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Multiconfiguration Hartree-Fock calculations of low-lying excited S states in lithium
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The hyperfine interaction constants, specific-mass-shift parameters, and total energies for the 3s 5 and
4s 5 states in lithium were calculated using the multiconfiguration Hartree-Fock method. The configuration
expansions were obtained with the active space method, where configuration state functions are generated by
excitations from the reference configuration to an active set of orbitals. The active set was increased in a
systematic way, allowing the convergence of the studied parameters to be monitored. The obtained nonrela-
tivistic energies are close to the lowest-upper-bound estimates from Hylleraas calculations. Whereas the con-
vergence rate of the hyperfine interaction constants with respect to the increasing basis in the Hylleraas
calculations degrades appreciably for higher states in the Rydberg series, no such effect could be seen for the
multiconfiguration Hartree-Fock calculations. The uncertainties of the calculated hyperfine interaction con-
stants are estimated to be less than three parts in a thousand for both of the studied states. The value for the
3s 5 state is in excellent agreement with results from relativistic many-body perturbation theory calculations,
but is well outside the error bars from a recent precision measurement using Stark spectroscopy.

PACS number(s): 31.15.—p

During the last few years a number of very accurate cal-
culations of hyperhne structures have been performed for
ground states or states lowest in their symmetry. For many of
these states extremely accurate experimental values from
atomic beam magnetic resonance (ABMR) measurements are
available, and a detailed comparison shows that in favorable
cases the theoretical and experimental values agree to within
a few parts in a thousand (see, for example, Ref. [1] and
references therein). By contrast, few calculations have been
performed for excited states. The reason for this is mainly
the lack of accurate experimental values available for a com-
parison. Recently, however, the hyperfine structure of the
3 s S state of Li was measured with an accuracy of less
than three parts in a thousand using Stark spectroscopy of
Rydberg states [2]. The obtained value of the hyperfine in-
teraction constant disagrees appreciably with theoretical val-
ues both from relativistic many-body perturbation theory
(RMBPT) [3] and accurate Hylleraas calculations [4].This is
notable, considering the great success of these calculations
for the lithium ground state, where the obtained values agree
with the accurate AMBR value to within less than two parts
in a thousand. In an effort to resolve this discrepancy and to
test the applicability of the multiconfiguration Hartree-Fock
(MCHF) method for Rydberg states, we performed large-
scale MCHF calculations of the hyperfine interaction con-
stants for the 3s S and 4s S states of Li. To check the
consistency with the Hylleraas calculations, we also evalu-
ated the specific-mass-shift parameters.

In the nonrelativistic MCHF approach [5] the wave func-
tion P for a state labeled yLS, where y represents the con-
hguration and any other quantum numbers required to

m

t/(rLS) = X c,~'(r, LS)
J=1

The CSFs are antisymmetrized linear combinations of prod-
ucts of spin orbitals

1

4.t, ,
= „P.I(r) I't,(B—tp) 4,(~) (2)

where the radial functions P„t(r) are represented by their
numerical values at a number of grid points. The radial func-
tions are required to be orthonormal within each I symmetry:

P„ t(r) P„t(r)dr = 8„„.
3o

(3)

In the multiconfiguration self-consistent field (MC-SCF) pro-
cedure both the radial functions and the expansion coeffi-
cients are determined so as to leave the energy functional

(yLSlHl yLS) (4)

stationary. For states that are the lowest of their symmetry
this is a minimization problem, and the approximate eigen-
value approaches the exact eigenvalue from above; i.e.,

specify the state, is expanded in terms of configuration state
functions (CSFs) with the same LS term:

*Permanent address: Instytut Fizyki, Uniwersytet Jagiellonski,
Reymonta 4, 30-059 Krakow, Poland. (rLslel rI.s), (5)
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TABLE I. The specific-mass-shift parameter, magnetic dipole interaction constant, total energy,
and number of CSFs (NCSF) for the 1 s 3s S state in Li as functions of the active set of orbitals.
The configuration expansions were generated by allowing all SDT excitation from the reference
configuration, with the restriction that there should be at least one electron with n~4 in all

configurations. The 2s orbital was taken from a HF calculation and was kept fixed in all subsequent
calculations. Also shown are the values from a CI calculation for the CAS generated by all SDT
excitations to 10s9p8d7f6g5h4i3k2llm. The Hylleraas values of Ref. [4] are included for a
comparison.

Active set 5 (a.u. ) A (MHz) F. (a.u.) NCSF

HF
3s2pld
4s3p2dl f
5s4p3d2flg
6s5p4d3f2glh
7s6p5d4f3g2hli
8s7p6d5f4g3h2i 1k
9s8p7d6f5g4h3i2k1 l

10s9p8d7f6g5h4i3k2l 1 m

CAS-CI
Hylleraas

0.000 000
0.318 090
0.294 036
0.293 336
0.292 820
0.292 570
0.292 405
0.292 300
0.292 231
0.292 233
0.292 120

67.149
68.159
92.435
90.778
93.176
92.454
93.133
92.911
93.089
93.088
92.7

—7.310 212
—7.336 406
—7.351 833
—7.353 291
—7.353 680
—7.353 845
—7.353 934
—7.353 985
—7.354 016
—7.354 016
—7.354 076

1

27
110
338
726

1 356
2 256
3 466
5 026

13 306

where F, „,is the exact nonrelativistic eigenvalue. For ex-
cited states, the Hylleraas-Undheim theorem [6] states that
the kth eigenvalue of the m && m Hamiltonian matrix

H„=(y,LS~Hi y, I.S)

is an upper bound to the exact energy of the kth-lowest ex-
cited state of the given angular symmetry and parity, and the
radial functions and the expansion coefficients are deter-
mined by minimizing this eigenvalue.

Once the radial functions and the expansion coefficients
have been determined, the specific-mass-shift parameter (in
a.u. )

3

S= yLS g V; V, yLS
i&j

and the hyperfine interaction constant A (in MHz)

A =95.410 67 yLS g 4 m 6(r;)o „yLS3I
J

(8)

can be evaluated by using standard Racah algebra techniques
[7,8]. The nuclear parameters I=

~ and

p, l = 3.256 462 53p,& needed for the evaluation of the hyper-
fine interaction constant were taken from Raghavan [9].

The configuration expansions for the MCHF calculations
were obtained with the active space method [10,11], where
the CSFs of the S symmetry were generated by allowing all
single (S), double (D), and triple (T) excitations from the
Hartree-Fock reference configuration to the active set of or-
bitals, with the restriction that in all the generated CSFs there
should be at least one orbital with principal quantum number
less than or equal to 4. To study the convergence of the
calculated hyperfine interaction constants and specific-mass-
shift parameters, the active sets of orbitals were increased in
a systematic way, leading to consecutively larger configura-
tion expansions. The notation of the active sets of

orbitals follows the conventions used in quantum chemistry,
where, for example, the set 3s2p1d contains three s orbitals,
two p orbitals, and one d orbital. Except for the reference
configuration, principal quantum numbers have no signifi-
cance other than defining the order in which the orbitals are
introduced.

During the calculations for the 3s S state, it was ob-
served that the MC-SCF procedure was unstable when all the
orbitals in the active set were optimized simultaneously. To
avoid this, the 2s orbital was taken as the 1s 2s S Hartree-
Fock orbital and was kept fixed, whereas all the other orbit-
als were optimized simultaneously. Similar stability prob-
lems were encountered for the 4s S state. Here the 2s and
3s orbitals were taken, respectively, as the 1s 2s S and
ls 3s S Hartree-Fock (HF) orbitals and were kept fixed,
whereas all the other orbitals were optimized simultaneously.
For the calculations with a large enough active set, the re-
striction on the 2s and 3s orbitals could be relaxed. Tests
showed, however, that this relaxation did not change the
value of the total energy nor that of the calculated param-
eters, Finally, to see the importance of the neglected triple
excitations, configuration-interaction (CI) calculations were
performed for complete active space (CAS) expansions ob-
tained by allowing all SDT excitations from the reference
configurations to the largest active sets of orbitals from the
MCHF calculations.

In Tables I and II the specific-mass-shift parameters, hy-
perfine interaction constants, and total energies for the
3s S and 4s S states are shown as functions of the increas-
ing active sets. As can be seen from Table I, the specific-
mass-shift parameter for the 3s S state shows a very
smooth monotonic convergence toward the very well-
converged Hylleraas value. The convergence for the hyper-
fine interaction constant is oscillatory. The amplitude of the
oscillations is, however, rapidly decreasing and the nonrela-
tivistic limit should be close to A(3s St~2) =93.089 MHz,
with an estimated uncertainty of less than two parts in a
thousand.
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TABLE II. The specific-mass-shift parameter, magnetic dipole interaction constant, total energy,
and number of CSFs (NCSF) for the ls 4s 5 state in Li as functions of the active set of orbitals.
The configuration expansions were generated by allowing all SDT excitation from the reference
configuration with the restriction that there should be at least one electron with n~4 in all con-
figurations. The 2s and 3s orbitals were taken from HF calculations and were kept fixed in all

subsequent calculations. Also shown are the values from CI calculation for the CAS generated by
all SDT excitations to 10s9p8d7f6g5h4i3k2l 1m The. Hylleraas values of Ref. [4] are included
for a comparison.

Active set 5 (a.u. ) A (MHz) E (a.u.) NCSF

HF
4s3p2d1 f
5s4p3d2flg
6s5p4d3f2g lb
7s6p5d4f3g2hli
8s7p6d5 f4g 3h2i 1 k

9s8p7d6f5g4h3i2kll
10s9p 8d7 f6g5 h4i3k2l 1 m

CAS-CI
Hylleraas

0.000 000
0.315 075
0.292 860
0.291 155
0.290 692
0.290 497
0.290 390
0.290 321
0.290 321
0.290 383

25.388
26.039
35.584
34.252
35.148
34.856
35.118
35.008
35.013
35

—7.274 890
—7.302 400
—7.316 958
—7.318 031
—7.318 271
—7.318 367
—7.318 419
—7.318 451
—7.318 451
—7.318 491

1

110
338
726

1 356
2 256
3 466
5 026

13 306

Whereas the convergence properties of the Hylleraas cal-
culation for the 4s S state degrade considerably compared
to the 3s S state [4], the convergence trends for the MCHF
calculation, as shown in Table II, remain almost the same.
For this case the MCHF values are believed to be more ac-
curate than the Hylleraas values. The amplitudes of the hy-
perfine oscillations are slightly larger than for the 3s S
state, and the final value A(4s St&2) =35.008 MHz has an
estimated uncertainty of about three parts in a thousand. In
Tables I and II also the values from the CAS-CI calculations
are shown. A comparison with the corresponding MCHF val-
ues shows that the effects of the neglected triple excitations
in the latter expansions are indeed small.

Before the calculated hyperfine interaction constants are
compared with the experimental values, they should be cor-
rected for finite nuclear mass and relativistic effects. The
finite nuclear mass M7L; leads to a scaling of the Schrodinger
equation that changes the hyperfine interaction constants
with a factor (1+m, /M7L;) =0.999765. The relativistic
effects were estimated by multiplying the final nonrelativistic
values of the hyperfine interaction constants with the ratio
between the Dirac-Fock (DF) and Hartree-Fock values. The
hyperfine interaction constant for the 2s S»2 ground state
has previously [12] been obtained from MCHF calculations

similar to the ones presented here, and in Table III the
MCHF values for the 2s S»2, 3s S»2, and 4s S»2 states
are compared with the experimental values and with values
obtained from RMBPT [3]and Hylleraas [4,13] calculations.
As can be seen from the table, all the theoretical values agree
to within less than two parts in a thousand with the accurate
AMBR value for the 2s S»2 ground state. For the 3s S»2
state the calculated values all agree perfectly but are outside
the error bars of experimental value from Stark spectroscopy
[2].For the 4s St&2 state the Hylleraas value is not properly
converged and cannot be given with more than two signifi-
cant digits. The MCHF value, however, should be accurate to
within less than three parts in a thousand and is well within
the error bars of the experimental value. As for the difference
between the theoretical and experimental values for the
3s S»2 state, we cannot, considering the consistency of the
theoretical values and the excellent agreement with the accu-
rate experimental value for ground state, avoid the conclu-
sion that the uncertainty of the Stark spectroscopy value may
be larger than expected. Further experimental investigations
are needed to resolve this discrepancy.

To summarize, we have performed MCHF calculations
for the 3s S and 4s S states in lithium. Contrary to the
Hylleraas method, the convergence properties of the calcu-
lated specific-mass-shift parameters and the hyperfine inter-

TABLE III. Theoretical and experimental values of the hyperfiine interaction constant for the
three lowest S states in Li.

Method

HF
DF
MCHF '
Hylleraas

RMBPT
Experiment

A(2s St)2)

289.39
289.55
401.79
401.70
402.47
401.752 0433(5)

A(3s St(2)

67.149
67.201
93.139
92.7
93.24
94.68(22)

A (4s S )g2)

25.388
25.407
35.026
35

36.4(4.0)

Reference

[12], this work

[12], this work

[12], this work

[13,4]
[3]

[14,2, 15]

'Corrected for relativistic and finite nuclear mass effects.
Corrected for finite nuclear mass effects.
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action constants do not degrade for the higher Rydberg
states, and it is indeed possible to calculate the hyperfine
structure constants with an estimated inaccuracy of less than
three parts in a thousand.
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