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The close relationship between the zero-point energy, the uncertainty relation, coherent states,
squeezed states, and correlated states for one mode is investigated. This group theoretic perspective of
the problem enables the parametrization and identification of their multimode generalization. A simple
and efficient method of determining the canonical structure of the generalized correlated states is
presented. Implication of canonical commutation relations for correlations are not exhausted by the
Heisenberg uncertainty relation, not even by the Schrodinger-Robertson uncertainty inequality, but
there are relations in the multimode case that are the generalization of the Schrédinger-Robertson rela-

tion.

PACS number(s): 03.65.Bz

I. INTRODUCTION

In a previous contribution one of us [1] has demon-
strated the close relationship between the zero-point en-
ergy, the uncertainty relations, the coherent states, the
squeezed states, and the correlated states for a single
mode. The group-theoretic significance of the states that
have minimum Schrodinger uncertainty under canonical
transformations was discussed and the application of the
same approach to multimode correlated states was also
indicated. In this paper we give a detailed demonstration
of the group-theoretic approach to the problem, which
enables the parametrization and identification of the mul-
timode generalization. We develop an efficient and sim-
ple method of determining the canonical structure of the
generalized correlated states. We also show that the im-
plication of the canonical commutation relation for
correlated states leads to inequalities that are generaliza-
tions of the Schrodinger-Robertson inequality.

Much work has been done on the Gaussian wave func-
tions and the minimum-uncertainty states. Several pa-
pers dealing with the Gaussian wave function and their
relationship with minimum-uncertainty relations, which
appeared about a decade ago, include those of Sudarshan
and co-workers [2,3], Milburn [4], and Schumaker [5].
The present work goes considerably beyond these papers.
In particular we deal with general (mixed) states and the
full Sp(2n,R) transformation. Naturally, instead of the
Heisenberg uncertainty relation, we generalize the
Schrodinger-Robertson uncertainty relations.

The plan of the paper is as follows. In this section we
bring out some of the earlier results on the relationship
between the zero-point energy, the Heisenberg uncertain-
ty relation (HUR), the Schrodinger-Robertson inequality
(SRI), the coherent, squeezed, and correlated states, and
the effects of canonical transformations. In Sec. II we il-
lustrate the application of the group-theoretic methods
with some examples and prove a theorem on the
minimum-uncertainty state. In Sec. III we develop in de-
tail the group-theoretic approach to handle the two-mode
case in such a manner as to enable us to generalize it to
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the multimode case. In Sec. IV we demonstrate a simple
method to relate the general correlation matrix with the
standard form of the correlation matrix of the minimum-
uncertainty state, through canonical transformations and
group-theoretic methods, for the two-mode case. We find
that the method developed is “efficient” in the sense that
it uses the minimum number of parameters. In Sec. V we
extend the above considerations to the multimode corre-
lated states. Once again we find that the route followed is
an efficient one. Finally, we discuss the generalized un-
certainty relations or inequalities that result in the mul-
timode case.

A. Planck, Heisenberg, and Schrodinger-Robertson
inequalities and canonical commutation relations

Let p and g be two canonical operators satisfying the
commutation relations

[g,p]=i (A=1).

For every w, 0 <w < ®, non-negativity of the square of
Hermitian operator implies that

(1.1)

E(0)=(wq —iplwq +ip)=0 . (1.2)

So for any state | W ), the corresponding expectation value
satisfies the relation

0*(g?)+{(p?)+iw{gp —pq)=0*(g*) —w+{p?)=0.
(1.3)

Hence the discriminant of this quadratic form should be
negative or zero, that is,

4(g)(p*)=1.

Noting that the deviations from the mean
Q=q—{q), P=p—(p) also satisfy the canonical com-
mutation relations, the inequality of (1.2) should continue
to hold with the replacement of ¢ by Q and p by P. We
derive therefore

(AP ((Ap?)Y=(Q> (PP =1,

(1.4)

(1.5)
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which is the Heisenberg uncertainty relation [6].

Next we can obtain the Planck [7] inequality and the
zero-point energy by starting from the inequality (1.2).
Since energy is given by 1(p?+w?g?), we have

E :%(Pzﬂ,zqz):w [Qg;lzﬂ;tz ]+2 > @

V2o V2o 272
(1.6)
EZ%’— . (1.6)

Since the first term is non-negative in (1.6), the energy has
a nonzero minimum value, the so-called zero-point ener-
gy /2 for the ground state | ¥, ), which is annihilated by
the operator a, given by

a=(wq +ip)/V2w, a|¥,)=0. 1.7

Therefore we may say that while the Planck energy rela-
tion (1.6) is not invariant under the linear canonical
transformations

g—Q=q—{q), p>P=p—{p), (1.8)
or under
¢g—Vaoq, p—p/Vao, (1.9)

these canonical transformations on the Planck energy in-
equality lead to the generic form of the HUR (1.5).
However, there are other canonical transformations that
leave the Planck energy relation invariant but not the
HUR. One such transformation is given by

g—qcos@—w 'psing , (1.10)
p—wq sin@—+p cosO . (1.11)
Using (1.10) and (1.11) the relation (1.4) becomes
{0¥(g?)+{p?)}*— {(0*(q?) —w{p?) )cos20
—w{gp +pg)sin260}2>0? . (1.12)

The minimum of the left-hand side of (1.12) can be shown
to be

2

(g2)(pty—Saptpa)” = >2%, (1.13)
which occurs at

tan20=—w{gp +pq ) /{0*(q?)—{(p?)} . (1.14)

The inequality (1.13) is the generic form of the
Schrodinger-Robertson inequality [8]. If we replace g
and p by Q and P we obtain the relation first obtained by
Schrodinger [8] and by Robertson [8]. It is stronger than
the HUR and reduces to it in the special case of “un-
correlated states,” for which

((g—{gNp—(p))+(p—(p))g—{(g)))=0 (1.15)
or, equivalently,
(gp+pq)=(g){p)+{p){q) . (1.16)

Even for a harmonic oscillator the condition (1.16) does
not obtain in general and a Heisenberg ‘“minimum-
uncertainty state” is not canonically invariant. This has
been known for the harmonic oscillator for decades and
the general systematics of such a derivation has been
given by Dodunov and Man’ko [9].

B. SRI and canonical transformations

The clue to Schrodinger-Robertson generalization of
the HUR is the requirement of invariance under the
group of linear canonical transformations. The SRI is
the most general relation that is canonically invariant.
States that satisfy the SRI are called correlated states and
the states that satisfy the HUR are squeezed states. A
subclass of the squeezed states are coherent states, which
satisfy 0 (Ag)=0?*(g?>—{(gq)?)=0*(Ag>)={p*—
{p)?) with energy minimum.

The state of minimum energy for the harmonic oscilla-
tor with Hamiltonian (o=1)

H=1p>+¢¥)=(ala+1) (1.17)
is the vacuum state |¥,) satisfying

al¥,)=0, (1.18)
with the associated wave function

PYo(x)=(7) " V4exp(—x2/2) . (1.19)
This is a state of minimum uncertainty

(Ap?)=(Ag*)=1. (1.20)

But the minimum-uncertainty class is wider, and among
these are the states with

alz)=z|z) , (1.21)

where z is a complex number, with the wave function
Y(x,z)=(m)"Vexp{—(x —V22)%/2} . (1.22)

These are the coherent states introduced by Schrodinger
[10] and rediscovered decades later by Glauber [11] and
by Sudarshan [12], in the context of quantum optics.
They constitute an overcomplete family of states in terms
of which every state can be expressed in infinitely many
ways; further, in terms of them every density matrix can
be exhibited as a sum of projectors |z ) {z| to the coherent
states with distribution valued weight [12,13]. But
coherent states are not canonically invariant. For exam-
ple, the scale transformation (“‘squeezing”) q—->\/Z>q and
p—p/V o takes coherent states into a class of states [14]
that are now called squeezed states. In terms of the
operators a and a' these are Bogoliubov-Valatin transfor-
mations [15]. The unitary transformation

V =exp{—iw'"*(gp +pq)/2}

accomplishes the squeezing and thus obtained are the
one-parameter family of overcomplete sets of squeezed
coherent states with the wave functions

(1.23)
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FIG. 1. Planck diagrams of the minimum-energy state and
the coherent states. The coherent states are centered at the
point [(z +2z*)/V2,(z —z*)/iV2].

Plx)=(m)" 174 (1.24)

These are labeled by three parameters w, Rez, and Imz.
For each @ we have an overcomplete family of states.
This is still not general enough. There are more canon-
ical transformations that will leave the state no longer a
minimum-uncertainty state in the Heisenberg sense but
that would be a minimum-uncertainty state in the
Schrodinger sense. These are the correlated states whose
wave functions have been obtained by Dodunov, Kur-

exp{ —w(x —V22)2/2} .

myshev, and Man’ko [16]. A simpler form of this is a

complex Gaussian

Y(x)=(7)"! exp[—% ax*—2Bx +y)], (1.25)

where a,B,y are complex
(B+B* P /la+a*)=y+y*.

The imaginary part of y is arbitrary. Therefore these
contain two complex parameters a,+ia, and fB3,+if3,
with

parameters satisfying

(Ag)*=(q*)—(g)*=

(Ap)r=(p?)— <p>2——+— , (1.26)

<qp+pq>—<q><p>—<p><q>=—§i .
1

It can now be shown that the inhomogeneous canonical
transformations leave the SRI invariant but not the
HUR. If we set a;=1, a,=0, and B, and j3, arbitrary,
the coherent states are obtained, which are labeled by B,
where f=BVv2. Then a|B) =E|E>, (x)Y=V2Rep, and
(p)=Vv2ImB. If ;71 but @,=0 and B arbitrary, we
obtain the squeezed states. The ground state is a special
case of the coherent state, i.e., with B=0. A state with a

FIG. 2. Planck diagrams for squeezed states.

/

FIG. 3. Planck diagrams for correlated states.

and B arbitrary is called the correlated state.

Making use of the appealing phase space picture intro-
duced by Planck [7,18] for the quantum oscillator, the
ground state with the zero-point energy (for ®=1) has a
phase-space patch that is a circle with unit radius and an
area 7 that is 27 times the zero-point energy. The mean
value of %(p2+q2) within this circular disk is 1, which
enabled Planck to derive the zero-point energy; his pic-
ture of the ground state is a circle of unit radius centered
at the origin. By displacing the origin to V'2z we get the
two-parameter (one complex parameter) family of
coherent states (Fig. 1).

Squeezed states are obtained by area-preserving defor-
mations of the circles into ellipses with major (minor) axis
along the coordinate directions (Fig. 2). When the ellipse
is tilted we get the more general family of correlated
states discussed by Dodunov, Kurmyshev, and Man’ko
[16,19]. Of course this tilting alters things only for the
squeezed states but not for the coherent states (Fig. 3).

II. GROUP-THEORETIC APPROACH TO
SCHRODINGER MINIMAL UNCERTAINTY STATES

A. An example: Simple harmonic oscillator

We illustrate our discussion of the preceding section
with the example of simple harmonlc oscillator. Defining

g=(a+a")/V2w and p =(a —a"Vw/iV2, the Hamil-
tonlan is given by

H=Lp*+¢*)=(aa"+1)o where [a,a’]=1. 2.1)

The Heisenberg equation of motion for a and a' leads to
the standard time dependence of exp(+iwt) and
exp( —iwt), respectively. This in turn leads to

Po .
q =qycoswt — —Z)—sma)t ,

(2.2)
P =wqysinwt +pycoswt ,

where ¢ =q, and p =p, at t =0. This is identical to the
transformations (1.10) and (1.11), when 0=wt.
Using (2.2), it can be shown that
+ 2
<q2>(p2>__<_‘LL2M>

+
=(g2)(p2)— (i"’—”"—-z—‘ﬂ’—) =k? zi .

Notice that for the present example, one may think
of the transformation (2.2) as a variable rotation con-

(2.3)
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jugated by a fixed scaling transformation, i.e., T(t)

=5 (0)R(6=—wt)S " Yw). That is the initial state with
g, and p, undergoing the transformation
9o \/Z)q 0
Po Po
Vo
Vg
_—
L
Vo
0
Vagycosot +-L=sinot
Vo
= . (2.4)
—Vogysinot + ——-—coswt
Vo

Equation (2.3) reflects the fact that k2 is invariant under
the canonical transformations. A little algebra shows
that the Heisenberg inequality is not invariant under this
canonical transformation and as ¢ increases, the uncer-
tainty (g%){p?) oscillates according to

(g2 {p?)=v}—(v,cos20t +v,sin2wt)? (2.5)
where
1
vp=" w{q} )+—(p )
0127 co(qo)——(q ) (2.6)

1
U= E<‘10P0 +pogo) -

We see that (g2){p?) oscillates with twice the frequency
o and is bounded by the maximum v +v?+v3 and the

minimum v§—v?—v}>1

B. A theorem on the minimal uncertainty state

Theorem. A state with absolute minimum uncertainty
is a pure state. Given

(g)=a, (p?y=b, (LIPL)—
with ab —c?=1, (2.7)

there exists one and only one pure state ¢, which satisfies
the relation (2.7).

Proof. Let Q and P be arbitrary operators that are re-
lated to g and p through a canonical transformation

Ql_
o=

—sinf
sin@ cosf

cosf
(2.8)

P
For a real parameter u, Hermiticity of Q +iuP implies
(Q —ipP)Q +ipP)=Q*+u*P>*—u>0. (2.9)

Evaluating the expectation value of (2.9) by using (2.7)
and (2.8), we obtain

F(0,u)=((Q —iuP)Q +iuP))

.2
=(1+u2>—“‘2*b+—”—1 (2 —b)cos26

+(u?—1)csin20—p >0 . (2.10)

The minimum of F (6,u) is obtained by requiring both
OF OF _
30’ du
to be satisfied simultaneously. This occurs at =0, and
n=p;, with

(2.11)

2c
20,=— ,
tan26, iy
- L (2.12)
M= -1 :
=V(a —b)*+4c?
At this point F vanishes, in other words,
((Q;—iuPN(Q,+iuP,))=F(0;,u;)=0 (2.13)
with
0,=0Q(0,,u1;9,p), P, =P(0,u,;9,p) . (2.14)

Consider the state (mixed) to be represented by a density
matrix p with the canonical decomposition
p=3Sc;¥; ¥ (2.15)

J

with all ¢; 20 and the ¢,’s forming an orthonormal set.
Thus Trp=1. Now, we have shown that

((Q1 —ip P (@ +ip Py )

=Tr(paTa)=2cja¢j¢;aT=2cjla¢j|2=O . (2.16)
J J

Since all ¢ 20, this implies that every term of the sum
must be equal to zero. If ¢;70 then |ay,|*=0, or ¥, is
the vacuum state. Since all other ¥,’s (i.e., for j>1) are

orthogonal to ¥, we have

2cj|a¢j|2>0 (2.17)
j>1
unless all ¢;=0 for j>1. Thus Tr(pa Ta)=0 leads to

p= ¢1¢1 or that the original state, which has the zero ex-
pectation value, i.e., F(u,0,)=0, is a pure state and not a
mixed state.

C. Further studies

Group-theoretic significance of states
with minimum Schrodinger uncertainty

The linear canonical transformations on a pair of
canonical variables form a group SL(2,R)[=IT(2), the
semidirect product of the special linear group with
translations. (The symbol [=] denotes semidirect prod-
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uct.) The minimum-uncertainty states of Planck are in-
variant under the harmonic SO(2) subgroup of this group;
this is its stability group. So the quotient of the canonical
group and the harmonic stability group, the correlated
states, is in one-to-one correspondence with the elements
of the coset of dimension 5—1=4. These states are real-
ized by single-mode lasers and states with substantial
squeezing and/or correlation have been generated and
identified [17].

Given any state, represented by any density matrix p
with the quadratic moments being given by C, there ex-
ists a whole orbit of density matrices U (g)pU (g) with
U(g) any linear canonical transformation for which the
matrix C undergoes a similarity transformation

CB—SCBS .

Hence the only characteristic invariant of the antisym-
metric matrix Cf is its determinant, which is the deter-
minant of C (multlplled by detB=1). So if p is any ma-
trix the family UpU also has the same invariant. But
the converse is not necessarily true; given C the family
UpU is not unique. There are, in general, an infinity of
mixed states for the same value of C. The only exception
is the case when detC =, which corresponds to the fam-
ily UpoUT with py=10)(0| the vacuum density matrix.
The perceptive reader will see that this situation obtains
for the multimode correlation matrices and their invari-
ants.

It is a natural question to ask whether these notions
and correspondences can be generalized to n degrees of
freedom and multimode laser beams. Group theory can
be invoked to get a general answer to the problem.

D. Extension to multimode correlated states

Consider a system of N canonical pairs {g,,p,}, 1=r,
s =N. The homogeneous linear transformations are
Sp(2N,R) and the translations are T(2N). So the linear
canonical group is the semidirect product
Sp(2N,R)EIT(2N) with N(2N +1)+2N =N(2N +3)
parameters. We seek canonical invariants bilinear in the
2N canonical variables and look for the appropriate con-
ditions to get the minimal generalized Schrodinger uncer-
tainty. We expect this to come from the ground state
|Q) annihilated by all annihilation operators
(g,+ip,)/V2 and states obtained from |Q ) by the action
of the linear canonical group. Since these involve indivi-
dual harmonic SO(2) elements for each degree of freedom
and any O (N) rotation between the various degrees of
freedom  the stability group of [Q)  has
N +[N(N —1)]/2=1N(N +1) parameters, we expect a
family of correlated states with LN (3N +5) parameters
corresponding to the dimension of the coset space.

Even for small values of N this dimension grows rapid-
ly; we adopt a more elementary method to obtain the
generalized correlated states. The multimode coherent
states are 2N parameter states obtained by 7 (2N) acting
on |Q). We describe the situation in detail for N =2 in
Secs. III and IV. The generalization of the same ap-
proach to arbitrary N will be given in Sec. V. For the
N =2 case, we consider the group Sp(4,R), which is a
double covering of SO(3,2) and has the same Lie algebra

of dimension ten. This algebra can be obtained by the
three (p,p, ), the three (g,4,), and the four L(q,p; +p,q,),
which close under commutation. The generic SO(3,2)
algebra has two invariants, one of second order and one
of fourth order. If we consider the expectation values of
the ten quantities (p,p,), (¢,,q;), and 1(q,p, +p.q,) they
furnish a 4X4 symmetric non-negative matrix that is
bounded below by the zero-point energy.

III. GENERALIZATIONS OF CANONICAL
TRANSFORMATION:
A STUDY ON THE TWO-MODE CASE

A. Generators of canonical transformation

The canonical transformation A is defined as a trans-
formation that leaves the commutation relations invari-
ant. Introduce the spinor

§=(q1,P1:92:P2)s [£4:65]1=1Bup - G.1)
Invariance of the commutator under A implies that
(60585 1= A4 Ap;[8:,8;]
=i4,B;; Aj€
=iy - (3.2)

So the canonical transformation must satisfy the relation
ABAT=p. (3.3)

It is convenient to establish the corresponding criteria for
the generators of the transformations. Denote the metric
matrix by 8. As we shall discuss below, there are ten in-
dependent generators G;, where BG; are symmetric real
matrices. They are given in Table I.

The finite canonical transformation can be represented
by the exponential form

A =expXd;op; . (3.4)
hJ

The corresponding canonical transformation condition of
(3.3) in the infinitesimal form becomes

T
1+ 3,00 ]B [1 +3e,0m, | =B.

(3.5)

ABAT

Using B=io,l, the verification of (3.3) is equivalent to
checking the following relations to first order in €;; which
are valid for all relevant s and j’s:

Ey=0,p;0,+0)0,0,) =0,p,0,+0pf0]=0. (3.6)

TABLE 1. Generators for two modes.

i/j Po P1 ip; P3
oy ip;

[t o 1P o1P3
io, io, iop io,.p;
g3 g3 03P, g3pP3
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Consider first j52, where p ; =p;- Here

E,-j=(oi02+020,-T)pj . 3.7
For i#0,2, 0'=0,;, so

E;=(0,0,%0,0,)p;=0. (3.8)
Fori=2,0l=—0,,s0

E21-=(0202+0202T)pj=0 . (3.9

Notice that in Table I, for the column index j72 there
is no entry for i =0. So for j#2, the condition of (3.3) is
satisfied. Now we turn to the case where j =2, where
pT=—p,. According to Table I, we need to consider the
i =0 case only. For this case,

E02=(0002_0'20'0)p2=0 . (3.10)

Again for j =2 the condition of (3.3) is satisfied. There-
fore the ten operators listed in Table I are indeed the gen-
erators of the canonical transformations. One may also
make a special choice of the 4 X4 ¢ matrices to represent
these generators. They are

Yu=(io3,03p3,—py, —p103) . (3.11)

The remaining generators in Table I are then given by

Y0 vi1=(—0p3, —03,01p1), F[Y1v2]1=—iop;,
, (3.12)
Hyeyil=—iow, 1lvsvil=—ip, .

One may also construct the ten independent symmetric
bilinear expressions in & with

V,=—1EBy.£ S, =1Bly.v,E.

One can verify that the vector and the tensor matrices
By, and B[v,,7,] are the ten independent symmetric real
matrices. They reproduce the commutation relations of
S0O(3,2) [20]

(3.13)

[Syv’spcr]=i(gupsva *gvps;ur +gpaspv —gvospy) ’
[S;w’ VP]=i(gm,V,,—gvqu) , (3.14)

VoV, 1=—is,, .

B. Invariant subgroups

Let C be the canonical correlation matrix and C, the

corresponding minimal vacuum correlation matrix given
by

I o
0r

C=k , Co=% . (3.15)

0 I

It can be shown easily that the generators that commute
with CB are the U(1) generator io, and the SU(2) genera-
tors io,py, i0,p3, and ip,. These four generators together
form the U(2) algebra. When the matrix C is specified by
two parameters k; and k, as

k, 0
0 k,

ky+k
= ‘2 Zioy+

ki —k, .
) 10,03 ,

-

the generators that leave CB invariant are only io, and
io,p3, which generate only the algebra U(1) X U(1).

We now demonstrate how to construct the invariant
subgroup for an arbitrary symmetric form for the corre-
lation matrix denoted by M. First bring the matrix M to

its canonical form C by
M=gCgT. (3.16)

Let L be the little group element of the C matrix
defined by

LCLT=C .
It follows that
M=gCgT
=gLCLTgT
=gLg 'gCgT(Lg ™)
=(gLg )M(gLg™"HT.

(3.17)

(3.18)
Thus the invariant subgroup of M may be represented by
.CgEg.[g—l . (3.19)

For the two-mode case, with two distinct parameters k,
and k, for the C matrix, the invariant subgroup element
is the 4 X4 matrix given by

R(6y;)

R(Byy,05)= , (3.20)

R(6,,)

which belongs to the group U(1) X U(1), with separate ro-
tations among mode-1 variables and among the mode-2
variables. On the other hand, if the C matrix is propor-
tional to the identity matrix, .£, as seen earlier, is en-
larged to the U(2) group, where there is rotation between
mode 1 and mode 2 variables also.

IV. TWO-MODE CASE: REDUCTION OF
THE 4 X4 GENERAL MATRIX M
TO THE STANDARD C MATRIX

Let the bilinear expectation values of the two-mode
case be represented by the 4 X4 matrix
M, M,

: T—
My M, with M'=M .

M=

4.1)

The basis vector is chosen to be £=(q,,p;,9,,P;), so that
M, contains mode-1 variables M,,, mode-2 variables,
and M, and M,,, the cross terms, which mix mode-1
and mode-2 variables. We proceed to diagonalize M
through canonical transformations.

Step 1: Diagonalizing the 2X2 diagonal blocks. For a
general 2 X2 matrix

R6,) O

ﬁ(ell,922)=

each 2X2 diagonal block M,;,M,, can be diagonalized
by the transformation
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ab oo a 0
ﬁ(o) b c .7{ (0)- 0 au (4.3)
with
_ cosf —siné
7(0)= sinf@ cos@ 4.4)
Then 6, a’, and a”’ are given by
tan26=-—22. (4.5)
a—d
with
a'=4 ;_d +r,
ar=atd_. (4.6)
2
4 21172
= [p2 a—a
r (b + 2
Thus matrix M of (4.1) now becomes
a 0
O all M12
' — vy —
M _ﬁ(el]yezz)Mﬁ (911,622)—‘ b: 0
M21 0 bl’
4.7)

Note that since M, and M,, in (4.1) were not specified
explicitly we have dropped the primes in (4.7) with the
caveat that M, and M,; in (4.7) differ from those in
(4.1). The same caveat will also be used hereafter on all
the unspecified 2 X2 submatrix elements.

Step 2: Diagonalizing M, through little group transfor-
mations. The canonical transformation that keeps a 2 X2
matrix invariant is referred to as the little group for that
matrix. Note that the correlation matrix may be shown
to be related to the standard form as

a0 - e
0 a” ZCB(}\,)IB ()\)=C 6_2)\ . (4.8)
Then
172
’ 21 Y f—
an = e—2)\. or e2l= [ a'l ] y € =‘/ala " . (4-9)
a e a

The little group that leaves the first diagonal block ele-
ment M, in (4.7) invariant may be obtained based on the
following consideration:

a b —csin(0+¢@)+d cos(6—¢) 0
c

M}, =R,(6) ‘ d]?sz(¢)= [ 0

al
B(MR(OB(—A) | . [BI—MRT(6)BT(A)
=B(AR(60)Va'a"RT(6)BT(L)
—_— ’ n eZA o a, O
=Va'a” | o a|= g o~ (4.10)
The little group element is therefore given by
P cos@ —sinfe "
(0= | g2 cos@ @.11)

with e "2*=v/g"" /a’, where the subscript x serves as a re-
minder that the little group element leaves a certain 2 X2
matrix invariant. For the 4X4 matrix of (4.7) the little
group transformation matrix that leaves the diagonal
2 X2 blocks invariant is given by

#1(615) 0
ROy, 1;015,2) = s .
(012, ;91,2) 0 Rl @) 4.12)
where
., 1172
. a
cosf, —sinf, Py ]

ﬁ1(612)= , 1/2 (413)

sinf;, P cosf;,

is the little group element that leaves M, of (4.7) invari-
ant, while

172

”

-sm0,2 —b,—

COS@1,

172
b
b"

leaves M,, of (4.5) invariant. The diagonalization of M’
of (4.7) may then be carried out through

M"=R (615, 1;@13,2)M'RT(61,1;1,2)

R @)=

sing;,

(4.14)

COsS@ 1,

" RU(O)M L, R(@y5)

bl
7%2(¢’12)M217{1T(912) b"
(4.15)

For ease of reference we give the general form of MY,
here, i.e.,

bsin(6+¢@)+dcos(6—¢) |’ (4.16)
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where
—_b+c —py=b—c
tan(0+¢@)= e —d’ tan(6—¢@) atd 4.17)
Thus the 4 X4 matrix takes the form
a 0 r O
., 0 all 0 r'l
M - rl 0 bl O (4.18)
o r 0 b”

Step 3: Diagonalizing M". We find it instructive to
temporarily rearrange matrix elements in the order

&=(q,,9,,p,,P,). Correspondingly

a r
_ " rI bl 0
M - an ru (4.19)
0 rll bl'
The diagonalization may then be achieved through
M"=L(\a)M"LT(A,a), (4.20)
where
LA, a)=8(a,a)B(A,—A) 4.21)
with
~ B())
B(d,—0)= B(—2)
et
where B(A)= | (4.22)
and with
_ _ S(a)
S(a,a)— S:(a)
~ . |cosa —sina
where S(a)= sina  cosa (4.23)

The parameters A and a may be determined through the
two diagonalization conditions implied by (4.20) [see
(4.26) below], which leads to

——l allrl+b’rll
A=l 4.24)

and

—2
2a= 10 o o 1,00\11/2
tan2a 23" —bb" [(@a'r"+b"r')a"r'+b'r")]
(4.25)

Reverting back to the original basis £=(q,,p,92,P)-
The corresponding transformation is given by

M"'=L(a,AM"LT(a,7)

a’'(12)
_ a'(12)
b"(12)
with
L(a,A)=S(a,a)B(A,—A), (4.27)
where
et
A, —A)= e’
B(A,—A)= e~ ,
et
(4.28)
cosa —sina
_ cosa —sina
S(a,a)= sina cosa
sina cosa

The parameters A and a are those given in (4.24) and
(4.25).

Step 4: Transformation to the standard C matrix. The
final step to obtain the standard form of the C matrix is
obtained through rescaling the diagonal 2 X2 matrices to
bring each diagonal 2X2 matrix block to be proportional
to the identity matrix

C=B(A,A))M""B(A;,A,)
k,

= k, . (4.29)

V. MULTIMODE CORRELATED STATES

A. Reduction of the 2N X 2N matrix M
to the standard C matrix

We can readily extend the treatment of Sec. IV to the
arbitrary N-mode case. Here the corresponding matrix
to be diagonalized is the 2N X 2N matrix, which can be
conveniently written in the form

Mll M12 M13
M21 M22 M23

M=
M31 M32 M33

(5.1)

Step 1: Diagonalize all the 2 X2 diagonal blocks by ro-
tations
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a 0
0 al’ M12
b’ 0
RO05 -0 | M2t g pr
M —_— ¢ 0 =M'. (5.2)
0 o

Repeat steps 2 and 3 of Sec. IV, N(N —1)/2 times to systematically transform away symmetric pairs of off-diagonal
2 X2 matrices. Generalizing the notation of the preceding section, we write
L;=L;(6;,@;3M5a) (5.3)

where the subscript ij serves as a reminder that through the transformation by the L matrix, with the set of parameters
0> &ij» Ay, and a;;, the element M;; is to be eliminated. The successive transformations may be chosen following the
steps indicated below

a’'(12) 0
0 a"(12) 0 M
b'(12) 0
Ly 0 0 b"(12)
M’-—) cl 0 ) ’ (5°4)
M31 0 C” *
a’'(13)
a"(13) 0 0
b'(12) 0
Ly, 0 0 b"(12) My, S
i 01(13) 0 —_ ", (55)
0 M 0 13
a’(1N) 0
0 a"(IN) 0 0
b'(2N)
LN—I,N 0 bu(ZN) 0--- 0 .
— 0 0 - ‘ =C'. (5.6)
z'(N—1,N) 0
0 0 0 2"(N—1,N)
Step 4: From the diagonal matrix C’ to the standard C matrix
ki 0--- 0
ks
0 :
c=|. .. ol- (5.7)
kn
0 ) ky

The total number of parameters can now be tallied as follows: The number of parameters in original M matrix is
Ny, =N (2N +1); the numbers of parameters of transformations N, are
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R(8y,...,0,,)—>N,
Ly,...,LiN; Lyy,..., Loy L33,...,Lan;...5..
B(Ay, ..., Ay)—N ;

and the number of parameters in C matrix is No=N.
For the present case, where all the k;’s are distinct, the
invariant subgroup leaving the ground-state invariant has
N parameters. Notice that Ny, =N;+N-=N (2N +1).
This implies that the set of canonical transformations
chosen to bring M to its standard C matrix follows an
efficient route, in the sense that all the transformation pa-
rameters are independent parameters.

Dimension of the invariant subgroup

Consider a general matrix M with the corresponding C
matrix that has the following structure. There is n-fold
degeneracy for k,, n,-fold degeneracy for k,, and up to
ny-fold degeneracy for ky, with

nytn,+ - +ny=N. (5.8)

The corresponding little group that leaves C invariant
will be given by

L=Un)eU(n,) -eU(ny). (5.9

Here we follow the convention that if n;=0, U (0)=1I.
This element will be removed from the direct product ex-
pression. The dimension of the invariant subgroup (IS),
which leaves M invariant [see Eq. (3.20)], is given by

dy=dig=n}+n}+---+n}. (5.10)

We display the two limiting cases here. For case 1, where
all k;’s are distinct, (5.10) implies that

d; =N . (5.11)
The dimension of the corresponding coset space is
dcosetzN(2N+l)_N:2N2 . (5.12)

In case 2, where all the k;’s are equal, n; =N and n; =0
fori>1. So

d;=N?% d o =NQ2N+1)—N?2=N(N+1). (5.13)
B. Reduction of the 2N X 2N matrix M
to the standard C matrix
The displacements and squeezings introduce

2N +N =3N parameters. But the generalized correlated
state is obtained by the full coset of the linear canonical
group Sp(2N, R)HT (2N) by the stability group of the N-
mode vacuum state |Q ).

These correlated states may be displayed explicitly, but
are too cumbersome. The multimode correlated states
have wave functions that are displaced Gaussians with
phase factors. Depending upon the experimental require-

.LN_IN—>4X%(N"1)N ,

ments, we may obtain intensity correlations, photocount
statistics, etc., directly. The number of parameters
describing such correlated states are enormous and would
be restricted by the method of generation of such states.

C. Generalized uncertainty principles

For N modes with the parameters k;,...,ky, the C
matrix in its standard form expressed in 2 X2 block nota-
tion

Cc= ’ , (5.14)

kyl
io,

B= , (5.15)

i0'2
ik102
CcB= , (5.16)
ikN0'2
Tr(CBP?=2N(ki+ - - +k}), (5.17)
Tr(CB)*"=2N (k3" + - - - + k3" . (5.18)

For the minimum-uncertainty system k;=k,="---
So for the N-mode case, the minimum-
uncertainty state with the corresponding arbitrary matrix
M and the standard matrix C,, gives

— =1
=ky=17.

Tr(MyB)*"=Tr(CyB)*"= forn=1,...,N .

22n*1

(5.19)

This leads to the complete set of the generalized uncer-
tainty relations

THMB»'2 o for n=1,...,N . (5.20)
For N =1, i.e., the one-mode case,
2
Tr(MB>2=c2=<q2><p2>—<%> =%, 62D

which is the Schrodinger-Robertson inequality relation.
One may say that for the N-mode case, the number N of
inequalities given in (5.20) is the generalization of the
Schrodinger-Robertson inequality.

It is instructive to look at the case of N =2 in detail.
For k,5k,,
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C,=Tr(MB?=2k?+k3)>1,
C,=Tr(MB)*=2(k}+k%)
=(k31+k3?+(k2—k3)?>1. (5.23)

(5.22)

In general, there are two independent inequalities,
which reduces to one when k, =k,. Here Egs. (5.22) and
(5.23) are reduced to one independent inequality. The in-
equality expressed in terms of k; and k, contains more
information than those given by the corresponding
traces. For instance, from the expression in terms of the
k’s, one could arrive at

C,—1Ci=(k?—k2)?20, (5.24)
which is not implied by
C,21, Cy21. (5.25)

When the equality is satisfied, i.e., k; =k, =1, this corre-
sponds to the case of the minimum-uncertainty pure
state. Much of the statements here can be extended to N
modes. We will not detail them here.

The inequalities of (5.20) are statements on the invari-
ants of matrix M. We observe that the invariants of a
matrix can also be specified through its characteristics.
The characteristic equation of the matrix M is given by

N N
det|MB—AI|=det|CB—AI|=T](k}+A%)= 3 fiA¥,
i=1 i=0

(5.26)

with f;, the coefficient of A%, being the characteristics of
order i. The characteristics are

fo=K¥} -k

1,1

I T

1
+...— ,
kl%, fO

(5.27)
fyo1=k}+k3+ - +k3,
fv=1.

They are all positive quantities. The set of the invariant
C; can be expressed in terms of the characteristics f;.
The uncertainty relations may also be stated in terms of
the characteristics giving

1 N
fOZ—__l, f124_N:T""

N (5.28)

’.fN—lZ

|2

When all the k;’s are distinct, the number of indepen-
dent inequalities is again N. Evidently the set of inequali-

ties in (5.28) expressed in terms of the ks is equivalent
to those in (5.20).

VI. DISCUSSION

Some remarks are in order about the correlated states
in quantum field theory. As long as the number of excit-
ed modes is finite, however many, there exists a unitary
transformation from the multimode vacuum state to the
multimode correlated state. These unitary transforma-
tions are generated by a quantity that is bilinear in the
canonical variables. These operators are unbounded but
do generate unitary transformations. When the number
of modes becomes infinite, the generic correlated state
cannot be obtained from the vacuum state. They would
be in a different Hilbert space from the Fock vacuum
[21], though canonical unitary transformations can gen-
erate a restricted set of correlated states.

It was the purpose of this paper to demonstrate the
close relation between the correlated states and the linear
canonical group and to show that the correlated states
that minimize the Schrodinger uncertainties are related
to the canonical multimode vacuum that is invariant un-
der linear unitary transformations of the modes. The
generic wave functions are Gaussians with a determined
number of independent parameters.

The one- and two-mode analysis is equally applicable
to the propagation of the Gaussian Schell mode paraxial
wave fronts through a system of thin lenses that are, re-
spectively, isotropic and nonisotropic. This has been car-
ried out elsewhere [22].

Correlated states are the generic family that include
squeezed states and coherent states as special cases. For
each value of the complex parameter a, we have an over-
complete family of states in the case of one degree of free-
dom. For the multimode case the parameter defining the
generic form of the M matrix of (5.1) from the canonical
form of the C matrix of (5.7) is such a labeling parameter.

The implications of canonical commutation relations
for correlations are not exhausted by the Heisenberg un-
certainty relation, nor even the Schrédinger uncertain-
ties, but there are relations in multimode case. In the
case of partially coherent two-mode excitation these fur-
nish a further test of quantum theory and also gives a
more detailed characterization of the correlation func-
tion.
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