
refuted much later by Susskind and Glogower [2,3]. They
introduced two Hermitian dynamical variables analogous to
the sine and cosine of the phase, but as the two variables do
not commute this has also been regarded as an unsatisfactory
solution. There have been numerous attempts to construct
other, more satisfactory phase operators [4—10]. Recent
theoretical work of Pegg and Barnett [7—10] concerning the
Hermitian phase operator of the harmonic oscillator, based
on a model of the single-mode electromagnetic field that
involves a finite but arbitrary large state space, is of particu-
lar importance. Phase calculations, based on various phase
formalisms, have been carried out for coherent [11),
squeezed [12],and displaced number states [13].Several ex-
periments [14,15] were also reported in which phase differ-
ences and their fluctuations were measured as a function of
average photon number, and attempts were made to test
some of the definitions against experiment [16—18] but no
clear conclusion emerged. The predictions based on the
Pegg-Barnett Hermitian phase operator formalism appear to
have been corroborated by experiment in several cases
[18,19].

In this paper we present phase calculations, based on the
Pegg-Barnett Hermitian phase operator formalism, for gen-
eralized squeezed states of the quantum oscillator. The im-
portance and certain properties of these states have been dis-

cussed in Refs. [20,21]. Briefiy, a single quantum oscillator,
prepared initially in the m th number state (with
m=0, 1,2, . . . ), and driven by a transient, spatially uniform
external force represented in the Hamiltonian by the terms
linear and quadratic in annihilation and creation operators,
evolves to the corresponding generalized squeezed state. Dif-
ferent classes of generalized squeezed states correspond to
different m values. The I=0 class coincides with the ordi-
nary squeezed states [22]. These states have been first intro-
duced and studied in the field of quantum optics with the
ultimate aim to obtain a reduced fluctuation in one field
quadrature, at the expense of an increased fluctuation in the
other, leading to an increase in the signal to noise ratio in
suitable experiments ranging from optical communication to
detection of gravitational radiation. Generalized squeezed
states within each class are not mutually orthogonal and form
separately an overcomplete set. In Sec. II, and in the Appen-
dix, we present the properties of the generalized squeezed
states that are needed for the calculation of the corresponding
number-phase uncertainty product. Subsequently, in Sec. III
we describe phase calculations for generalized squeezed
states based on the recent extensive work of Pegg and Bar-
nett that is derived from the form of phase states in a finite
but arbitrarily large state space. Their approach seems to
have been corroborated by experiment in several cases, and it
is advantageous in that it permits the existence of a Hermit-
ian phase operator. The corresponding number-phase uncer-
tainty product for generalized squeezed states is calculated,
for first few classes of generalized squeezed states (m=0, 1,
and 2), and for the magnitudes of the squeeze and displace-
ment parameters ranging from 0 to —,

' in the former case, and
from 0 to 4 in the latter case. We find numerically that,
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despite the fact that a generalized squeezed state is described,
in the most general case, by six independent real parameters
[23], the corresponding Pegg-Barnett number-phase uncer-
tainty product depends only on three of these, namely on the
magnitudes of the squeeze and displacement parameters and
on their combined phases. We also discuss the asymptotic
behavior, and certain special cases, of the uncertainty prod-
uct. Finally, in Sec. IV, we present our conclusions.

H(t) = cu(t)(ata+ —,')+ g(t)a +g(t)*at + h(t)a

+h(t)*at, (2.1)

which has important applications in quantum optics and mo-
lecular dynamics [24,25]. For definiteness, we shall think of
a single quantum oscillator, with a variable frequency
co(t), driven by a transient, spatially uniform, external force
represented in the Hamiltonian by the two given functions

g(t) and h(t). One assumes cu(t)=coo=const and g(t)
=h(t) =0 before some arbitrarily chosen initial time t=O
and after some later time t~ 7.. The corresponding time evo-
lution operator is [23,26]

U(t, O) =e't' ~'!B(P,()D(6), (2.2)

with

B(P,g) =exp( —iPata)exp[~((*a —(at )], (2.3)

II. GENERALIZED SQUEEZED STATES

We consider the most general quadratic Hamiltonian [23]
(6=1),

represented as a unitary transformation; thus in particular
A A

b =BaBt. Equation (2.3) shows that, in the general case of a
complex p„ the Bogoliubov operator differs from the
squeeze operator, a fact of some importance for the theory of
the (ordinary and generalized) squeezed states.

A quantum oscillator, described by the Hamiltonian (2.1),
and initially prepared in a number state m), with
m=0, 1,2, . . . , evolves to the final, generalized squeezed
state

Igeneralized squeezed state, m, t)—= U(t, O)lm). (2.7)

In particular, by driving the oscillator initially prepared in the
ground state (m = 0) one obtains the usual squeezed states
[22]. The generalized squeezed state has an expansion in
terms of the number states with complex, time-dependent
coefficients [cf. (2.2)]

U..(t)=(nlU(t, o)lm)=e" ~"'g B„g(@,$)Dp (8').
k

(2 8)

The matrix elements, B„i,($,(), of the Bogoliubov operator
in the number base are given in the Appendix. The matrix
elements, D„(8'), of the displacement operator are well
known [27,29]. In the m=O special case, the matrix ele-
ments Dko(8') represent the expansion coefficients for the
coherent state, and (A17) and (2.8) lead immediately to the
well-known expression for the expansion coefficients for the
ordinary squeezed states

representing the Bogoliubov operator, and

I Cl
= a«tanh(l vlil p I) (2.4)

with

„(v/2p)"' t

n0
( t)ll2 n~(2 )1/2 (2.9)

denoting the complex squeeze parameter. The three complex
and one real time dependent parameters, p, —= I

p,
I

e'@,
v=—

I

vie', 8=
I Bl e', and e, respectively, satisfy the follow-

ing set of coupled equations of motion [26]

pe /

A = —
2 lnl p I

+ —— Bl + i e ——
2p, ~

2
(2.10)

p, = i(cup2g v),,—v=i(2g*pcuv), ,
— (2 5)

8= —i(h*p, —h v), e = —Re((h*p —h v) 8*), (2.6)

with the appropriate initial conditions p, (0) = 1,
v(0) = 8(0) = e(0) = 0. As is well known, in the general case
of arbitrary cu, h, and g, these equations of motion cannot be
integrated in closed form since they ultimately lead to a Ri-
catti equation [23].On the other hand, the numerical integra-
tion of the equations of motion is easily performed and we
shall, in what follows, assume that the functions p„v, 6, and

e are known. In (2.2), D(6) denotes the usual displacement
operator [27].

The Bogoliubov operator (2.3) effects the homogeneous
Bogoliubov transformation of the boson annihilation a and

creation a ~ operators, b —= p, a+ va ~, for a pair of complex
parameters p, and v, obeying additionally Ip, l

—
I
vl =1.

This transformation is canonical since it leaves the commu-
tator invariant, [a,at]= [b,bt] = 1. A theorem of von Neu-
mann [28] asserts that every canonical transformation can be

A
nm nm

'"'"'"' H. -k[i(l p lb*-
I
vlb)]H. -k(b)

X
k=o (m —k)!(n —k)!

(2til vl)"
k! (2.11)

Occasionally, the ordinary squeezed states are defined via the
expansion in terms of number states with complex coeffi-
cients that differ in the choice of the (time-dependent) phase
of the normalizing factor e" in (2.9). The expression (2.9) for
the expansion coefficients is preferable, since only then do
the squeezed states provide the solution of the time-
dependent Schrodinger equation corresponding to the Hamil-
tonian (2.1) and thus only then do the states have a clear
dynamic origin.

In the case of the generalized squeezed states (mWO),
with the help of (A14) and (A17), one reduces the infinite
sum in (2.8) to a finite sum with at most m terms
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with

b=
(2 )

t/2 (2.12)

(n+ m)/2

) )
)/2 i(n/2 )(//

'—
P) —i(m/2)(i/+ P —n)

The form (2.11) of the matrix elements U„ is of particular
interest for efficient numerical calculation of the number-

phase uncertainty product based on the number-state expan-
sion of the generalized squeezed state.

With the help of (2.11), one also obtains the time-
dependent coordinate-space wave function that represents the
generalized squeezed state in closed form

'P ( )(x, t) —= (x
I
generalized squeezed state, m, t)

U„(t)u„(x)
n=O

8' tx —2a.Re((p, —v) 8*)) 1 / p, + p) &

exp A+ H i/2 l exp —
2

' x-
2p(p+u) [ 2' ~lp —

ul i 4~'\ p ui I—
2o6 I

p, + pj
(2. 13)

with u„(x) =(x n) denoting the usual energy eigenfunction
in position space [30]. In (2.13), the normalizing constant is

/V
—) (2 7r) 1/4o. i/2(2mm ) ) )/2 o- (2m ~ )

—t/2 (2.14)

with mo denoting the mass and coo the constant angular fre-
quency of the free oscillator. Various limiting cases of (2.13)
can be observed: (i) initially, for t=0,%'( )(x,0)~u (x);
(ii) in the m =0 special case one obtains the wave function
'q/( )(x, t) representing the ordinary squeezed states; (iii) in
the case g(t)=0 [cf. Eq. (2.1)], 'I/( )(x, t) reduces to the
wave function representing the displaced number states
[31,32] corresponding to the complex displacement param-
eter 6'.

Equation (2.13) leads, in the case of the generalized
squeezed states, to the correct choice of the reference phase
on which the Pegg-Barnett Hermitian phase operator de-
pends, as discussed in the next section. The proof of (2.13) is
obtained with the help of a generalization of the Mehler for-
mula (k = 0, 1,2, . . . )

(Bn) =(n ) —(n) =A'm +B'm+ C', (2.17)

with

A' —= 2I pl'I ul' (2.18)

B'—=2[(l pl'+ Iu ') ~l'+
I
pl'I ~ '(1+61~l')

-41p I I
ul

I
~l'(I p I'+

I
~l') cos(W+ ~ —»)), (2.19)

and

C'—= ( pl'+
I
~ ')

I
~l'+2l pl'Iul'(I+ 3I ~l')

—4 p I I ul I
~l'(I p I'+

I
p ')cos(0+ 6' —») (2.20)

It is seen that Bn depends on the phases @, 0, and 6 only
through the combination n—= @+0—25.

The dispersion of the number operator in the generalized
squeezed state (2.7), or equivalently (2.13), is a quadratic
function of the quantum number m (denoting the initial num-
ber state):

2) —(k+1)/2H [2uvw —(u +v )w ]/(1 —w )

(vl —w /

III. PEGG-BARNETT NUMBER-PHASE UNCERTAINTY
PRODUCT

n=O

H„(u)H, +/, (v)
n (2.15)

and another useful relation [33]

H„(u)H „(v) „(1+w') " uw+v
k!(m —k)! m!

(2.16)

In the last two equations, u, v, and w denote complex quan-
tities, with Iwl(1 in the case of (2.15), and w 4 —1 in the
case of (2.16).

Pegg and Barnett [7,8] introduced a mathematical model
of the single-mode electromagnetic field that involves a finite
but arbitrary large state space. The dimensionality, N+ 1, of
this space is allowed to tend to infinity only after calculation
of expectation values is made. The finiteness of the state
space means that the operators involved may have somewhat
different properties than those of their infinite space counter-
parts. Such differences do not lead to detectable physical
differences when the limit N~+ ~ is eventually taken. The
advantage of their approach is that it permits the existence of
a Hermitian phase operator. First, the phase states cpk) with
well-defined phase cp& are introduced via an expansion in
number states In), which span the (N+ 1)-dimensional state
space [34,35],
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N

irk)=—N+1 1/2 X e'"'"In). (3.1)

with

2mk
yk—=go+ (k=0, 1,2, . . . ,N), (3.2)

f(i) = X I
~t—)f(v k)(ski

k=o
(3.3)

and yo representing a reference phase. For each qo, the
N+ 1 phase states

I yt, ) form an alternative, orthonormal and
complete, basis in this space. The Hermitian phase operator

y is then introduced as the operator that has eigenstates that
are phase states with corresponding eigenvalues that are
equal to the phase of the state. In fact, a function of the phase
operator, f(cp), can be constructed from the phase states in
the usual way,

Therefore, the average value of the phase and the maximum
of the phase probability distribution for a generalized
squeezed state, 1(yzlgeneralized squeezed state, m, t)1, are
both in the vicinity of the corresponding classical phase. For
large magnitudes of the displacement and squeeze param-
eters, the phase probability distribution is sharply peaked at
the classical phase. As the values of these parameters
decrease, the distribution becomes broader until,
for 181 =

I (I =0 [when a generalized squeezed state
degenerates into the corresponding number state
Igeneralized squeezed state, m, t) —+1m)], it becomes uni-
form [1(pt, lm)1 = ll(N+1)], cf. Eq. (3.1). (In fact, the
phase probability distribution, as a function of the quasicon-
tinuous variable yz ranging from —~ to + ~ is periodic with
period 27r )The. choice yo =

q&
—coo(t 7) ——7r that we make

provides, then, the phase window q&
—too(t r) ~—7r in which

the phase distribution for generalized squeezed states is al-
ways centered.

Finally, the first two moments of the number operator
(I= 1,2)

Consider then the Pegg-Barnett Hermitian phase operator
cp and the corresponding number-phase uncertainty relation.
Since, in the (N+ 1)-dimensional state space, the operators
n and y do not commute [8], the number of quanta and the
phase are incompatible observables and the usual uncertainty
relation holds Bn 8'p- ~I([n, y])I with (6p) =(q ) —(y)
[36]. In order to find 6'p for a general time-dependent state,
given by the expansion over number states in the (N+ 1)-
dimensional state space, one calculates the matrix elements

(n
I j ln') and (nl y In') with the help of (2.11) and the ex-

pressions given in [10,13].
The Pegg-Barnett Hermitian phase operator depends on

the choice of the reference phase yo in that its eigenvalues,
Eq. (3.2), range from q&o to q&o+2mNI(N+ I) [8,10]. This
reference phase can be, in principle, assigned any value. The
average value and the dispersion of the phase have meaning
only if the particular window of phase eigenvalues is speci-
fied. These quantities will be reasonably insensitive
to the variations in the precise choice of yo only if such
variations do not take yo too close to the average value of
the phase in a given state. Once a generalized squeezed
state has been created [for t~ v, when to(t) = coo = const and

g (t) = h(t) = 0] the center of the wave packet

1(xl generalized squeezed state, m, t)1 = I'P~ ~(x, t)1, repre-
senting this state, evolves in time with simple harmonic mo-
tion with phase y —too(t ~) Indeed—, denot. ing the values of
the three complex parameters p„v, and 6, attained at
t = r, by p, ', v', and Z, respectively, one obtains from (2.5),
(2.6), and the general result (x) =2o. Re((p, —v) 8*j, that

(x) =X cos[cp —coo(t —v)] with

X'= (2~1 ~' I)'[Ip
' I'+

I

v' I'

(n')= g n'IU„ I, (3 6)

(3 7)

with

&"=—
I p I'+

I
vl" + 61pl'I vl' —41p1 I vl(l p I'+

I
vl') cos~

(3.8)

provide the corresponding dispersion (Bn) that agrees with
(2.17) in the limit N~+~.

Typical numerical results for the number-phase uncer-
tainty product for generalized squeezed states that arise when
the oscillator is initially prepared in the ground state, and in
the first and second number state (m =0, 1, and 2), are pre-
sented in Figs. 1—3. Certain general features are readily ap-
parent, First, despite the fact that in the general case a gen-
eralized squeezed state is characterized by six independent
real parameters [23], one finds that, according to the Pegg-
Barnett Hermitian theory, the corresponding number-phase
uncertainty product depends only on three of these; the mag-
nitudes of the squeeze parameter

I (I (or equivalently

Ivl = sinhlgl), and displacement parameter 181, and on the
following phase combination of these two complex param-
eters, a= P+ 0—2A. This last was already hinted at by the
expressions (2.17)—(2.20) for the dispersion of the number
operator. Second, for a given I(l, the number-phase uncer-
tainty product tends to the fixed limiting value m+ —,

' when

161 +~. This implies that asymptotically, for 181 ) I, the
phase dispersion falls off as

and

—21p 'I
I
v'Icos(@'+ &' —2~')], (3.4)

I
p,

'
I

sin(@' —b, ') +
I

v'
I
sin( 0' —5 ')

tang =—. . . , , , (3.5)
I p, 'Icos(@' —5 ') —

I

v'Icos(8' —5')

Third, for a finite, fixed magnitude of the displacement pa-
rameter, 181 =const, the uncertainty product grows indefi-
nitely as the magnitude of the squeeze parameter increases.
This is due to the growth of the photon number dispersion
with increasing 1/1 as is apparent from (2.17)—(2.20). We
also note that in the special case g(t) =—0, when the corre-
sponding displaced number states are obtained, the number-



4360 I. MENDAS AND D. B. POPOVIC

15'

10
8-

10
8-

15

10
S- 10

C

FIG. 1. The dependence of the Pegg-Barnett number-phase uncertainty product Bn Bp, for the ordinary squeezed states (m = 0), on the

magnitudes of the displacement,
~
8~, and squeeze,

~ s ~

= arcsinh~ v~, parameters for different values of their combined phases
n—= @+8—2A. Shown are the u=0, vr/3, 2rr/3, and vr surfaces (the surfaces for u and 27r —n are the same). The

~
v~ =0 section

corresponds to the case of the coherent states [19,23].

phase uncertainty product agrees with previous calculations
[13) and thus is, in the m=0 special case, also in good
agreement with available experimental results [19].For the
general reasons analogous to the case of the displaced num-
ber states [13], and quite independently of the Pegg-Barnett
theory, it is reasonable to expect that the number-phase un-
certainty product for the generalized squeezed states tends to
zero as both

~

8'~ —+0 and
~ (~ ~0. This is indeed observed by

the Pegg-Barnett Hermitian phase formalism, as Figs. 1—3
illustrate. According to the Pegg-Barnett Hermitian phase
theory, then, it is possible to have generalized squeezed
states with the number-phase uncertainty product smaller
than —,'. In the Carruthers-Nieto formalism [3] this value de-
fines the minimum number-phase uncertainty states; it is seen
that there is no such lower bound according to the Pegg-
Barnett Hermitian phase theory. Carruthers and Nieto [11],
Jackiw [49], and Luks and Perinova [50], among others,
have sought these minimum number-phase uncertainty
states. Carruthers and Nieto have shown that the coherent
state approximately minimizes the corresponding uncertainty
product with the approximation improving in the limit

~

8~~+~. Jackiw applied more sophisticated techniques to
examine this question in detail, obtaining, in the framework
of the Susskind-Glogower theory [2], exact solutions. How-
ever, the minimum number-phase uncertainty states found
thereby do not seem to possess much physical significance.
On the other hand, present numerical results show that, ac-
cording to the Pegg-Barnett Hermitian phase formalism, it is
possible to have generalized squeezed states with a number-
phase uncertainty product smaller than —,

' thus depriving the
search for the minimum number-phase uncertainty states of
its goal.

Finally, we remark that the ordinary squeezed states (cor-
responding to the m = 0 special case) have been already pro-
duced [37—40]. The generalized squeezed states can, in prin-
ciple, be obtained in much the same way by driving two-
photon processes with a classical source [cf. Eq. (2.1)], the
only difference being in the preparation in the initial state
[m40, cf. Eq. (2.7)]. With the experimental realization of
generalized squeezed states in the realm of quantum optics, it
will hopefully become possible to test these general features
of the number-phase uncertainty product for these states.

IV. CONCLUSIONS

In this paper we have discussed the number-phase uncer-
tainty product for generalized squeezed states of the har-
monic oscillator. In particular, we presented the results based
on the promising Pegg-Barnett Hermitian phase formalism.
We calculated the corresponding number-phase uncertainty
product for the magnitudes of the squeeze and displacement
parameters ranging in the physically most interesting inter-
vals (where nonclassical behavior is expected), from 0 to -', in
the former, and from 0 to 4 in the latter case for first few
classes of generalized squeezed states (I=0, 1, and 2, Figs.
1 —3). It is found numerically that, despite the fact that a
generalized squeezed state is described by six independent
real parameters, the number-phase uncertainty product de-
pends only on three of these, specifically on the magnitudes
of the squeeze and displacement parameters and on their
combined phases n=—tt + 9—2A. Additionally, it is obtained
that, for a given magnitude of the squeeze parameter, g~, the
number-phase uncertainty product tends to the fixed limiting
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value m+ —,
' when

~
8~ —+ ~. Also, for a fixed magnitude of the

displacement parameter,
~

8~ =const, it is found that the un-
certainty product grows indefinitely as the magnitude of the
squeeze parameter increases. In the special case g(t)—=0,
when the corresponding displaced number states are ob-
tained, the number-phase uncertainty product agrees with
previous calculations [13]and, in the m= 0 special case, it is
in agreement with available experimental results [19]. It is
observed that the number-phase uncertainty product tends to
zero for few photo-n generalized squeezed states (when both
~8~ and ~g~ tend to zero), so that, according to the Pegg-
Barnett Hermitian phase formalism the generalized squeezed
states provide another instance (in addition to the displaced
number states [13]) of states with the number-phase uncer-
tainty product smaller than —,'. With the experimental realiza-
tion of generalized squeezed states it will, hopefully become
possible to test these general features against experiment.

APPENDIX

In this Appendix we outline the derivation of the matrix
elements of the Bogoliubov unitary operator, and of the ex-
pansion coefficients (2.11) of the generalized squeezed
states. The matrix element B „—= (m~B~n) of the Bogoliubov
unitary operator (2.3) in the number base

~
n), with

a~ann)=n~n), can be expressed in terms of the following
polynomials:

pression (Al). With the help of the well-known recurrence
relation for the Hermite polynomials one gets from (A3) the
recurrence

( +1)C( +, ) — C(, — )+2C( — ) (A4)

Here, obviously, a nontrivial result is obtained only if m and
n have different parities. The generating function (A3) and
the relation H„'(/) =2nH„, (g) lead together to

dc(-") z) =c(--'" ')( )dz
(A5)

and thus immediately to

dkc(m, n) ) =C(m t. " u)( )
dZ

(A6)

This, with the help of (A6), leads to another useful recur-
rence

for the kth derivative [k~min(m, n)]. From (A4) one then
finds the differential equation

d2C(m, n) dC(m, n)

(4 —z ) 2 +(m+n —1)z —mnC "=0'.
dz2 dz

(A7)

zk
C(m, n) C(n, m)

k![(m —k)/2]! [(n —k)/2]!

(m+ 1)(n+ 1)C( '"+')= (m+n+ 1)zC(

+ (4 2) C(m —l,n —1) (A8)

(A 1)

Here z represents a complex variable and m, n denote non-
negative integers of equal parity [C( '")(z)=0 otherwise].
In (2.1), k =0,2,4, . . . , min(m, n) for m and n both even, or
k= 1,3,5, . . . , min(m, n) for m and n both odd. Thus, the
polynomial C( ")(z) has the parity of m (and n), and degree
min(m, n). In particular, for m =n, the polynomials
C("'")(z) are related to the ordinary Legendre polynomials
[41]

C( ")(z)= y „2Fi —m, —n,
1 —m —n 1~ z1+—,(A9)

with

(m~ (nl ( 1 —m —n 1
! F

2 2 ' ' ' 2 '2)' (Alo)

Additionally, (A7) shows that C( ")(z) can, like many other
functions, be expressed in terms of the hypergeometric func-
tion. Specifically

(A2)
for m and n even, and

For the sake of completeness, we first enumerate relevant
properties of these polynomials, and then clarify their rela-
tion to the hypergeometric function and to the (generalized)
Gegenbauer polynomials.

The generating function for the polynomials C( '")(z) is

H„(izw/2)
f„(z,w)—= .„e =g C(" )(z)w",

i nn! (A3)

with w a complex parameter, H„(() denoting the usual Her-
mite polynomial of a complex argument s, and k running
over all even or odd values according to the parity of n. A
simple proof of (A3) is obtained by dividing (A3) by w
and integrating in the complex ~ plane along a closed con-
tour, in the positive sense, about the origin. Using the explicit
expression for the Hermite polynomials [42] and the residue
theorem one obtains, after simple transformations, the ex-

( m n+I+()m —I )

in Il- —m —n —1 I\
Xi !2F] —m —1,—n —1,

2 '2J

(A 1 1)

(2k) 1 1 —j')
C (()=, qF) —m, m+2k, k+ —,

m! 2 2 J

(A12)

with (2k) =2k(2k+ 1) . (2k+m —1) being the Poch-
harnmer symbol. The agreement between (A9) and (A12) is

for m and n odd. Furthermore, a change of variable
j= —z/2 reveals a close resemblance of (A9) to the Gegen-
bauer (ultraspherical) polynomials, which are given in terms
of the hypergeometric function as [43]
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FIG. 2. The dependence of the Pegg-Barnett number-phase uncertainty product 6n 8'p, for the m = 1 class of the generalized squeezed
states, on the magnitudes of the displacement and squeeze parameters, for different values of their combined phases a= 0, ~/3, 2'/3, and
vr. The Bn Bp surfaces for a and 27r narc t—he same. The uncertainty product depends only on

~
8~, ~g~, a, and on the quantum number

m of the initial state. The
~

p~ =0 section corresponds to the case of displaced number states with the same m and
~

B~ values [13].

obtained when P = —(m+n)/2 Usual. ly, the X values in
C (g) are restricted to Re(X)~ — and XWO [43,44] thus

apparently preventing a possible relation between the
Ct '"i(z) and C (j) polynomials. The first of the two re-
strictions on the allowable X values is not essential; if one
defines the Gegenbauer polynomials via (A12), a definite re-
lation between the two sets of polynomials does exist,
namely,

defined e.g. , in [45,46]. Thus, the right-hand side of (A14)
represents the generating function for the product of the
Ct "~(z) and associated Laguerre polynomials. In particular,
for I=0, (A14) reduces to (A3). The proof of (A14) is
based on (Al) and the explicit expression for the associated
Laguerre polynomials.

The derivation of the matrix elements of the Bogoliubov
unitary operator is based on its normal ordered form

(A13)

with k= —(m+n)/240. The polynomials C " (z), albeit
being a special case of the Gegenbauer polynomials possess
sufficiently specific properties and applications to warrant a
separate consideration.

Finally we mention another useful relation involving the
Ct "i(z) polynomials

i (
B=

~
p,

~

" exp — at exp( —Inpata)exp a
)

(A15)

and the matrix elements

/ n ~ ) ]-/2 (n —m)/2

(A16)

k

m M/(iw) e

In (A17), n denotes a complex parameter, while m and n

(with n~m) represent non-negative integers of equal parity
[(I~exp(aa )~n)=0, otherwise]. The completeness of the
number states leads then, with the help of (Al), (A9) —(All),
and (A13), to

/ 2B„=P„Ct
H «[i(~ B~ l2w —w)]H, «(izw/2) z

«=0 (m —k)!(n —k)! kI

(A14)
Pmn Ymn 2FI

1 —m —n 1 i
7 1

which is valid for a complex z and w, and a real
~

8~ ~0. In
(A14), L denotes the associated Laguerre polynomial as

mt& y ~i~r mn I mn —(m+n)/2

( —I—n) (~v~i
(A17)
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FIG. 3. The dependence of the Pegg-Barnett number-phase uncertainty product Bn 6p, for the I= 2 class of the generalized squeezed
states, on the magnitudes of the displacement and squeeze parameters, for different values of their combined phases n = 0, vr/3, 2m/3, and
vr. The 8n 8'p surfaces for n and 2vr —n are the same. The

~
v~ =0 section corresponds to the case of displaced number states with the sameI and

~
8~ values [13].

In particular, the diagonal matrix elements are simply
—in@

(A18)

(A19)

(the last expression being valid only for I4n), and with

( ~ t 'l i/2
~

[im+n)/2
i(m/2)(0 —P+ 7i.) —

J. (n/2) (0+ P)

A rather complicated expression for the matrix elements of
the Bogoliubov operator, for the special case
@=tJ=O (when both p, and v are real) was first obtained

by Tanabe [47] and later a simpler expression was given

by Rashid [48]. The special case tt = 0, when

p, =
~
p, =real, was provided by Satyanarayana [20]. Finally,

with the help of (A14) and (A17), the validity of (2.11) is
readily established.
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