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Time evolution of a hydrogen atom in a strong, ultrashort, high-frequency laser pulse
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We have solved the time-dependent Schrodinger equation for a hydrogen atom, initially in its ground state,
subject to a strong, ultrashort laser pulse of high frequency, w=2.0 a.u. We compare and interpret our results
in terms of the time-independent Floquet eigenvalues. Even for an ultrashort pulse of 3 cycles half-width, the
Floquet adiabatic picture is a very good approximation. We discuss the physical reasons and also the visible
deviations from the single-resonance-state approximation.

PACS number(s): 32.80.Rm

The most direct theoretical investigation of the interaction
of a quantum system with a strong laser field in the nonrel-
ativistic domain consists in solving numerically the time-
dependent Schrodinger equation. This approach has been ap-
plied to a wide variety of one-electron atomic systems,
ranging from one-dimensional model “atoms” [1,2], to
single-active-electron approximations, to multielectron sys-
tems [3], comprising of course the hydrogen atom [4-6].

In the present work, we consider a hydrogen atom, ini-
tially in its ground (1s) state, which interacts with a short,
strong laser pulse, described classically in the dipole ap-
proximation as an electric field &(t)=—c~ 'dA(¢)/dt,
where A(r) is the vector potential. The time dependent
Schrodinger equation reads [we use atomic units (a.u.)
throughout, unless otherwise indicated]
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Z‘E‘I’(l‘,t)= 7 ~74‘;[)1&(2‘) W(r,t). (1)

We recall that within the dipole approximation the term in
A?(t) can be eliminated from Eq. (1) by performing a unitary
transformation on the wave function. The dipole approxima-
tion is well justified for the present case [6].

We employ standard procedures for the solution of this
time-dependent equation, working in configuration space and
using a finite-difference approximation for the momentum
operator p=—iV [3,6]. Furthermore, we take the direction
Z of A(¢)=12A(t) fixed, implying that all fields are linearly
polarized along the z direction. As a result, Eq. (1) exhibits
cylindrical symmetry about the z axis, reducing the problem
to two spatial dimensions.

We compute the wave function on a radial grid, compris-
ing 66 points in the polar angle ¢ and up to 16 500 equidis-
tant radial points between r=0 and r=165. We have
checked convergence in all of these values. In order to avoid
reflections from the outside border of our grid, we set the
outer part of the wave function to zero (periodically, once
every field cycle) by multiplying with a continuous mask
function which goes from 1 to O linearly between r=155 and
r=110.

The time-dependent solution thus obtained can be ana-
lyzed in terms of the unperturbed (field-free) eigenfunctions
of the hydrogen atom. The field-free ground state energy we
obtain using our grid is F,= —0.499 800. For the next few
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bound states the energies are E,=—0.124987,
E,=—0.125252, EK,=-0.055553, E,=—0.0550628,
E,,= —0.055 463. These values are all within less than
0.1% of the exact values — 1/2n2. The corresponding eigen-
states are of course no longer eigenstates when the field is
turned on. Nevertheless, an analysis in terms of the prob-
abilities

P=[i|¥ ()P, 2

where (i| represents the ith field-free bound eigenstate of
atomic hydrogen, can give some indications about the shape
of the full time-dependent wave function ¥ (r,?). At the end
of the pulse the P; give the true populations in the bound
states.

The appropriate “time-independent” eigenstates for the
atom in the field can be obtained within the Floquet theory
[7]. This yields ‘“quasistationary” states describing an ioniz-
ing atom in the field, each state having a “quasienergy” with
negative imaginary part Im(E)=—I"/2, where I' is the decay
rate of that state. The Floquet calculation for the present
single color case assumes a fixed intensity and frequency of
the laser, i.e., a monochromatic field. As the field intensity or
frequency are varied, the atomic system follows adiabatically
a particular Floquet eigenstate. If states of the system are
resonantly coupled by one or more photon transition, the
single Floquet state approximation may become invalid. We
do not consider this question in the present work, deferring a
detailed study of adiabaticity for the case of several near-
resonantly coupled states to a future publication. In this pa-
per, we select a frequency that is so high that no single- or
multiphoton resonances between discrete states of atomic hy-
drogen are present. Even when no crossing is present, it is
interesting to inquire what a minimum pulse duration should
be for the Floquet approach to be useful.

Floquet eigenvalues (E,) and eigenvectors (¥ ,) can be
obtained directly from a time-dependent calculation by di-
agonalizing the one-cycle time evolution operator

W(t+T)=2, e W (W | V(1)) 3)

=U(t+T,)¥(r), 4)
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where T=2m/w, and w is the constant angular frequency of
the laser field. This method has been used for analyzing the
time-dependence for one-dimensional models [1,8].

We also remark that the applicability of the Floquet ap-
proximation in the absence of resonances has been tested and
compared successfully with experiment in the case of multi-
photon ionization of the negative hydrogen ion [9,10].

Even in the presence of resonances, the single Floquet
state approximation can be very successful at describing cer-
tain overall features of the time-dependent case. Indeed, for
hydrogen atoms subject to a 0.5 psec optical-frequency laser
pulse, the resonance peaks in the electron spectrum have
been reproduced to very good accuracy by a Floquet calcu-
lation [11]. The reason for the agreement in this case lies in
the fact that all crossings with the excited states have a small
gap and that the lifetimes of the excited states are of the
order of the optical period, much shorter than the ground
state lifetime.

In the present calculation, we consider an angular fre-
quency w=2.0 a.u., well above the field-free atomic hydro-
gen ionization energy of 0.5 a.u. This frequency is in the
adiabatic stabilization regime [12]. Furthermore it is high
enough to allow a nonrelativistic treatment for the intensities
considered here.

In Fig. 1 we show our time-dependent results, obtained by
numerically solving Eq. (1) for a ramped-constant field

A(t)=A, f(t) coswt,
f@)=[0() t=0(t—71) (t—7)]/T,

1, t>0

0(1)= 0, otherwise .

©)]

The turn-on is effected very rapidly, over two cycles only,
7=2T=2m. The peak field amplitude is &, =16 a.u., corre-
sponding to an intensity of /=9 X 10'® W/cm?. We observe
that excited state population is visible mainly in the 2p state.
This should be interpreted not as “‘real”” population but rather
as describing the polarization of the 1s “Floquet” state. In
fact, we see oscillations between the 1s and the 2p popula-
tions with the laser frequency, indicating that both states are
strongly mixed, and the corresponding Floquet solution
therefore contains a mixture of both field-free states besides
important admixtures of other states, including field-free
continuum states. We have followed the time evolution of the
wave function for a long duration. Several features appear at
this large intensity. In particular, there is a slow oscillation
visible in the 2s probability, with a frequency of about 0.14
a.u. The same periodic oscillation is also visible in the enve-
lope of the 1s probability. This corresponds to an interfer-
ence between the coherently populated 1s and 2s Floquet
states. The transfer of population to the Floquet state which
has predominantly “2s”’ character does not occur through a
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FIG. 2. Time evolution of the ionization probability in an ul-
trashort laser pulse of frequency 2 a.u., with Gaussian envelope,
for which the quantity |A(z)|? is indicated, in arbitrary units. Flo-
quet: time average of the quasistationary Floquet results. 1 — P :
projection onto the unperturbed 1s eigenstate. 1 — P, <5 : projection
onto the lowest eigenstates up to and including the » =3 manifold.

level crossing, since the frequency is too large. It occurs at
the beginning of the pulse because the short pulse has a
significant frequency spread, since it has been ramped on
rapidly. We have performed Floquet calculations [13] with
the result that the real parts of the Floquet energies are
E,;=—0226 au. and E,;=—0.084 a.u. Thus the energy
difference is 0.14 a.u. and corresponds exactly to the beat
frequency observed. The decay rates of the two states are
quite different, I'{;=0.006 a.u. and I',;=0.0005 a.u. This
also agrees with an estimate of the decay rate obtained from
a fit to the maxima in the oscillations.

In Fig. 2 we show our time-dependent results for an
ultrashort laser pulse with Gaussian envelope

A(t)=Aoe_(’*’0)2/Tzcoswt (6)

for ®=2.0 a.u. and 7=9.43 a.u., £5= 10 a.u. (corresponding
to a peak intensity of I,=3.5%10'® W/cm?). The line la-
beled “A2” shows A%(z) in arbitrary units. Thus the pulse
comprises only about 10 cycles of the field. Similar pulses

have been considered in [5]. The smooth line in the figure
gives the Floquet adiabatic ionization probability

PF(t)=1~exp[-—J‘Otl“[l(t’)]dt’}. @)

It is important to note that at the end of the pulse the Floquet
result Pr=0.625 is quite close to the time-dependent result
1—P,,=0.692 (wavy line). The agreement becomes even
better when one computes the true ionization probability at
the end of the pulse from the time-dependent calculation,
namely P;,,=1—2;P;, where i runs over all bound states.
In the figure we show P,<3=1—2,;P; (with i= 1s, 2s, 2p,
3s, 3p, 3d) as the wavy dashed line; its final value is 0.595.
The main excited state population at the end of the pulse is
P,,=0.090, all others being much smaller (P;,=0.005).
The excited states are populated due to the frequency spread
of the pulse, which has a power spectrum

P(w)xexp[ —47(0—2)%], ®)

whose half-width is VIn2/7=0.09 a.u. That 1—P,, and Py
disagree during the pulse and that the cycle-average of
1— Py, peaks at the peak of the pulse and then decreases,
seemingly “‘pulling probability back into the 1s state” is not
surprising, since, as stated above, P, should not be inter-
preted as the probability of population in the ground state
during the pulse. The stairlike inflections in Py at strong
fields are a result of the reduction of Iy, at large intensity
and this behavior is also visible in the dashed curve (for a
discussion of this adiabatic stabilization, cf. [12]).

The width I' from the Floquet calculation gives the prob-
ability to leave the quasibound state and reach the con-
tinuum. Coherent excitation processes to other states that are
energetically allowed for the short pulse are not taken into
account in a Floquet calculation. It is therefore reasonable
that the Floquet results lie between the 1—P;; and the
1—X,P; results.
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