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Nonlinear dynamics of the Kingdon equation
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The dynamic Kingdon trap recently proposed by Blumel [Phys. Rev. A 51, R30 (1995)] is a storage de-

vice for charged particles. The equation of motion for one trapped ion, the so-called Kingdon equation
r'+yr+(1 —2g cos2t)r '=0, allows stable limit cycle solutions for a wide range of parameters. In this

Brief Report we calculate the periodic orbit of a trapped ion approximately and by using a singular per-
turbation analysis, and discuss its main properties.

PACS number(s): 32.80.Pj, 03.20.+ i

INTRODUCTION r (r +y r') = —1+2' cos2t, (2)

In a recent paper, Bliimel [1,2] had proposed a design
for the permanent storage of charged particles in traps
that is different from the standard Paul trap. The dynam-
ical Kingdon trap [1,2] consists of a metal filament sur-
rounded by a metal cylinder with a dc and an ac voltage
applied between the filament and the cylinder. In con-
trast to the static case originally studied by Kingdon [3],
Bliimel s dynamic variant is able to confine an ion per-
manently in such a way that the ion oscillates in a radial
direction about a point between the filament and the
cylinder (for the physical details we refer to Ref. [2]). For
the simplest realization of this trap, Blumel has derived
the "dynamic Kingdon equation" governing the motion
of a trapped ion. In appropriately scaled units, this equa-
tion reads [1,2]

1'r + y r'+ ( 1 —2g cos2t )—=0,
r

with r (t) )0 representing the distance of the ion from the
center of the trap. The entering control parameters are
the damping coefficient y, which mimics the additional
effect of laser cooling, and the ac voltage modulation am-
plitude 2g. Bliimel [1,2] found numerically that stable
limit cycles exist in the damped Kingdon equation for
large enough modulation amplitudes g) 3.5. Lowering g
from 3.5 to 2.9, he also observed a period-doubling
scenario of the limit cycle. Using a pseudopotential ap-
proach [4], Bliimel has shown why the forcing can gen-
erate dynamics in a system that —without forcing —has
divergent dynamics.

The focus of this Brief Report is the basic limit cycle of
(1), which determines —if stable —the long-time per-
manent motion of the trapped ion in the simplest version
of a dynamic Kingdon trap. After stating some general
remarks, we present a simple approximate solution for
the limit cycle that is surprisingly accurate. Then we
show that this solution can be derived more rigorously
through singular perturbation analysis. Besides its physi-
cal realization, the Kingdon equation (1) also has its own
rights as a simple nonlinear system with surprising dy-
namic properties.

Our analysis starts from rewriting Eq. (1) in form

BASIC LIMIT CYCLE

Since Eqs. (1) and (2) do not possess a natural frequen-
cy if the forcing is absent g=0, it is quite natural to sup-
pose that the period of forcing determines the basic fre-
quency of (1) and (2). This can also be seen by a numeri-
cal integration of the system (1). Therefore, the solution
r(t) can be expanded in a Fourier series in terms of
sin2nt, cos2nt, n =0, 1,2, . . . . Due to the nonlinearity
in (2), insertion of the Fourier expansion leads to an
infinite hierarchy of coupled algebraic equations for the
Fourier coefficients. To find an approximate solution for
the limit cycle, one has to truncate the system by closure
relations. To give a systematic treatment of the succes-
sive approximations is far beyond the scope of this paper.
Here we use the simplest closure and represent r(t) by
the approximation

r ( t) =ro+ a
&
sin2t +a zcos2t, (3)

omitting all higher harmonics proportional to cos2nt and
sin2nt with positive integer n ) 1. Inserting (3) in (2),
multiplying the resulting equation successively with 1,
sin2t, and cos2t, and integrating them over one period
T=~, we obtain

a +a1 2 (4a)

2a, +yaz =0,
rpya& —2rpa2 —g=0 .

(4b)

(4c)

The nonlinear system of algebraic equations (4) can be
solved easily. Taking into account that r has to be posi-
tive, the relevant solutions read

which seems to be more adequate for the following
analytical analysis. Equations (1) and (2) possess several
symmetries: in particular, they are invariant under a
shift in time by m and under the transformations
(t ~—t, y ~—y) and (t ~t +sr I2, g~ q). —Note,
however, that these invariances hold for the differential
equation (1) and (2) and not necessarily for their solu-
tions; they might be broken.
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&4+) ' '

1 sgn(q)y
&2 &4+@' '

V2 sgn(q)
&4+I"

(5b)

(5c)

COMPARISON WITH NUMERICAL RESULTS

Although our approximate solution is quite simple, its
accuracy in comparison to the numerical findings of
Bliimel [1,2] is surprisingly good. For fixed y=0. 001,
Blumel obtained numerically ro(rl=4) =2.889,
ro(r)=6)=4. 283, ro(r)=8)=5. 687, and ro(rj=10)=
7.095, whereas our approximation gives ro( rt= 4)
=2.828, ro(ran=6) =4.243, ro(g= 8)=5.657, and
ro(rt=10)=7. 071. These values differ only by less than
2%. The accuracy is even better for larger modulation
amplitudes 2q; for q=10 one obtains a difference of
about 0.3%. For the oscillation amplitude Bliimel ob-
tained 0.707 plus corrections in the fourth decimal
caused by a weak dependence on g. Our approximation
gives a constant value of 0.707 for fixed y =0.001.

SOME PROPERTIES OF THE LIMIT CYCLE

From (3) and (5) the following properties hold. (i) The
rnoduli of oscillation amplitudes a& and a2 are indepen-
dent of the modulation amplitude 2g and depend only on
the damping constant y. The modulation amplitude 2g
affects the location of the center of the periodic orbit and
the sign of rl selects one of the solutions in (3) and (5). In
Fig. 1 we show the dependence of

~
a i ~

and
~
a z ~

on the

where sgn denotes the signum function. Note that there
are two different solutions, depending on the sign of g.
Both solutions (3) and (5) represent the same orbit in the
(r, r') phase space; they are phase shifted in time by half
of the modulation period m. /2, refiecting the two possible
ways of forcing with positive or negative g.

SINGULAR PERTURBATION THEORY

The accuracy of the approximations (3) and (5) raises
the question whether it can be explained by using a sound
mathematical argument. Let us now demonstrate that
the approximate limit cycle solutions (3) and (5), which
we found by simple Fourier truncation, represents the
leading-order terms in a singular perturbation analysis in
terms of the inverse modulation amplitude

(6)

for small moduli of 5. To see this, we first rewrite Eq. (2)
as

5r('r+yr')= —5+cos2t . (7)

Trying to rnatch the terms on the left- and the right-hand
side of (7) by perturbation expansions in 5, one finds that
the ansatz

damping constant y; the dependence of r p and y follows
directly from ~a2~ =ro/~rt~. (ii) Assuming, for example,
that g is positive, the solutions (3) and (5) reads
r (t) = ro+( I/&2)cos(2t m—/2. +P) with a phase shift
P= —arctan(2/y). For small y, the phase shift P is
given by —m/2. Increasing the friction coefficient in-
creases P until it reaches zero for y~oc. This implies
that the response r (t) follows the forcing —2g cos(2t)
simultaneously for y~0. (iii) Since r(t) has to be non-
negative, the limit cycle ceases to exist when the modulus
of the amplitude of the oscillatory part of (3) equals ro. A
lower limit for the existence of the limit cycle is
~rI =1+y /4. (iv) The limit of vanishing friction leads
to ro=g/')/2, a, =0, and a2= —I/&2. This compares
well with Blumel's estimates based on the method of
pseudopotentials [1,4]. Note that the Kingdon equation
also possesses a uniquely determined limit cycle in the
undamped limit y=0. The limit cycle, however, is mar-
ginally stable; it takes an infinite time to reach it. (v) A
limit cycle can exist for either sign of the damping con-
stant y. Some numerical tests we have performed indi-
cate that the limit cycle is most likely unstable for y (0.

r (t) = —[h, +5h, (t)+5'h, (t)+0 (5')]=1 (8)

C)

U. 5

can fulfill Eq. (7) if the first-order term h& is constant in
time. Inserting (8) in (7), one finds in order 5

h
&
+y h

&

=h p
' cos2t

and in order 5

h2+yh~= ho (I+hihi )

(9a)

(9b)

0. j-

FIG. 1. Dependence of the moduli of a, and az [cf. Eqs. (5b)
and (5c)j on the damping coefficient y. Note that the modulus

of az also equals ro/~g~.

Both equations have to be solved with the constraints
that h, (t) and hz(t) are periodic in vr to obtain the basic
limit cycle. The solution of (9a) yields

1 y sin2t —2 cos2t
h, t=

2hp 4+y2

with hp being undetermined in this order. To find hp, we
insert (10a) in (9b), solve it, and observe that h2 contains
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a secular term in t reading

1 4ho(4+y )
—2

4 hoy(4+y )
(lob)

The periodicity constraint requires that this term has to
be zero, implying that ho = [2(4+y )] '. Going back to
the original variable r(t), one immediately infers the
equivalence of the approximate solutions (3) and (5) and
the singular perturbation expansion above. Therefore,
one has to expect that the solutions (3) and (5) approxi-
mates the exact solution of (1) or (2) well if ~5~ is small in
comparison to unity, as it is for the relevant values of g in
Bliimel's work [1,2]. Higher harmonics of the ansatz (3)
enter in higher orders in 5. In general, one has to expect
that the Fourier coefficients belonging to sin2nt and
cos2nt scale like 5"=—,'g

VARIATIONAL PRINCIPLE

One can easily infer that the damped Kingdon equa-
tion can be derived from a variational principle
5 J G (r, r, t)dt =0 with the function

G (r, i, t) =e r'[ —,
'r' —(1—2g cos2t)lnr] .

This formal result might be useful as a starting point for

more sophisticated approaches based on variational
methods for nonlinear forced oscillations [5]. Note, how-

ever, that the similarity of (11) with a Lagrangian func-
tion cannot be used for a mechanical reinterpretation of
(1) if the damping constant y is nonzero, quite similar to
the case of the damped harmonic oscillator [6,7].

SUMMARY AND DISCUSSION

We have presented a surprisingly accurate approxi-
mate limit cycle solution for the damped (and also the un-
damped) Kingdon equation. We have also shown that
this solution is in fact the leading term expansion of a
singular perturbation analysis for small inverse forcing
amplitudes. In this Brief Report, we did not address the
question of how the limit cycle can undergo period dou-
blings and lose its stability. This requires different ap-
proaches [5] that are planned for the future. Finally, we
note that Eq. (2) has some formal relationship to equa-
tions describing the oscillations of a spherical bubble in a
liquid in an external sinusoidal pressure field [5].
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