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Polarization instability in lasers. II: Influence of the pump polarization on the dynamics
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In a previous paper [Phys. Rev. A 52, 4229 (1995)] a vectorial model has been derived to describe the
dynamics of an optical fiber laser output. In this semiclassical theory, the time-dependent behaviors of the two
field polarizations are deduced through the interaction between the light and the active atoms which supposes
the presence of a vectorial atomic polarization. This paper is devoted to the analysis of the dynamics presented

by such a model using the bifurcation theory. An analytical study investigates the parameter space as far as
possible and numerical simulations show the presence of various types of behaviors displayed by the two
output field polarizations in the domains where the steady states have lost their stability. The influence of the

pump polarization is emphasized. The results are in accordance with the experimental observations.

PACS number(s): 42.55.Wd, 42.65.Vh.

INTRODUCTION

In the preceding paper [I] a vectorial model for the OFL
was obtained following some assumptions and simplifica-
tions such as isotropic orientation of the induced dipole mo-
ments in the active atoms (the Nd + dopants) [2], different
losses of the output-field polarizations, adiabatic elimination
of the atomic polarization (related to the level lifetimes),
presence of a material grating due to the propagation of two
different longitudinal frequencies which is mathematically
expressed by a spatial expansion of the material variables,
homogeneous broadening, etc. The way to get the model is
similar to the one used to treat the bidirectional ring laser [3]
and the semiconductor bimode laser [4]: the particular form
of the oscillation of two modes along the fiber cavity is in-
tegrated following a longitudinal Fourier series whose first
order leads to a material "grating" via population inversion
(longitudinal hole burning). The interaction of the modes
with this grating may induce, under some parametric condi-
tions, constructive interferences which are responsible for the
oscillation of the disadvantaged mode (or direction). How-
ever, a characteristic of the bidirectional model is the insta-
bility of the bimode solution for realistic parametric situa-
tions corresponding to class-B lasers: the system oscillates
stably in one or the other direction. Regular and irregular
pulsations between the two modes alternatively occur de-
pending on the space parameter. In contrast, in the semicon-
ductor case, the bimode solution may oscillate stably but for
drastic conditions such as the following:

(i) Very weak regions of reasonable pump parameters or
very large and unrealistic pumpings,

(ii) Very large detunings due to the diffusion of the charge
carriers represented by the enhancement parameter (the so-
called Henry parameter) [5] which produces the large gain
profile of semiconductor responses, and

(iii) Very different losses between the two oscillating
modes (one of them is strongly disadvantaged).

In the present work we shall give a complementary vec-
torial model where the two transverse polarizations of the
output laser are simultaneously oscillating for reasonable pa-
rameter values.

A second interest of this theoretical work on the optical
fiber laser (OFL) follows the experimental observations
which are related to the competition between the transverse
polarizations of the field [6].This dynamical behavior is sup-

posed due to a population effect as is known from other
nonlinear optical systems. Being interested by the descrip-
tion of such behaviors presented by the two field polariza-
tions and also by the influence of the pump polarization, we
have derived a model including a vectorial atomic polariza-
tion which is a statistical sum of vectorial dipole moments
induced during the interaction between the field and the ac-
tive medium. In this way, we have added a transverse distri-
bution of the moments to the longitudinal complexity of the
hole-burning description; this distribution is chosen isotropic
and produces a partition of the field-matter nonlinearities be-
tween the two transverse polarizations. From the mathemati-
cal point of view, this leads to one more "population-
inversion" variable which directly measures the relative
contribution to the two output transverse polarizations of (I)
the relative pump and (2) the nonlinear field-medium inter-
action.

Finally, this model can provide a general understanding of
the average infiuence of the transverse effects (due to the
spatial orientation of both the dipole moments and the pump)
on the dynamics presented by the laser.

The paper is organized as follows. We first give the main
outlines of the model and its steady states, defining the vari-
ables and the parameters. The linear stability of the steady
states is explored to a large extent in the second section
leading to the conclusions that (I) whatever is the pump, the
laser always transfers its stability from a monomode oscilla-
tion to a bimode (and bipolarized) oscillation and (2) the
detunings and pump-orientation effects derive from direct
competitive processes. Finally, the third section reports on
the numerical simulations, confirms the analytical calcula-
tions of the second section, and focuses on the circular-pump
case. When the parameter space is inaccessible to theoretical
study, numerical investigations are also performed: beyond
the numerous behaviors displayed by the system, the effect
of the pump polarization on these complex oscillations is
emphasized.
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I. THE MODEL

The physical arguments for the derivation of the model
have been fully developed in the preceding paper [1].This
formulation deals with five ordinary differential equations.
The model starts from the Bloch-Maxwell formulation and a
double expansion on the transverse angle (0) and longitudi-
nal coordinate (z) is performed leading to a set of equations
governing five variables which are as follows:

(i) Two real population inversions: the usual occupation
difference of the lasing levels D(0,0, r) averaged on the

fiber length (and also the full zero-order component) and the
relative contribution D(1,0,r) to the two transverse direc-
tions (and the first-order component in 0 and the zero-order
component in z); and

(ii) Three complex variables: the two transverse polariza-
tions E, ~(r) of the total field and the longitudinal grating
inside the active medium D(1,1,r) corresponding also to the
first component in each Fourier series.

The following expansion orders are neglected in a correct
way. The Maxwell-Bloch equations give the set

(8,+1)E (r) =d,(E,(r)[D(0,0, 7)+D(1,0, r)]+E (r)D*(1,l, r)),

(8,+K—i 8)E (r') =ad~(E~(r)[D(0, 0, r) —D(1,0, r)]+E (r)D(1, l, r)),

(8,+ y)D(0, 0, r) =+ yP —yftn ~E,(r)
~

[D(0,0, r)+D(1,0, r)]+ n~~E~(r)~ [D(0,0, r) —D(1,0, r)])

(l. la)

(1.lb)

——(E,( r)E*(r) D ( 1, 1, r) d, + E ( r)E,*(r) D * ( 1, 1,r) d,* ), (1.2a)

(8,+ y)D(1,0, r) =+ yP' —y(n, [E,(r)] [D(1,0, r)+-,'D(0, 0, r)]+ n~[E~(r)( [D(1,0, r) —
—,'D(0, 0, r)]), (1.2b)

(8,+ y)D(1, l, r) = —yD(1, l, r)(n [E (r)J + n~[E~(r)[ )——E~(r)E,*(r)D(0,0, r)d,* .2 y
(1.2c)

The parameters u, ~ (and ci, = 5 ~n ) are Lorentzian ex-
pressions in terms of the frequency mismatch 6 between
the longitudinal empty cavity modes (p, ~) and the Bohr
frequency (cu) of the active atoms, normalized to the half-
width of the homogeneously broadened emission line. They
are given by Eqs. (1.13) of Ref. [1].For an easier under-
standing of what will follow, we recall that all parameters are
normalized to the X-direction losses (l~ ) including the time
scale r, K, the ratio between the two field polarization losses
(l~~/~ ), y, the relaxation rate of the population inversions
(2/l~, r&) related to the lasing level (see Fig. 3 of Ref. [1]),
and 8, the direct detuning (v, —v~/lr ) between the two
empty-cavity frequencies. For notational simplicity, we have
also defined d, ~=n ~+in, ~ and d ~=(n +n )
+ i(n —ny)

We note that all the variables and parameters are dimen-
sionless. The normalized complex fields E and Ey are ex-
pressed in a rotating reference frame at the pulsation p /K
following

8;(r) = gT, /J, l2h yIr E,(r),

which gives us the D(ij, r) variables. The script letters rep-
resent the macroscopic variables.

The parameters P and P' are, respectively, the pumping
rate averaged along the cavity length and the relative contri-
bution to the two directions of the laser emission. (See Ap-
pendix A of Ref. [1].)

The steady states of the sets (1.1) and (1.2) can be sum-
marized as follows.

(i) The trivial solution which is the off-operating one
where all the variable values are zero except Dpp which is
P and D ip which is P'.

(ii) The strong mode (SM) solution which corresponds to
the X-polarization oscillation in our study since K is taken
larger than unity.

(iii) The weak mode (WM) solution or the Y-polarization
oscillation (for the case IC) 1).

(iv) Finally, the bimode solution characterized by the si-
multaneous oscillation of the two polarizations; this last so-
lution is obtained implicitly but details for small y are pre-
sented in Appendix B of Ref. [1].

Modified variables and parameters being defined for no-
tational convenience as

8' (r) = /T, p, l2h ya. E~(r)
p =aP, p =uP, I =a&, Iy A Xy,

Vy . &x
Xexp —i —~ exp i —7

Kx Kx
(1.3)

~p=a Dop dip= a Dpi, dii= cv D

(1 4)

The dimensionless population inversion D, defined as
W(8, z, r) =[p T, /J, /8hsox ] 'D(0, z, r), is expanded in
Fourier series at order i (transversely) and j (longitudinally)

the intensities related to the monomode solutions are given
by



52 POLARIZATION INSTABILITY IN LASERS. II . . ~
4245

150- (o)
0

+ —,
' +c, I„=o

with

tti

E
U

U

100-

e solution

C=(p' —4)'+ 8(p'+ p' —1)

and the useful relation

dp+ dip= 1

50—

strong

for the strong mode, and

I„=o, I„=,' [(p'-4—)+gc']

0
0.20

I

0.25

detuning

I

0.30

where

and

C' = (P 4) + —8(P —P' —1)

160 dp d ip= (ICn, la ctY) = Q (1.6)

L

E
U'A
U
CL

120—

80—

40—

bimode solutio

strong mode

for the weak mode.
Before carrying out the linear stability analysis of the

monomode steady states, we recall the following exclusive
property deduced from the bifurcation theory: the two mono-
mode solutions (SM or WM) never oscillate simultaneously
(to produce a bipolarizedlike oscillation). Even if the system
is in a multistable situation characterized by the existence
and stability of two steady states, when the laser oscillates it
chooses one steady state (and only one) depending on the
initial conditions (the attraction basin). Thus, when two po-
larizations are simultaneously present in the laser output, the
oscillation is originated necessarily by the bimode solution.
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A. Stability of the "off-operating" laser solution

The general method to analyze the stability of a steady

solution X, consists in perturbing the system such that

X(r) =X,+ eX'(r)e ' where the vector X(r) stands for the
set of five variables [E,(r),E~(r),Don(r), D,o(r), D»(r)]
and where a((1. The calculations are performed to the first
order in e. When the system goes back to its steady value
(Re)t(0), the stationary state is said to be asymptotically
stable. Otherwise (Re)i.)0) the state is unstable. The imagi-
nary part of X is a sign of an oscillatory transient response to
the perturbation. The k are the Lyapunov coefficients for the
considered steady branch. In our case, the X values are given
by a characteristic equation of the eighth order (one for each
real variable or variety).

Using the previous definitions, the following roots for the
characteristic equation are obtained for the trivial solution
stability:

purn p pa ra rn eter

FIG. 1. Bifurcation diagram vs the pump p and (a) 5, or (b)
, for p' =p /2, a = 1, K= 1, y= 0.001, and 8'=0.001, and (c)

related stable solutions for 6 =0.2 and 6~=0.1.

X45= —1+p +p ~id (p +p ),

X67= —K+ KQ '(p —p') iA~(p p')+i 8—

(2.1a)

(2.1b)

(2.1c)
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X~ —0. (2.1d)

These roots express the existence of a marginal variety (the
eighth one), three stable varieties (1, 2, and 3) corresponding
to the inversion variables, and four directions that may lead
to a destabilization since the real par"s of P«567 cross the

imaginary axis and take positive values for, respectively,

p +I7') 1 and (I7 —I7') )Q. The steady state loses its sta-
bility at exactly the threshold of either the strong or the weak
modes: then the zero solution becomes unstable above this
critical point and the system oscillates following the in-
volved monomode solution. Depending on whether the lower
critical point corresponds to the SM or the %'M threshold
(with respect to a varying parameter), the system displays the
associated monomode solution and the higher critical point
becomes invalid: the zero solution being unstable in the sur-
roundings of the higher bifurcation point, the validity of the
linear stability analysis is not ensured above the first critical
point. Moreover, no restabilization of the off-oscillating so-
lution for high pumpings appears since all the roots have
positive real parts: the results of this linear stability analysis
are definitively valid until the first bifurcation point.

At the critical points, the imaginary parts of the Lyapunov
coefficients are, respectively, ~ i 5, and ~ i(Kb ~

—6'),
which correspond to the frequencies of the X and Y mono-
mode field polarizations. The transient behavior below the
first laser threshold is already oscillatory: the zero solution
being stable, the perturbed system goes back to its steady
state, oscillating around it.

Before analyzing the stability of the monomode state, we
point out the following remark.

The bimode solution can never start from the off-lasing
state since, first, following the asymptotic approach of Ap-
pendix B of Ref. [1], its existence threshold is higher than
the monomode oscillation threshold, and, second, we know
from the above analysis that the existence domain of the
bimode solution does not correspond to the bifurcation (and
destabilization) limits of the zero solution since it is higher
valued.

At the threshold of the lasing oscillation, the preceding
linear stability analysis reports on one monomode steady
state. The question is now related to the stability of this
lasing state.

B. Strong-mode stability

The stability of the strong branch is governed by an
8 X 8 matrix which separates into two 4 X 4 matrices. This
represents couplings between the X polarization of the field
and the population variables D(0,0) and D(1,0) on the one
hand and on the other hand the Y polarization of the field and
the complex component of the population inversion repre-
senting the grating D(1, 1) [3].This separation confirms the
phase instability that may occur via the interferences of the Y

polarization and the grating D(1,1) while the role of D(1,0)
is to reinforce the SM steady solution. One obtains two char-
acteristic equations: a real polynomial of the fourth order and
a complex polynomial of the second order.

The quartic is

where

)((k +a2k +aiX.+ao) =0, (2.2)

=[»( 1 +I..)], (2.2a)

I
a, = y' (1+I„)'——+ @[I.,(4 —I7'+I.,)], (2.2b)

ao = y I„[4—p +2I„]. (2.2c)

X4= 0. (2.3c)

For pumping values above the SM threshold, the real parts at
lowest order are negative and no instability can occur.

The second matrix provides a complex characteristic
equation

+a&X+a0=0, (2.4)

a', = 7(1+I„)+K i(8+6,)—
—KQ '(1 —ib, )( —1+2p —2I„),

ao= 7 (1+I„)[K—i(6+ 5,) —KQ '(1 —i 6 )

(2.4a)

x ( —1+2I7' —2I„)]+—KQ
—'I„(I7'—I„)

x [2+5,—A, Ay i (6,+ Ay)]. —(2.4b)

A direct study of this second-order equation is not easy to
perform. However, and for the small parameter y, the y"
expansion leads to the following roots:

All the a; are positive above the SM threshold and following
Abramowitz and Stegun [7] the roots of the cubic always
have negative real parts which exclude any instability whose
source could be the set of variables (E, , D(0, 0),D(1,0)).
One can be convinced of the validity of this conclusion using
a small-7 expansion of )i. (in powers of y" ) since y is of the
order of 10 [1,6]. The roots are thus given by

[I ' 4+ D~]-'
P 1= —1—,y+0(7 ' ), (2.3a)

8 I '+P' —1

) ~,s=[—F42(I '+I ' —l)]7'"
3I '+ 4I ' P' —4+ ~C

0 i
1

7'+0(7""), (2 3b)
P +P

(2.5a)

6=~S.

)(7 s K[—1 —Q '( 1 —2p +2I„)~ i[(8+6,)+KQ '3 ~(1 —2Ii + 2I,)]+0(y). (2.5b)
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The real part of the roots (X7 s) presents a bifurcation point
for Re(k7s) =0. When the condition p )Q —3 is realized,
the SM is stable for the inequality Q —6Q+ 1

~2p (Q —3)+8p'. Above this limit, the SM mode be-
comes unstable: one can note from Eq. (84b) of Ref. [1]that
the existence domain of the Y polarization of the bimode
solution starts exactly at this critical point. Moreover, at the
bifurcation point, the imaginary part of X78 is 6+ 5 laky@

which is just the expression of the D» frequency in the
bimode solution. One can then conclude that with this bifur-
cation point (1) we are dealing with a steady bifurcation
which transfers the stability from the SM solution to the
bimode oscillation and (2) the (k7s) Lyapunov coefficients
are related to the two-dimensional D» variety.

No more evident bifurcation appears from Eqs. (2.5) and
the analytic solution of Re(X5 6) =0 is not easy to obtain. To
get more information on the stability of this mode, asymp-
totic calculations are needed. They are presented in Appen-
dix A and concern the near-threshold (Appendix A 1) and
large-pumpings (Appendix A 2) conditions. We can summa-
rize the results as follows.

No instability is induced by the roots kz 6. For realistic
values of the parameters, the real part is negative in the two
cases (near and far from threshold) and this has been verified

by solving the roots of the polynomial (2.4).
If one applies the near-threshold and large-pumping con-

ditions to the two other roots (X7 s) the results are the fol-
lowing. Around the SM threshold (p =pth, ), the real part
gives at first order the stability condition Q & 1 (Q (-,') when
the pump polarization is circular (X linear). Then just above
threshold the SM is stable only for Q)Q;, Q; being the
intersection point of the curves representing the existence
limits of the monomode steady states: the numerical simula-
tions of Figs. 5 and 7 of Ref. [1] showing the parameter
conditions for the monomode (SM or WM) oscillation and
stabilization are then partially demonstrated.

For a large pump parameter, an asymptotical calculation
leads to a restablized SM but not for all Q values character-
izing the SM existence domain. This analytical limitation is
due to the simultaneous small-parameter expansions versus

y and the pump parameter.
This restabilization occurs for all Q as can be observed in

Figs. 1(a) and 1(b). These graphs display the bifurcation dia-

gram presented by our system versus the pump p and 5 or
while Fig. 1(c) gives the corresponding intensities versus

the pumping p . In the case considered, the pumping is X
linear. The SM starts oscillating for reasonable pumping val-

ues; on increasing the pump rate (and bifurcation parameter)
a transfer of stability to the bimode oscillation occurs. This
oscillation is stable up to very high values of the pump where
the SM appears again. The present work demonstrates this
scenario analytically around the following three bifurcation
regions: the monomode threshold, the bimode oscillation
(but without the corresponding stability), and the monomode
high intensities. The parameters for Fig. 1 are a = 1, E= 1,
y = 0.001, and 6= 0.001, and additionally 5 =0.2 and
b, ~= 0.1 for Fig. 1(c).

The weak-mode stability will complete the monomode-
case analysis.

X(X +b2k +b, h +bp)=0, (2.6)

where
b2 = 2 r(1+ Iy, ), (2.6a)

I2
b t

= r2 (1+Iy, ) +—rKIy, (4 —Q 'p + Iy, ),

bp= r KIysl 4 Q 'Pp+21„].
(2.6b)

(2.6c)

All the coefficients are positive which leads to the same con-
clusions as for the strong mode: when the %M oscillates,
D(0,0) and D(1,0) do not originate any instability; these
varieties are stable. An expansion versus the small parameter

y leads to the following first-order parameters:

[I P 4B+Bg—c']2~
—1 —

(
p t B)

'r +o(r'), (2.7a)

), =(—42B '(I' —I ' —B))r'"

p —4B+BgC'—
8B( P B) (3I '+ 4I ') r'+ o( r'")
8Bjp —p —B (2.7b)

X4= 0. (2.7c)

The existence condition for the weak mode implies that all
real parts of the above roots are negative. A comparison with
the set of equations (2.3) shows, however, that the orders of
magnitude of the X's are lower, meaning a weaker stability:
the system needs a longer time to go back to its stable state.

The coupling of the X mode and the grating D(1,1) gives
a characteristic complex second-order equation

+bih. + b0=0, (2.8)

where the coefficients are

b,' = [r(1+I,)+ 1 —i(Kb 8)—
(1 ih )( Q+2p 2QIy )] (2.8a)

bp= r(1+I,) [1—i(Kb, 8)—
—(1—iA )(2pO —2QI, —Q]+ —I,(p —QI, )

x [2+5,' —A,b, ,—i(b, ,+ 6,)]. (2.8b)

The presence of too many parameters makes the analytical
solution not useful for a significant analysis. Thus we try a
perturbative expansion versus y which leads to the following
roots:

C. Weak-mode stability

The linear stability study of the weak mode leads qualita-
tively to the same types of coupling between the variables.
This case also produces a separation of the matrix into two
parts and two characteristic equations.

The first matrix implicates the oscillating polarization and
the real inversions D(0,0) and D(1,0). The resulting poly-
nomial has the form
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1 Iy (p QI )[2+5 5 by /(b +by)]—(1 —I,) ——
4 I + Q —2(/ ' —Q/„) —i~.[Q —2(/ ' —Q/„)1 —&(&~,—~)o o . y+o(y'), (2.9a)

X, s=[—1 —Q+2(p —QI„)] i[8—Kb +6 [—Q+2(p —QI„)]]. (2.9b)

A bifurcation point arises with Re(k7 s) and this critical point
is characterized by

B 6B+—1=2p (1 —3B)—8Bp'. (2.10)

The WM is stable when both conditions

p )1—3B and B 6B+1—~2p (B—3)+8p'

are simultaneously realized so that above this limit it be-
comes unstable. This critical line is identical to the existence
limit of the X polarization of the bimode solution. Thus one
may suppose that the bimode solution starts at this point,
essentially if we notice that, on the bifurcation line, the
imaginary part of k78 is 8'—KLmly+lelz

As for the strong mode, the roots of the equation Re
(ks6) =0 can be integrated numerically and no instability
occurs from these roots in the explored parameter region.

More information on the WM stability may arise from
asymptotic calculations. They are presented in Appendix B
and lead to the following results. Just above the threshold

(p =p,„,+e, l~, =e), the stability is realized for Q(I or
—,
'

(depending on the pump polarization) which represents the
space below the intersection point Q; of the monomode-
existence domains. Finally, a second bifurcation point is
shown to be present for high pumpings leading to a restabi-
lization of the WM oscillation.

The results of the linear stability analysis of the mono-
mode steady states provide a global view based on some
symmetry between the WM and SM solutions. Depending on
both the pump polarization and detunings, the system starts
oscillating in a monomode way. For high pumpings, the de-
stabilizing effect of the grating disappears and the same
monomode state oscillates again. We also know from the
previous linear stability analysis that a bimode oscillation
can take place between these two stable domains of the
monomode regime. The resulting questions one may ask
concern first the stability of the bipolarized state and the
presence and the stability of other types of time-dependent
solutions that could be present.

We shall not carry out a linear stability analysis of the
bimode solution because of its mathematical complexity. The
bimode solution is shown numerically to be always stable in
the case of an X-linear pumping. Thus to explore the simul-
taneous oscillation of the two polarizations one needs to use
numerical tools.

III. NUMERICAL SIMULATIONS

A. Parameter choices

The parameter space of our model is multidimensional
and thus it cannot be fully treated. A coarse-grained selection

can already be performed following the perturbative analytic
calculation which describes typical behaviors in a restricted
domain (small y, for example). In our calculations and from
the monomode stability analyses, globally the dynamics in-

duced by the linear or the circular pump polarization are not
so different and the space parameter seems to have very little
inhuence on it: one monomode operation always starts sta-

bly, then it disappears while the bimode oscillation rises. For
this last solution, the numerical simulations of Fig. 1 show a
strong stability of the bipolarized solution but only for the
X-linear polarization: for a wide range of parameters corre-
sponding to its existence domain, this has been verified nu-

merically.
In the case of a circular pump polarization, the bimode

domain of existence is completely unknown. For that reason,
we have focused our numerical investigation on this particu-
lar pump case.

Because of the large parameter domain, one needs to se-
lect physical situations. The parameters a and K are always
chosen to be around unity for experimental reasons: the ratio
between the optical cavity frequencies is very close to unity
as will be seen later and the losses are nearly equal as the
cavity quality factor is taken the same for all modes at first
approximation. However, the difference between the losses
can be increased deliberately.

The three detunings in the problem are 5, 5, and
8=(b, —6 )7~/sc where the ratio y~~, is around 10
10 s for conventional fiber lasers [6]. We have already
pointed out the direct correlation between the oscillating
monomode and the gap between the mode frequency and the
central frequency of the atomic gain curve: the closer the
mode is to the center line, which corresponds to the Bohr
atomic frequency co and is about 10' Hz, the more favored
is its oscillation. The half-linewidth of this homogeneous
gain line is about 27~ (10' Hz). Thus for cavity frequencies
p and py fully antisymmetric with respect to co, the param-
eter a reaches its maximum value for (co+ y~ ) /

(cu —y~) = 1.01 and its minimum for 0.98. As a result unity
is really a reasonable value for a.

At half-linewidth of the gain line, the detuning parameters
also satisfy the inequality

~

b, ~~
= —,

' which requires
0.8~n ~ I and as a result 0.7~Q~1.3. If one considers
Figs. 7(a) and 7(b) of Ref. [1], this limitation leads to two
conclusions.

(1) In the case of an X-polarized pump (characterized by
an intersection point Q; = —,), only the SM (X polarization) is
presented by the laser and for very high pumpings the bi-
mode (two simultaneous polarizations) oscillates stably.

(2) For a circular pump, all the steady states are accessible
for reasonable parameter values (Q, =—1).
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Thus this "homogeneous-broadening" formulation sup-

poses limited detunings. However, we shall deviate from this
description following the next argument: in some experimen-
tal setups [6], the laser emission occurs on two field polar-
izations both of large broadband frequencies which include a
high number of modes (nearly 1000). This requires the
model to take into account a very large linewidth and an

inhomogeneous gain line which is not the case we consider,
However, we shall introduce this experimental reality by
considering large detuning values, which supposes a very
broad gain line, and so that the mode frequencies can be far
from the center line (twice or three times y~). This paramet-
ric situation has been used to describe semiconductor lasers

[4] for which broadness of the emission is observed: this

phenomenon is described via the so-called Henry coefficient
[5] and is due to the diffusion and mobility of charge carriers
inside the conduction band. The Henry coefficient takes high
values and is often associated with a detuning parameter
[4,8].

Using the same arguments, the a parameter can also take
values between 0.7 and 1.3 and in this way some experimen-
tal realities are introduced in the model phenomenologically.

One also notes the following experimental feature: for
some optical fiber lasers, the parameter 6' is of the order of
10(h —b ~). However, very good cavities are realized using
a Bragg grating imprinted in the silica [9]; this leads to very
low values of the parameters K

y
so that 6 is around

100(h —5 ). However, this particular parameter domain
has not been systematically investigated.

B. Numerical investigation

We first note that all the conclusions resulting from the
exact or asymptotical calculations on the stability-domain
limits and presented in this paper have been verified by di-

rect integration of the model. In this section we shall present
only the investigations related to the circular pump polariza-
tion and realized in a parameter space inaccessible to ana-
lytical study; it concerns the bimode-regime domain embed-
ded between the lines of destabilization and restabilization of
monomode oscillations. This large parametric domain (in
Po and also in detunings) has been scanned and we present
the main characteristic behaviors that have been observed,
corresponding or not to experimental situations.

We display in Figs. 2(a) and 2(b) a T-periodic regime
(which looks like a Q-switch oscillation) where the extrema
of the two polarization intensities are in phase (obtained by
superposition of the two figures). This is a signature of the
presence of a Hopf bifurcation on the bimode branches
which often leads to a Feigenbaum sequence of period dou-

bling for increasing pumping. This dynamical behavior oc-
curs for the following parametric situation: P = 6,
a=0.75, E= 1.89, y=0.004, 6=2.2, 5 =3.5, and
leL

y
3 .3. It corresponds to a good laser cavity, high different

losses between the two oscillation directions (due to the
propagation in the fiber), and especially "inhomogeneous
broadening" (and a broad frequency emission). We note that
the representation of the Y polarization intensity needs to be
multiplied by 10: this is related to the strong losses in the Y
direction. This kind of behavior has been observed experi-
mentally [6].
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FIG. 2. Intensity T-periodic regime (Q switch) for the paramet-
ric situation M~ = 6, a = 0.75, E= 1.89, y= 0.004, 6= 2.2,

= 3.5, and 5 = 3.3; (a) the X mode; (h) the I' intensity is mul-

tiplied by 10,

The second typical time-dependent output that has been
measured experimentally and reproduced by our model is a
periodic anti-phase regime which indicates the phase sensi-
tivity of the system [8] and describes a mode competition
between the two simultaneous modes. The parameters for
Fig. 3 are now reasonable (in the "homogeneous broadening
and normal cavity losses" meaning): P = 4, a = 1.0,
K=1.05, y=0.001, 6=0.001, 5 =0.5, and 5 =0.45. This
mode competition is a well-known behavior of conventional
multimode lasers.

Chaotic behaviors are also present in several forms. In
Figs. 4(a) and 4(b) an intermittency regime for the two po-
larizations is displayed. Simultaneously an antiphase behav-
ior can be noticed between the two modes: the peaks of one
mode increase when those of the second decrease. The para-
metric situation corresponding to this figure is characterized
by an "inhomogeneous broadening" and abnormal cavity
losses since P =4, a= 1.0, @=1.8, y=0.004, 6=2.1,
5 = 3.5, and 5 = 3.3. The Y intensity is also multiplied by
10.

Two bursting situations (respectively in chaotic and regu-
lar regimes) are presented in Figs. 5(a) and 5(b) for, respec-
tively, (a) P =8, P'=3, a=1.0, K=1.0, y=0.004,
y=0.0, and A, =A =0.5, and (b) P =8, P'=3, a=1.0,
E= 1.0, y=0.0001, 6'=0.0, 5 =0.52, and 6 =0.5. The
main characteristic of this parameter space is that either the
spontaneous emission is not negligible and is polarization
dependent, or the dipole transverse distribution leads to this
special pump sharing: an idea of the difficulty in managing
such a parameter space is given. One can note, however, that
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FIG. 3. Intensity T-periodic antiphase regime describing com-

petition between the two modes. The parameters are;P~ =4,
a=1.0, K=1.05, @=0.001, 8'=0.001, 6 =0.5, and 6 =0.45.

(b)

I ~

equal detunings lead to a real bursting situation (meaning a
chaotic hesitation around a solution) with high peaks in in-

tensity while a slight difference (in favor of the Y direction)
between the detunings produces a regular bursting: a nearly

Q switch for the I' mode and hesitation for the X mode. An
elliptic pump can also provide such outputs.

Finally Figs. 6(a) and 6(b) give the bifurcation diagram
versus, M of, respectively, the X and Y polarizations for a
circular pump. This corresponds to a detailed transverse sec-
tion of a graph similar to the one represented in Fig. 1. It
shows a chaotic behavior embedded in the bimode stable
domain. The parameters are a= 1.0, K= 1.01, y=0.03,
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FIG. 5. Chaotic and regular bursting situations for (a),r~' = 8,
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5 =0.52, and 5 =0.5.
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6= 0.0, and 6 = 5 = 0.8. A characterization of this chaotic
behavior is now in progress.
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FIG. 4. Antiphase chaotic situation in intensity for .9 =4,
a=1.0, K=1.8, y=0.004, 8'=2. 1, b, =3.5, and A, =3.3. In (b)
the Y intensity is multiplied by 10.

In this study, we have derived and carefully analyzed a
vectorial model for a doped fiber laser whose two transverse
field polarizations are allowed to oscillate. The parameter
space of the problem has been investigated focusing essen-
tially on the polarization of the pump and the detuning ef-
fects. The analytical calculations have been carried out as far
as possible including asymptotic expansions whose validity
extends beyond the expected parametric space, as shown nu-

merically.
In summary, we have found that the linear pump polariza-

tion allows first the oscillation of its own type of polarization
[10] but for higher pump intensities and because of the po-
larized medium the two directions oscillate stably [6,9]. It
can also present an oscillation on the complementary trans-
verse direction when the losses or the detunings are strongly
favorable.

The circular pump polarization presents a wealth of dy-
namical behaviors as each polarized oscillation may easily
be present: this depends mainly on the detunings of the two
modes. Increasing the pumping, two polarizations (bipolar-
ized state) arise simultaneously and are stable; they can os-
cillate in phase or in antiphase presenting mode competition.
Periodic and chaotic regions are also displayed, which are
characterized by antiphase and bursting. Thus we conclude
the following.
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(I) The transverse-oriented pump favors the stable oscil-
lation of one direction but it does not exclude the other trans-
verse oscillation alone (under drastic conditions) or in a bi-
mode stable output. However, it destroys all the instabilities
since only steady states are present.

(2) In contrast, the circular pump does not act like a
"forcing. "Therefore the nonlinearities due to the interaction
between the light and polarized medium express their dy-
namics fully and combine in diverse ways the effects of de-
tunings and medium activity.

One can infer the strong role of the pump since many
time-dependent behaviors can be extinguished in favor of the
preferentially oriented oscillation and very large pumpings
and detunings can be necessary for the oscillation of the
complementary direction.

The second element to point out is that, whatever the
pump, the presence of the "transverse" population inversion

D(0 clearly stabilizes the monomode and also the bimode
oscillations: this last operation was impossible to realize in

the counterpropagative ring laser and the bimode semicon-
ductor laser.

In the experiments, bipolarized laser operation occurs on
a broad mode band and has a large-linewidth emission. As a
result, the homogeneous Lorentzian atomic profile is cer-
tainly not adapted to this problem. This supposes an inhomo-
geneous contribution whose origin will be related to the ac-
tive atoms (and their sites) or to the host medium (silica)
where the propagation'occurs. A formulation of basic equa-
tions containing an inhomogeneous (anisotropic) transverse
distribution of the dopant is also possible but it is not enough
for a full description of the OFL. Many other anisotropic
effects have to be included in the description. In spite of the
numerous simplifications which were introduced, the model
presents some agreement with the dynamics experimentally
observed. It is, however, very much a first and imperfect
approach to the description of an optical fiber laser since no
propagating effects are included. This last phenomenon in-
cludes necessarily the multimode nature of the laser field and
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is now being studied on its own before an extension to a
model which mixes light nonlinearities in matter (caused by
vectorial interactions) and propagation.
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APPENDIX A

1. Near-threshold stability of the strong mode

The SM is characterized in the near-threshold situation by
the following relations.

(a) For a circular pump polarization p
' = 0 and

p =1+ rg (r/(&I). The steady intensity takes the value
I„=2 y/3, and the Lyapunov coefficients have the form

77 4Q +4k +Q(A, —b, dL 6)+A(—A, —7A )+3(1+6, ) —(I+5,)
Re(ks 6) = —1 ——

K= ——Q —1—
7,8

Q

2y ~ 2r)~i (A lb)

We have defined 6 as (Q/K)(8'+ b,,). At the lowest order in 7/, the real part of k5 6 is always negative while the real part of
k78 is negative only for Q) 1. Therefore the SM starts oscillating stably above the intersection point of the steady represen-
tative curves (see Fig. 7(a) of Ref. [1];the question mark related to SM stability needs to be canceled).

(b) In the case of a linear pump polarization and near the SM threshold the pump rates are p'=p /2 and p =-,'+ rg

(77(&1). The steady intensity is then I„=97//10 and the Lyapunov coefficients take the form

97/ 18(Q +5 ) —3Q(h —b, A +6) —3b, (A, +33, )+3(1+5 )+(1+5,)
20 (3Q —I)'+(5,—3b, )' (A2a)

K 1

Q 3 10 (A2b)

At the lower order, the real part of k56 is always negative while the k7 8 real part is negative only for Q~ —,'. Hence the strong
mode also oscillates stably only above the intersection point of the steady state curves. On Fig. 7(b) of Ref. [1], the SM
question mark must also be suppressed.

2. Strong-mode stability for large pumping

For large pumpings (even unrealistic values from the experimental point of view), the steady state is given by the following
relations.

(a) For a circular pump polarization p' = 0 and 1/p =
rg (77(& 1).The steady intensity takes the value I„=p —2+ 2 rg and

the Liapunov coefficients have the form

p 2(Q +6 )+Q(5 5 5y 10)+4(4 114 )+15(1+4 ) 3(1+5 )
Re(X56) (Q-3)2 (3b, -d, )2 (A3a)

K
k78= ——[Q —3+4rg~/. (5 3A, +47/b, ,)] . — (A3b)

The relevant term of the P 5 6 real part is always negative for the usual laser parameters. As a result no instability can occur via
these varieties. This has been verified by numerical simulations.

The k78 are negative again for Q) 3. Therefore this mode restabilizes for high values of the pump parameter. This does not
mean that for l(Q(3 there is no restabilization: the calculation being performed for small y and large p, the product
ypo can be around unity. Thus one has to be careful: in our case the restabilization line is lost for 1(Q(3 because one needs
much larger p values and at least the next order in y.

To be convinced of the validity of these arguments, we have treated the large-p case without restricting y to small
values. The real parts of the roots of the characteristic equation have been found to be equal to, respectively, —yp and
—(K/2 Q) [2Q —4+ b, —b, b, Y]. This last expression represents a restabilization of the strong mode for
Q)[4 —b, ,(b, b, Y)]/2; this Q limit is arou—nd 2.

(b) For an X-linear pump (p'=p /2), the steady intensity is given by I„=p —1+ rg and the Lyapunov coefficients take
the form
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p~ 4(Q +5 ) —Q(A, —5 5 +10)—b(A, +96 )+5(1+5 )+(1+8,,)
4 (Q —1) +(5 —5) (A4a)

K
[Q 1 2ri~i(b Ay+2r/5 )]. (A4b)

The conclusions are the same as for circular-polarization pumping: a negative X.56 real part and a restabilization of the SM for
large values of the pump when Q) 1 but this time the restabilization is lost between —, and unity.

As for the near-threshold case, we have evaluated the Lyapunov roots for a large pumping relaxing the small-y con-
dition. The real parts of the characteristic equation roots have been found to be equal, respectively, to —yp and
—(IC/4Q) [4Q —2+ 5,—b, 5 ] This . last expression presents a restabilization of the strong mode for
Q) [2 —b, (5 A~)]/4—whose value is close to —,'.

APPENDIX B

1. Near-threshold stability of the weak mode

The weak mode (1' polarization) is characterized in the near threshold situation by the following relations.
(a) For a circular pump polarization p is written as Q+ ri (ri(&1) and the steady intensity takes the value I~,,= 2r//3Q.

The Liapunov coefficients have the form

97 4+43 ' +Q(A —A, b, —6) —QA'(6 —7A, )+Q (2 —6 +33 )

6Q (Q —1)'+(Q~.-~')' (8 la)

2iI ( 2r/l~i 5'+b, ~ Q+ (8 lb)

where we have imposed 5' = 6—KA~. These two roots show that the WM is stable in the surroundings of its threshold for
Q(1 and as a result below the intersection point Q;.

(b) For a linear pump polarization the pump parameter and the steady intensity are, respectively, p = 2Q+ r/ ( r/(& 1) and

I,= r//2Q. The roots of the characteristic equation are now

r/ 2+25' +Q(b, —b, ,A —10) —Qb, '(b, —115 )+3Q (4 —5 +56 )

Q

'
(3Q- )'+(3Q~.-~ )' (82a)

= —[1—3Q —r/] ~ i[6 '+ b,,(3Q+ l7)]. (82b)

The relevant orders of the roots X56 present negative real parts while the roots X78 show a stable behavior of the WM just
above its threshold but only for Q(-, : this allows the general conclusion concerning the stable Y-polarization oscillation just
above the lasing point and only below the intersection point of the steady curves representing the threshold intensities versus
the Q parameter.

2. Weak-mode stability in the case of high pumping

In the case of large pumpings, the steady state is obtained as follows.
(a) For a circular pump polarization and if we note 1/p = r/ ( y(& 1), the intensity can be written as

I,=p /Q —2+ 2Q g and the Lyapunov coefficients have the form

2(1+5' )+Q(A —A, A —10)—Qh'(5 —115,)+3Q (4+55,—5 )

2QI:(3Q —1)'+ (3Q~.—~')'] (83a)

)~.7s= —[1—3Q+4Q r/]~ i[A'+ Qh (3 —4Q r/)]. (83b)

At the lower order, the real part of ) 56 is always negative
while that of )i.7 s is negative only for Q(-,'. As a result the
weak mode restarts oscillating stably for high pumping only
for the previous condition. In the range 3&-Q(1, we use an
alternative method: the large-p case without restriction on

y is treated. The real part of the roots have been found

to be proportional to —yp /Q and —[1—2Q+QA (A~
—5,)/2]. This last expression may present a restabilization
of the weak mode for Q(2/[4 —b, (5 b, ,)] whose value-
is around —,. This increases the restabilization parametric do-
main.

(b) When p' =p /2 and with the same small parameter
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z/, the steady intensity is Iy, =p /Q 3—+Qz/ and the Li-
apunov coefficients have the form

p LE 2

4Q[(5Q —I)'+(~Q~.—~')'] '

(B4a)

g7 s= —[1—5 Q+ 2Q'z/] ~ i[A '+ Qh, (5 —2Q r/)],
(B4b)

where u2 is

u2=4(1+5' )+Q(35 —3h, by —34)
—Qb, '(3dl, —375 )+5Q (14—3A + 175 ).

The roots X& 6 always present negative real parts for realistic
parameter values, while Re(P 7s) is negative only for Q(-,'.
With this calculation, the WM restabilization is demonstrated
to occur only for low Q.

Relaxing the small-y condition, the large-pumping situa-
tion leads to real parts of the characteristic equation
roots equal, respectively, to —

7 p /Q and —[1—7 Q/2
+ 3 Qhy(hy —5,)/4]. This last expression may present a re-
stabilization of the weak mode for Q~4/[14 —3A (5—5,)] and this value is about 7, approaching —,'.
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