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Nearly normalized, distorted strong-potential Born state vector
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Whether an approximate scattering state vector retains the normalized nature of its exact coun-
terpart reQects on the quality of the approximation made. It is shown that the distorted-wave
strong-potential Born state vector, employed in asymmetric electron-capture theory, is normalized
(in a near-the-energy-shell approximation) to within a few percent, even at intermediate energies
where capture is most likely. There is thus little need to renormalize the state, in contrast to the
analogous undistorted state vector [J. Phys. B 25, 3823 (1992)],where a radical loss of normalization
occurs.

PACS number(s): 34.70.+e, 03.65.Nk, 03.80.+r

At intermediate projectile energies in asymmetric col-
lisions, the strong-potential Born approximation to the
exact electron-capture amplitude has been much studied
in the past decade. The original form was built on the
conceptual framework of virtual ionization of the target
electron and showed promising agreement with experi-
ment [1], but it suffered from an elastic-channel singu-
larity (due to the long range of the Coulomb potential),
which compromised the use of approximate evaluations
[2]. A distorted-wave form of the theory maintained the
conceptual basis while incorporating a short-range final-
channel interaction that ensures a well behaved theory
[3,4]. Calculations employing realistic atomic potentials
have shown good agreement with experiment [5]. The
normalization of the undistorted strong-potential Born
scattering state was considered [6] and found to devi-
ate appreciably from unity at intermediate energies [7],
where capture is most likely (and the experimental data
exist). A renormalization of the theory was introduced
to improve agreement with the data, but it was not in-
tegrated into the overall scattering formalism. The nor-
malization of the distorted strong-potential Born approx-
imation is studied in the present article. A minimal need
for renormalization of the distorted strong-potential Born
(DSPB) theory is found and only when the impact ve-
locity becomes small (below 4 a.u. ).

A numerical evaluation of the exact form of the DSPB
normalization is not feasible with the incorporation of a
realistic atomic target potential. The approximate treat-
ment presented here relies on the small binding energy of
the electron relative to its scattering energy to introduce
the near-the-energy-shell representation of the scattering
wave function and, further, on the neglect of factors that
introduce errors of the order of m/MJ and m/MT (with
M~, MT, and m the projectile, target nuclear, and elec-
tronic masses, respectively). In the rest of this article,
the definition of the normalization for the general scat-
tering state is given and then the normalization for the
distorted strong-potential Born scattering state is derived
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in the near-shell approximation. The normalization con-
stant is numerically evaluated, as is the constant for the
undistorted theory. Atomic units are used.

In a one-electron model, an asymmetric three-body col-
lision is treated where a projectile ion P with small nu-
clear charge Z~ is incident on a target consisting of an
electron e and a target ion T with large nuclear charge
ZT . Electron capture is assumed to occur. Either the
target or projectile may contain passive electrons; thus
the interactions between each pair of particles have the
modified Coulomb form. The potentials reduce asymp-
totically to pure Coulomb forms: VT, (rT) ZP/rT as-
rz ~ oo and V T(R) ZPZT /R as R ~ oo, where
the asymptotic charges are Z& and ZT . The coordi-
nates of the electron relative to the projectile and target
ions are denoted by r~ and rT, respectively, the projectile
coordinates relative to the target ion by R, the projectile-
electron system coordinates relative to the target ion by
R~, and the projectile coordinates relative the target by
RT.

For this three-body problem with relative motion of
wave vector K and internal state f, the exact final,
incoming-wave scattering state @K &

satisfies the normal-
ization condition

(4, I@ ) = b(K' —K), (1)
assuming that the final internal motion is asymptoti-
cally bound and the corresponding state normalized [8,9].
Generally, the loss of normalization of an approximate
scattering state can affect the transition amplitude; thus
the retention of normalization is desirable.

Within a distorted-wave &amework, the strong-
potential Born approximation to this exact state is de-
fined using the Green operator for the strong target po-
tential and the effective short-range final-state interac-
tion [3), viz. ,

I @K,t ) = [1+G~ (VT. —Ut)] I O'K, t ) (2)
where the strong-potential Born designation here and be-
low is not explicitly noted in order to keep the notation
manageable. In Eq. (2), Ut is the final-channel distor-
tion potential and GT(E) = (E —IIo —VT —irl) is the
target Green operator with Ho the free Hamiltonian for
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the heavy-particle and electronic motion and g ~ 0+ .
The total system energy is given by E = (1/2v f )K + s f,
where ef is the final bound-state energy. The veloc-
ity is defined in terms of the final-state wave vector as
v = K/vf, where the relative reduced mass and associ-
ated inass ratio are vf = MT(m+ Mp)/(m+ Mi + MT)
and P = MI /(m + Mi ).

The final asymptotic scattering state is given by

(R& r& I@K,f ) —= 6(») &K(Ri ) DK(Ri ) (3)

g (q, s) = e I'(1+ iv ) (q —2s) /8s, (8)

where v =Z /(2s+iq) ~ and I'(z) is the Gamma func-
tion.

Using the near-the-energy-shell approximation of Eq.
(7) in Eq. (6) and noting that since the distortion part of
the heavy-particle motion is sharply peaked about S = 0
the factor e' '~~ in the S integrand of Eq. (6) can be
neglected, the scattering wave function can be written in
the form [4]

with a plane-wave function normalized as PK(Ri )
(2~) s)'2 e'K'~q'. The distorted part of the heavy-
particle motion in Eq. (3) is given by

dk qt)f (k) p (q, s)

xg~ (») pg(RT). (9)

dY' [Uf(B) + ZT /R] I,

DK(R)—:(vR+ v R)' T

( OO

xexp I—
(V y

A new, integrated off-shell factor appears in this expres-
sion, deriving from an interplay of the pure Coulomb off-
shell factor and the distorted motion of the projectile,
which has the form

(4)
(q, s) = (27r) ~ (2q )

' T' e T' I'(1 —ivT ) Ae.

x dS DK(S) (As —v S)
with Y' = R v and vP = ZT, /v [10]. The distorting
potential, though arbitrary in principle, is defined here
by assuming that only the final electronic charge cloud
need be considered for the purpose of screening the target
nucleus, that is, it is defined by folding the final-channel
interaction with the final bound-state wave function

(10)

Equation (9) represents an electronic "wave packet" as
seen from the target frame that, during the capture pro-
cess, scatters off the target ion. The momentum distri-
bution of the packet, centered on v (the outgoing pro-
jectile's velocity), is determined by the final bound state
Py(k). This distribution is modified in both magnitude
and phase by the off-shell factor. The question is then
whether this affects the scattering-state normalization.

The normalization condition entails an integration over
both heavy-particle and electronic coordinates

&g(Rr) = f dr» leq(rr)l* ~r.(prr+ Rr)

( @K',f I @K,f ) drT dRT @K' f(rT RT)*

XklIK &(r, R ).

The state in Eq. (2) is used, specifically, in the amplitude
(@K ~ I&i, —U; I@K,), where VI, (rg ) = ZI /rr, U, —
is the initial-channel distortion potential and I@K,.) is

defined analogously to
I

CqK
&

). The initial wave vector
)

is Ki.
Taulbjerg, Barrachina, and Macek have reduced the

distorted strong-potential Born scattering state in coor-
dinate representation to the form [4]

@» ~(rr, lr) = (2rr)
' f dkqtg(k) dS DK(S)

0 ...(»)&w+s( T) ( )

for 2 q —e (( ~ with ~ —= 2 ~ +v k+ef . The Coulomb
off-shell factor is defined as

where q = k + v and Q = PK —k. The off-the-energy-
shell scattering wave function for the intermediate elec-
tronic state (in the strong potential) is @, (rT ) with off-

shell energy ss = —u + v . (k —S) + sf. The energy
defect is defined as Lc = ef 2 k

Considering that the relevant interaction region is cen-
tered around the target nucleus rz- & ZT and using
previous work on modified Coulomb potentials [11,12],
which extends the result of Chen and Chen [13] on pure
Coulomb scattering, the off-shell wave function can be
approximated to order (Z~/v)2 by a target continuum
eigenstate vP (rT) multiplied by an off-shell factor

(7)

Inserting Eq. (9) for the scattering state into Eq. (11),
one has

(@K,f I@K,f)

= (q») 'f dk'dkq)y(k')'q)y(k)q (q', r')*

~ (q )(@, i4', ) (&~ I&~).

where

(0, f I
0 ~) = Nf( )'b(K' —K), (13)

( 2 ) 1/2

Nx( ) =
I

dk &y(k) ~ (q, s)

The dependences of the normalization constant Ny(v)
on the final bound-state wave function and on the ve-
locity are noted. Because the bound-state wave function

Using normalization of the electronic continuum eigen-
states and plane-wave states to three-dimensional 6 func-
tions and performing the k' integration gives
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is normalized, the normalization of the distorted strong-
potential Born scattering state rests on whether the mod-
ulus of the oK-shell factor, when integrated over all mo-
mentum values, deviates from unity. This condition on
the scattering state is only a global one, consistent with
the normalization procedure itself. The loss of normal-
ization at the near-shell level of approximation is due
entirely to the norm of the oK-shell factor.

To evaluate the normalization constant Kf (v), an in-
tegral representation [14] and the change of variables
u = vx/b, s and W = R/u [5] are used in Eq. (10),

giving the form [4]

(q, s) = ——(2q'/v) (2v)'"~

x(vP —vT ) —z,uAr/e

0
OO

x exp
I

—' dW[uUf(uW)+ZT-/W] I.
v

Use of the hydrogenic momentum wave function Pz, (k) =
(2 Z )'/ /m. (k2+ Z )2 then leads to

23g5
Nf (v) = dk (k + Zz, ) (2q /v) (2v)'"T

OO OO

x duu'( T T )e *" '/" exp
I

— dW[uUf(uW) + Zp/W] I

0 V

This form is useful because the W integration can be done
using the exponential integral Ez(z) = f~ dz e "/t,
leaving a two-dimensional numerical integration [15].
Note that vP g riP, due to the k. v term in the for-
mer. The atomic potential used is

1 /' ZT —Zp&r.(rT) = ——
I ~ „/„+ZT

Ir i,a e-/& —1 +1

) i/2

~f (v)
I

dk 4f (k) g (q, s) (16)

where the screening d and scaling H parameters are op-
timized for each atom [16]. This potential is used in Eq.
(5) to obtain Uf, which appears in Eq. (4) for DK f [5].

For reference purposes, in the undistorted strong-
potential Born approximation [7], where DK is omitted
from Eq. (3) and Uf is omitted frozn Eq. (2), the nor-
malization constant is obtained by replacing p by g to
give, again in the near-shell approximation,

quadrature scheme [15] with great care taken in perform-
ing the barely convergent u integration. The calculated
values are obtained to four digit accuracy. Potential pa-
rameters used in the calculations are listed in Ref. [5].
Results are presented for protons on carbon, neon, and
argon over a range of intermediate velocities spanning
the available experimental data. It is seen that the de-
viation &om unity of the normalization for the distorted
theory is generally a few percent. For argon, the devi-
ation from unity is at most a few tenths of a percent.
For neon, the deviation varies &ozn slightly under 2% up
to about 5%%up. (The lowest velocity for which data exist
is v/vT = 0.5 a.u. ) For carbon, where the largest de-
viation (up to 7.5%%uo) exists, the smallest velocity shown
is 2 a.u. , very low in absolute terms for a perturbative
theory. (The lowest velocity for which data exist occurs
at v/vT = 0.61 a.u. , where the error is 7%.) Even the
largest velocity is only about 6.5 a.u. The constants for

Noting Eq. (8), it is seen that the rapidly varying parts of
g are canceled by (g )*. Thus, since Igf (k) I

zs highly
localized about k = 0, an accurate approximation to Eq.
(16) can be made as follows:

~f(v) = g (g s) k I
dk Idf(k)I

( ) i/2

1.3—

Ne

- lj2
2vrzT /(1 —e ' "~

) (17)

SP
DS

Ne---

wheze ~& — ZT /(v2 —2sf) / . For high velocities,
~f-j. + ~v& /2, showing that the normalization ap-
proaches unity. For lower velocities, however, the cor-
rection can become significant and the scattering state
needs to be corrected (renormalized).

The normalization constants for the distorted strong-
potential Born approximate scattering state Eq. (15)
and the similar constant for the undistorted state Eq.
(17), as functions of impact velocity, are plotted in Fig. 1.
Equation (15) is evaluated using an adaptive eight-panel

Ar
I !

0.4 1.2

FIG. 1. Normalization constants for the distorted
(DSPB, lower curves) and undistorted (SPB, upper curves)
strong-potential Born scattering states are shown versus pro-
jectile velocity scaled by the characteristic orbital velocity of
the target K shell.
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the distorted theory all approach unity as the velocity
increases. By contrast, the deviations from unity for the
undistorted theory are very large and they remain larger
than for the distorted theory at larger velocities, even in
the argon case. Thus one can conclude that the distorted
strong-potential Born electron-capture cross sections, dif-
ferential or integrated, need to be corrected minimally for
loss of normalization in the scattering state and then only
for very low velocities in the less asymmetric systems.

In summary, an explicit form for the normalization
constant of the distorted strong-potential Born approxi-
mation to the 6nal scattering state has been derived. Us-
ing a realistic atomic potential, calculations of the con-

stant versus projectile velocity for protons on carbon,
neon, and argon show that the scattering state, in a near-
shell approximation, experiences only a slight loss of nor-
malization. The largest error is seen in the carbon case,
which is attributable to the small velocities encountered.
Only for carbon would the correction of the wave function
(i.e., its renormalization) be noticeable on a plot.
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