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For a two-parameter class of local potentials which support a bound state with energy £, embedded in the
continuous spectrum, we determine the conditions that the potential has m wells with barriers of height greater
than E|. Although E ;> V(%) =0, such wells act as traps for a classical particle, with classical turning points
wherever a barrier height reaches the energy of the particle. However, the parameters of the potential may
easily be chosen so that there are no classical turning points, even though the potential supports a bound

quantum state.

PACS number(s): 03.65.Ge

Bound quantum states with energies embedded in the con-
tinuous part of the energy spectrum were first proposed by
von Neumann and Wigner [1], and recently have once more
become a subject of study [2,3]. We refer to Ref. [2] for
details and a fuller bibliography. A local potential in a non-
relativistic Schrodinger equation which possesses such con-
tinuum bound states will always have a long range oscillat-
ing tail. We denote the height of the mth peak of the potential
(counting from the origin) by V,,, where V,, . <V, because
the amplitude of the oscillations is slowly decreasing. In the
corresponding classical problem with E,<V,,, the particle
can be trapped in any of m wells with classical turning
points, even though the particle energy is greater than is
required for a free particle at a great distance from the force
center. However, a quantum bound state with £;>V, has no
classical analog in particle dynamics. Nevertheless, such a
state with no classical turning points has been observed in an
experiment by Capasso et al. [4]. Weber [5] has developed a
simple solvable model inspired by the Capasso experiment,
but this model is not of the von Neumann—Wigner type. It is
interesting, therefore, to determine when classical turning
points exist for von Neumann—Wigner continuum bound
states. We answer this question here for a subclass of von
Neumann—Wigner potentials.

As in Ref. [2], we choose units such that 2m=1 and
=1, and we work with the radial Schrodinger equation for
a particle with zero angular momentum in the form

2

d
—6—17+V(r)—E Y(r,E)=0. 1)

We choose the energy of the continuum bound state to be
E, :k%, and its wave function to be
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W(r.Ey) =2k f(s)sink,r, )

where s(r) is the nondecreasing function of r defined by
s(r)=4k1j d€ sin®kE=2k r—sin2k;r, (3)
0

and f(s) is a square integrable function of s with no zeros in
the range 0 <s<<oc. The von Neumann—Wigner potential as-
sociated with the continuum bound state wave function of
Eq. (2) is

16k,
V(r)= —

f(s) . df(s)
Sf(s ’

s +sin“k;r 252
' (4)

We further restrict attention to von Neumann—Wigner poten-
tials with

sinkr coskr

fls)=(N+s)7", ®)

where N and n are parameters subject only to the constraints
A>0 and n>1/2. For convenience, we write

x=2k,r (6)
and
z=N+s=\+x—sinx. @)

With this abbreviated notation and with Egs. (3) and (5), the
potential (in units of E;) becomes

1—cosx\? sinx
(n+l)(f) —2—1. (8)

U(r)=V(r)/E;=4n .
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The potential of Eq. (8) oscillates with an amplitude
which decreases as r (or, equivalently, z) increases. For a
classical particle with energy E;, several of the peaks of
V(r) may be greater than E,, thus producing a number of
wells in which a classical particle could be trapped. We shall
refer to such wells as “classical traps.” Since the amplitude
of the potential’s oscillations decreases with increasing r,
there can be only a finite number of such traps, the exact
number being determined by the values of » and N. From
Eq. (8), it is clear that increasing N\ causes a decrease in the
amplitude of the potential’s oscillations, and therefore a de-
crease in the number of classical traps. For a fixed value of
n, there will be a maximum possible number m,,(n) of
classical traps, whatever the value of . For any n, if \ is
sufficiently large there may be no classical traps at all, even
though the potential supports a bound quantum state with
energy E;. In what follows, we shall determine critical val-
ues A.(n,m) of N such that for \ <A .(n,m) the potential has
at least m wells with classical turning points for a particle of
energy E;, while for A>\_(n,m) the potential has at most
m— 1 such wells. In particular, if A >\ .(#,1) then the poten-
tial supports a bound quantum state with no classical turning
points whatsoever. We shall also show how to determine
Mnax(n), the maximum number of possible classical traps.

The critical value A .(n,m) will be such that the height of
the mth maximum of V(r) is exactly equal to E;. Thus we
need to find simultaneous solutions of the two equations

1—cosx\?  sinx
4n|(n+1)| ———| —2—|= 9)
b4 b4
and

dU—Zk dU—O 10
@ R To (10)

Equation (9) is equivalent to
4n(n+1)(1—cosx)?—8nzsinx—z2=0, (11)

while Eq. (10) is equivalent to

(n+1)(1—cosx)?—(n+2)z(1—cosx)sinx+ zZcosx=0.
(12)

We eliminate z> between these two equations and then solve
for z to obtain

_ (n+1)(1—cosx)*[1+(4n—1)cosx]
° [(Tn—2)cosx + (n+2)]sinx

13)

We next substitute this into Eq. (11) and simplify the result.
After some work, this yields

(3n—1)(2n—1)%cos®>x+2(16n>—4n>—3n+ 1)cosx
+(4n*+8n%>—n—1)=0. (14)

The only solution of this quadratic equation for cosx consis-
tent with |cosx|<1 is
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cosx=y(n), (15)

where

y(n)=[—(16n>—4n2=3n+1)
+4n2\13n*—10n+2]/(3n—1)(2n—1)? (16)

is an increasing function of n for 1/2<n<oo, with
lim,_, ,py(n)=—1 and  lim,_,y(n)=(13—4)/3
=-0.1315. From Eq. (15), the desired maximum of V(r)
occurs at r=r_.=x./2k;, where x.= *arccosy(n)+2mmr,
with O=<<arccosy(n)<m and with m a non-negative integer
which must be at least 1 if the lower sign is chosen.

We now return to Eq. (13). With cosx, given by Eq. (16),
we find that z_sinx,<0. However, z.>0, so that sinx,<0 and
therefore

x.(n)=—arccosy(n)+2mm (m=1). 17)

The function x.(n) increases monotonically from n=1/2 to
n=o0, with bounds

(2m—1)m<x.<2mm—arccos(— %+ % J13) (18a)

=(2m—0.5420) 7. (18b)

From Egs. (13) and (16), the critical value \.(n,m) of \ is

N(n,m)=z,—x.+sinx,, (19a)
=z, —V1—=[v(n)]*+arccosy(n)—2mar, (19b)

where

= (DI = y(m)PL1+(@n— D y(n)] 20)
C LTn=2) () + (n+2) VT = [y(n) P

is obtained by substituting x, from Eq. (17) into Eq. (13).
The value of m is related to the number of wells in V(r)
which could trap a classical particle by the existence of clas-
sical turning points. Thus for A .(n,m+1)<A<A_.(n,m) the
potential possesses m classical traps for a particle with en-
ergy E,. Since A, must be positive, there will be an upper
limit m ,,,(n) to the possible values of m, given by

1
Miman(n) =Int| 5={z.(n) = VT=[y(m) I’ + arccos y(n)} |,
21
where Int( ) indicates the integer part of the argument. If
A>A.(n,1) then the potential has no classical turning points
for a classical particle with energy equal to the energy E; of

the quantum bound state supported by the potential.
For large n,

Ne(n,m)=4[6n(\13+5)—(13—1)]1(2V13-5)'2

+arccos[ (V13—4)]-2mm+0(n~"), (22a)
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FIG. 1. The discrepancy between the exact N .(n,m)/27 and the
linear approximation N.(n,m)/27, namely, A(n)=[\ (n,m)
—N(n,m)}/27, shown as a function of n for 1<n=<350.

=8.53084n+ 1272 17-2mm+0(rn™').  (22b)

Even for n=1, the critical value \ .(n,m) is reasonably well
approximated by

)\C(n,m)wxc(n,m)=27r(0.202 47+ 1.3577Tn—m). (23)
It follows that
M pax(n) ~Int(0.202 47+ 1.3577n). (24)

Figure 1 shows A(n)E[)\c(n,m)—Xc(n,m)]/ZTr as a func-
tion of n for 1 <n<50. It is clear that Eq. (24) will yield an
erroneous result only rarely, namely, when 0.202 47
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FIG. 2. Potentials U(r)=V(r)/E, plotted against x=2k,r for
n=1 and three values of \ including the critical value A\ .(1,1). For
n=1, Table I shows that m,(1)=1, so that a potential with n=1
can support at most one classical trap. All three of the illustrated
potentials, including that for N =20, support a continuum bound
state with energy E; .
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FIG. 3. Potentials U(r)=V(r)/E, plotted against x=2k,r for
n=2.5, with A\=\_(n,m) and with 1 <m=<m,(n). The height of
the mth peak of the potential is exactly equal to the energy E, of the
continuum bound state. Increasing N\ beyond A\ .(n,m) decreases the
magnitude of the potential, so that there are fewer classical traps. In
particular, if A\>\_(n,1) then the potential has no wells capable of
trapping a classical particle with the energy of the bound quantum
state.

+1.3577n is very close to an integer. As n approaches its
lower limit 0.5, the approximation of Eq. (23) is less satis-
factory. Thus

lim N .(n,1)=23—7=0.3225>0 (25)
n—1/2

so that m,,(n)=1 for all n>0.5, whereas Eq. (24) would
predict m ., (n)=0 for n<0.5874. In Table I we present the
critical values A.(n,m) for n=1.0, 1.5, 2.0, 2.5, and 3.0,
computed from Eq. (19b), and we illustrate the potentials
with several values of A for n=1 in Fig. 2 and with
A=A (n,m) for n=2.5 and m=1, 2, and 3 in Fig. 3.

We can understand the results of this investigation as fol-
lows. From Eq. (24) we see that the maximum number of
classical traps for a particle of energy E; increases with
increasing n. This is due to the increasing strength
of the potential defined by Eq. (8). Clearly the magnitude of
n is the the most important factor controlling the

TABLE 1. Critical values \.(n,m) of the potential parameter A
for several values of n, with 1<m<mp,(n). If \<\.(n,m) then
the potential has at least m classical turning points for a particle
with energy E, while if N>\ (n,m) then the potential has fewer
than m classical turning points. If A >\ .(n,1) then the potential has
no classical turning points at all for a particle having the energy
E, of the continuum bound state.

n m=1 m=2 m=3 m=4
1.0 3.889

1.5 8.008 1.724

2.0 12.210 5.927

2.5 16.440 10.157 3.874

3.0 20.663 14.400 8.117 1.833
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strength of the potential, although this is also partially con-
trolled by N. The height V; of the first maximum may be
increased by decreasing A, but there is an n-dependent
upper bound given by the limit as A—0. For example, if
n=1 and A=0 then the first maximum of V(r) occurs
when 2k,;r=x=2.836 and has height V,=7.775E,. The
maximum number m ., (n) of classical traps for a fixed value
of n will be the number of traps in the potential in the limit
as A—0. Since the strength of the potential increases as n
increases, it is no surprise that m ., (n) also increases with
increasing n. Increasing N reduces the strength of the poten-
tial, so that the number of traps is decreased by 1 each time
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a maximum of V(r) drops below E,. The critical value
N.(n,m) is the value of N at which the mth maximum of
V(r) just reaches E;, so that one more classical trap
is about to disappear. Since N has no upper bound, the
strength of the potential can be made arbitrarily small by
increasing this parameter. Hence the critical value \.(#n,1),
at which the last classical trap in V(r) is about to vanish,
must be finite. For A>\_.(n,1) the potential has no classical
traps at all for a particle of energy E;; nevertheless the
potential, even with N>\ _(n,1), has been constructed in
such a way that it supports a bound quantum state with this
energy.
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