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Polarization instability in lasers. I. Model and steady states of neodymium-doped fiber lasers
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The aim of this paper is to provide a vectorial model which can describe the dynamics of the two transverse
field polarizations presented by an optical fiber laser. These dynamics are supposed to take their origin from the
interaction between the propagating field and the atoms: an assumption based on the existence of a transverse
distribution of dipole moments and which leads to a vectorial atomic polarization. Also, and as we have

considered a frequency for each field polarization, a longitudinal dependence of the population inversion must

be taken into account. A double Fourier expansion (transverse and longitudinal) of the material variables is then

needed and the resulting model is analyzed using the bifurcation theory: the existence of all stationary states is

fully expressed in the parameter space. The stability of these states and the system dynamic is studied in the

following paper [Phys. Rev. A 52, 4243 (1995)].

PACS number(s): 42.55.Wd, 42.65.Vh

INTRODUCTION

Polarization effects in the laser process have been ana-

lyzed for many years. The very first multimode He-Ne laser
presented alternations of orthogonal linear polarization states
and Zeeman lasers are known to exhibit polarized emission
modes [1].

Three reasons can explain the vectorial characteristics of
the output field.

(1) The first of them is related to the pump mechanisms
which are supposed to give unpolarized or polarized outputs
depending on the pump isotropy or anisotropy [2].

(2) The introduction of some anisotropy in the resonator,
for example, Brewster windows, leads to polarized outputs.

(3) Finally the lasing medium can influence the output-
state nature and especially its dynamics: crystal symmetries
in solid-state lasers, for example, also provide polarized crys-
tals.

This last reason underlies the material origin of the dy-
namics of the polarized field as opposed to a propagative
origin: the active atoms may be uniformly (or not) distrib-
uted and fixed in the host matrix. The first and third reasons
can work additively or cancel each other depending on the
considered system (and thus on the interaction between light
and atoms): the effect of the linearly polarized pump is to
preferentially excite those atoms that are oriented in a direc-
tion close to that of the pump. However, the existence of
local fields, for example, may produce an alternative output.

The earliest theoretical study introducing the spatial po-
larization of the active atoms mainly concerns dye-laser am-
plifiers [3]. These systems are characterized by anisotropic
excitation mechanisms even when the pump is linearly po-
larized. The inhuence of the input-beam polarization and
relative alignment polarization effects inside the active me-
dium have also been studied by Casperson and co-workers in
mode-locked dye lasers [4] and cw dye lasers [5].

In a much more complex polarization situation, one can
point out a recent experimental and theoretical work that
concerns the achievement of three standing waves (linear,
helicoidal, and circular polarizations) in the same gas-laser

system [6].It is shown that the operating field can drastically
modify the nonlinear interaction with the active medium and,
as a result of that, its saturation. In conclusion, the laser
dynamics can be strongly modified if one considers the in-

teraction between the light and the active atoms in the laser
process from the vectorial point of view.

The previous general discussion can be applied to the op-
tical fiber laser (OFL) for many reasons.

(i) The absence of polarization-selective elements induces
additional degrees of freedom due to the possible propaga-
tion of the two orthogonal field polarizations.

(ii) Moreover, the host silica matrix in the optical fiber is
supposed to be isotropic (as long as the small stress-induced
birefringence is neglected) and this allows the propagation of
polarized fields.

(iii) The doping operation itself concerns ions which may
produce a local field. This field induces as Stark splitting of
the energy levels of the dopants and this makes several elec-
tric dipolar transitions possible. Even if the pump radiation is
polarized, different pumping strengths exist: light amplifica-
tion is polarization dependent, the unsaturated gain also.
These polarization effects are directly related to the pump
[7].

(iv) An additional and anisotropic local field can be
present around the active sites: the stretching of the doped
fiber may produce locally a glass structure [8].Since both the
way to produce the fiber and the doping operation are uncon-
trollable, this provides a variety of physical environments for
the dopant ions which are responsible for different perturbing
local fields. Then one can suppose that, instead of a set of
identical ions, the different ranges of active atoms could be
characterized by a spatial distribution of parameters depend-
ing on the host medium.

The argument for the vectorial interaction between the
dopants and the propagating field is essentially based on the
fact that the orientation of the lasing ions in the host matrix
cannot be avoided since it has a great importance on the
stimulated emission (the basic nonlinear laser process) and
the system dynamics. The task of this work is to show that
some interesting and experimentally already observed dy-
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namics can be reproduced by a conventional laser model
where we have only added the transverse orientations of the
active atoms: the transverse position of the induced dipoles
in the medium is expressed in a parameter.

The model we present is not exhaustive because the strict
description of an OFL needs to take into account a large
number of phenomena that have been neglected here, like
those induced by the propagation inside the fiber, its birefrin-

gence, core ellipticity, the field diffusion on defects, etc. [9].
Some absorption and reemission mechanisms can also occur
in the case of the doped fiber (in spite of the silica transpar-
ency to the pump and laser wavelengths). Other phenomena
due to inhomogeneities created during the dopant insertion
are neglected too: a correct description of the site-to-site dif-
ferences needs the introduction of spectral inhomogeneities
as well as the random orientation of the local ionic environ-
ment. These structural and mechanical imperfections are of-
ten present randomly and the disturbances they induce can
couple the two polarizations: we know from Ref. [10]that, in
the case of a single-mode optical fiber, the two transverse
field polarizations may present fIuctuating behavior. All these
random or nonrandom effects will not be considered in the
present paper because we think that, in the framework of the
laser dynamics, they are not dominant: they can only modify
the amplitude or the intensity of the interactions. All these
elements justify the chosen approach for the existence of the
field polarizations and their interaction via the dopants.

One more important element of our work must be empha-
sized. The OFL's are often used for their broad gain profile
and long cavity length: a large number of longitudinal modes
may oscillate essentially well above threshold. From the dy-
namical point of view, the modulated multimode OFL pre-
sents a variety of behaviors such as antiphase, period-
doubling cascades, chaos, generalized optical bistability, etc.
[11] and even without modulation these behaviors exist.
From the theoretical point of view, a thousand modes cannot
be usefully treated. We describe then a two-mode laser in
which each mode is associated with one of the orthogonal
polarization eigenstates (X and Y) and represents a subset
corresponding to a cluster of longitudinal modes. Thus the
multimode experimental situation is reduced to two longitu-
dinal modes associated with the two transverse polarizations
of the electric field, X and Y, and whose empty cavity fre-
quencies are p and py .

Our approach is then essentially based on the interaction
between light and matter [12]: the Lamb semiclassical and
self-consistent formalism. The vectorial model is derived in
the first part of this paper while the second part is devoted to
the analysis of the steady states. The subdivisions (in four
sections) leading to the full model are the following: The
fields are described by Maxwell's equations, under the as-
sumption of a plane-wave propagation (Sec. I A). The inter-
action between light and matter is analyzed using the Bloch
equations for the density matrix elements, applied in our case
to a four-level atom (Nd +) (Sec. I 8 1). These equations
directly give, first, the microscopic atomic polarization (Sec.
I 8 2) whose statistical sum leads to the source term for the
propagating field and secondly the population-inversion
equations (Sec. I 8 3). Section I C expands the arguments for
the applicability of the model to the case of Nd -doped
fiber laser: the characteristics of the active sites are detailed

propagation
direction

FIG. 1. The vectorial field E is in the (X,Y) plane: its compo-
nents are the variables F, and EY and the z component is neglected.

and the concept of dipole-moment classes weighted by an
angular distribution n(0) is introduced. The final mode is
given in Sec. I D where some mathematical tools like the
longitudinal and angular Fourier expansions are used.

The second part of the paper is fully devoted to the
steady-state solutions and their existence in the full param-
eter space.

We note that this work is preparatory for a second paper
where more dynamical considerations will be explored using
bifurcation theory and linear stability analysis.

E(z, t) =E (z, t)+E~(z, t).

In the OFL case, this notation is valid since the laser field
propagates following the eigenmode LPp, (linearly polar-
ized) whose degeneracy allows the coexistence of the two
orthogonal polarizations [13].

One can write the field more precisely as

E(z, t) =.-'[g.(z)P.(t) +c.c ]x+ -'[g, (z)P, (t) + c c ]Y.
(1.2)

where the plane-wave nature and the fast time evolution of
the field are extracted following the relations

P Y(t)=E Y(t)exp( —iv, ~t), (1.3a)

gx y(z) —exp(lkx yz) ~ (1.3b)

I. VECTORIAL MODEL

A. Field equations

The laser field is governed by Maxwell's equations. Our
aim is to describe the time evolution of the two modes cor-
responding to the X and Y polarization directions. The vec-
torial variables are expressed in a macroscopic frame where
the X and E' axes are transverse to the Z propagation direc-
tion, as displayed in Fig. 1. The following notations are used
for the total electric field:
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The empty-cavity frequencies (or longitudinal modes) are
denoted v and v and k and k are the corresponding wave
numbers (in the plane-wave approximation).

The field equations are derived from the propagation
equation. Using the slowly varying amplitude and phase ap-
proximation (SVAPA) and the "diluted media" approxima-
tion, one gets the set of equations which governs the com-
plex amplitudes of the two field polarizations [3]:

PUMP

TRAN SITION
LASER

TRANSITION

iv 1
(8t+ tr, )E,(t) = — g r/, (a, z, t)dz, (1.4a)

2ap LJ a

lPy 1
(clt+ tr )E (t) = — g r/, (a,z, t)dz. (1.4b)

Bp L0 a

FIG. 2. The diagram which represents the four-level Nd + dop-
ant atoms. The transitions from levels (2) and (4) are radiative.

We note the following.
(a) The source term (right-hand side) represents the statis-

tical average of the dipole moments y induced by the laser
transition. The a index stands for all the atoms' characteris-
tics. The physical content and the notations will be specified
in the next subsection which is devoted to describing the
medium.

(b) The different loss coefficients (tr, and tr~) in the two
transverse directions represent not only the passive "me-
dium" anisotropy (fiber birefringence) but also the cavity
losses due to the mirrors. These effects contribute to differ-
entiating between the losses (tr /tr )1, for example). We
also note that the cavity is supposed to have a ring shape
which is first a convenient simplification, but a large number
of Fabry-Perot-type lasers are described by Bloch-Maxwell
equations without losing their dynamical properties [7(c)].

(c) In the more precise OFL case, the longitudinal com-
ponent of the mode LPpi can be neglected: for an index leap
fiber, the field-amplitude ratio of the longitudinal component
E, (or E, in the following) to the transverse one E, is equal
to the difference between the core and the cladding indices
[13] so that E, /E„= hn =10 —-10

where H is the system Hamiltonian. The Bloch equations can
be derived from Eq. (1.5) where the diagonal elements rep-
resent the discrete-level normalized populations while the
off-diagonal elements stand for the phase "coherence" of the
transition between the two coupled levels [12].

In this paper, we shall restrict our study to neodymium as
lasing atom and, in spite of its complex level structure, re-
duce it to only a four-level system (see Fig. 2). We do not
need to directly integrate in the model the fine level structure
but will suppose its existence via the absorption and gain line
profiles as will be seen later. In this simplified formulation,
the pump transition (being at 0.820 p, m) couples the funda-
mental level (1) to the upper level (2) while the laser transi-
tion (occurring at around 1.08 p, m) concerns two intermedi-
ate levels (3) and (4). The level (3) is metastable. Its lifetime
(420 p, s) is longer than those of the other levels concerned
(400 ps): this allows the accumulation of atoms on it and
creates a sufficient population inversion to start the laser ac-
tion. The desexcitations from levels (2) and (4) produce the
emission of phonons in the silica matrix via nonradiative
transitions.

The Bloch equations of this four-level atom can be written
in the following form [3,4]:

B. Interaction between light and matter: material equations

This section is devoted to the description of the active
medium. In a semiclassical model, the atom is quantified. It
is described by the density matrix operator p which contains
all the information concerning the medium state [12]. We
first give the Bloch equations that govern the density matrix
elements for a four-level atom (Nd +). These equations lead
directly to the atomic polarization (Sec. I B 2) and the
population-inversion (Sec. I B 3) equations.

0
l p44
(Pi2P2iE„—c c )+ +

74 7]

l P22
~tp33 2g (P34P43 ') +

72

P33 P33

73 73

0
l P22 P22

~tp22 2g (P12P'21Ep c c ) +
72 72

(1.6a)

(1.6b)

(1.6c)
1. Density operator descripti-on of a four-level active atom

In the density matrix formalism, the average value of
some observable A leads to the related macroscopic variable
(and as a result, to the physical property of interest). The
mean value is given by (A) = tr(A p), where tr stands for the
trace operation. The density matrix time evolution is gov-
erned by the Von Neumann equation

0
l P 33 P44 P44

t-itp44= ~ (P34P4326 73 74 74
(1.6d)

l P34
t/tp34= 'top34 g (p33 p44) p43E

5

8
i6 —p= [H, p],

Pi2
t/t P12 t to1p2 pg (P 1 1 P22) P'21Ep T

. (I 6f)
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The notations are standard: F and E~ are respectively the
oscillating and pump fields. The time T, is the relaxation
time of the lasing transition while T plays the same role for
the pump transition. We have also defined r3 as the lifetime
of the level (3): it characterizes essentially the spontaneous
emission. The time r2 [r4] concerns the level (2) [(4)].The
frequencies co and co~ are the Bohr frequencies of the lasing
and pump transitions. The p, ;~ are the components of the
dipole moment induced by the transition between the states i
and j.

The compressed notation p; corresponds in fact to

p; (a,z, t): the z dependence is not of a plane-wave form as
is the case for the fields [Eq. (1.3b)] because the propagation
in the active medium of two fields with different frequencies
induces a "grating" effect also called the "longitudinal hole
burning. " The a index represents all the characteristics of
each active site and dopant atom in our case. The populations
of the different levels relax towards their thermodynamical
equilibrium value p . These values are in this case close to
zero except for the ground state.

The order of magnitude of the experimental relaxation
times creates a hierarchy between the variables based on
their relative time scales. The numerical values used for the
dopant fiber laser are then the following [14(a)]:
T,=T~=83 ns; ~2=~4=400 ps; 73=420 p, s. Both the co-
herences and the occupation of the levels (2) and (4) are fast
variables compared to the fields and the occupation of the
level (3). In the long-time limit (or the time scale of the slow
variables), the fast variables reach their stationary value and
follow adiabatically the slow variables: the fast variables are
"enslaved" by the slow variables. This will be used further
as an argument for simplifying the "material" equations. At
this stage one can point out the theoretical and experimental
work of Lacot and co-workers [14(b)] on the Er-doped fiber
laser which is a class-C laser needing a coherence variable
and field interaction in its description.

2. Microscopic atomic polarization

The semiclassical description of the laser effect is based
on the self-consistency of the originally varying processes:
assuming valid the dipolar electric approximation, the cou-
pling between light (governed by the Maxwell equations)
and matter creates microscopic electric-dipole moments
whose average value is the atomic polarization. This macro-
scopic variable acts as a source term for the Maxwell equa-
tions [12].The right-hand side of Eq. (1.4) is then the statis-
tical summation of the dipole moments induced in the

medium. The moments ((p, )) are the temporal mean value of
the vectorial operator p, 43 . For one atom, the density-
operator properties lead to the relation

(p) = p34(a z t) p43+ c c.

ri(34az, t) +c.c.

The complex form ( g34) has been chosen for notational sim-
plicity [3,4]. Keeping the coherence in the calculations we
repeat the following mathematical operations. In the

macroscopic-fiber reference frame, both the optical frequen-
cies and the plane-wave form in the X and Y directions are
extracted to get

934(a.z.t) = P34(a.z. t) tp.x+ P yy)

= rt, (a, z, t) exp{i (k,z —v, t))

+ rgy(a, z, t)exptti(kyz vyt)) (1.8)

This formulation concerns each active site and one can find
as many references (l, m, n) as neodymium ions in the fiber:
this makes necessary the use of the macroscopic frame
(X,Y,Z) associated with the fiber and where the dipole mo-
ment can be written as

p, = pt(ilx)+ p.(mix)+ t.

„(nlrb),

P'y P'l(ily)+ p.(ml»+ p.(nl».

p.= pi(ilz)+ p (mlz)+ p (nlz).

(1.10)

One does not need to know all these elements to carry on the
calculation. Suppose now that the norm of the projection
component on the (X,Y) plane is constant and can be taken
as equal to p, . In the cylindrical framework (X, I', Z), each
moment is given by

p, =p, cosO,

p,Y= p, sinO,

where the angle 8 measures the angle of the moment (then of
the atom) with respect to the X axis of the macroscopic-fiber
frame and the amplitude p, appears as a fixed parameter of
the atomic system (Fig. 3) while 8 is still a varying param-
eter. This approximation is important because it assumes that
the norm variations of the dipolar interaction are not the
main process compared to its transverse orientation. Hence
we focus on one characteristic of the whole process.

The atomic polarization term can be derived from Eq.
(1.6e). An adiabatic elimination (due to the relative time
scales) leads to the following expressions for each compo-
nent of the moment:

In all the previous formulas, the components p,, and p, of
the dipole moment are directly expressed in the fiber refer-
ence frame. At this stage, since the longitudinal field compo-
nent is negligible (E,(&E,) and the dipolar interaction has

a scalar-product form, p, F= p,xEx+ p~F~+ p, ,F, , one can
limit oneself to only the relevant transverse components of
p.

Embedded in the silica matrix, the neodymium atom has a
local symmetry (of the C2, group) [15].Hence one can as-
sociate with each active atom on orthonormalized micro-
scopic system of eigenvectors which defines axes and in
this microscopic reference frame, noted down (l, m, n), the
dipole moment takes the diagonal form [16]

0 Oi
p, = 0 p, 0

L, o o



52 POLARIZATION INSTABILITY IN LASERS. I. MODEL . . . 4233

need only one equation for the population description [3,4].
We note this population inversion D(a, z, t) and define it as
p33(a, z, t) p—44(a, z, t) I.t is governed by:

2 l
ri, + —D(a, z, t) = o+R(a) ——[g,(a, z, t)E,*(t)

r3

+ rt (a,z, t)E*(t)—c.c]. (1.14)

propagation
direction

FIG. 3. The orientations of the dipole moments in the (X, l')
plane. Their amplitude is supposed constant; only 0 varies.

The parameters o. and R(a) represent the different pump
processes. They are expressed by o.= p33/~3 —p44/~4 and0 0

R(a) = p22/r2 and are related to the spontaneous emission
and the optical pumping. The y and rg are defined in Eq.
(1.12). Using Eq. (1.6b) and similar definitions to those of
Eqs. (1.7), (1.8), and (1.13) for the pump transition (1) to (2),
the rate R(a) can also be written as [3]

T.
rt, (a,z, t) = — (in, + n, )[p33(a,z, t) —p44(a, z, t)]

0

R(a)= (rt„*Et,—c.c.)+ —=
2f 2"~p, 2Eii~,

2 2f (1.15)

&(p'E (t)+ p pi, Ey(t)gy(z)g*(z)

Xexp[ —i(v —v )t]), (1.12a)

T.
re(a, z, t) = — (i aY+ a~) [p33(a, z, t) —p44(a, z, t)]

&&(pyEy(t)+ ppYE, (t), g, (z) gy*(z)

X exp[ —i ( v, —
vy) t]', (1.12b)

where the following definitions have been used to simplify
the notation:

5,= T,(co v), — 1
~x

1 +g2 (1.13a)

1
Ay T~( ni y)very ~2 aY Ay cry1+5, (1.13b)

3. Population inversion

The population of each energy level is described by the
related diagonal element of the density matrix in the set of
equations (1.6). For a four-level system, one needs at least
two variables and two equations (for example, the sum and
the difference of the population of the levels involved in the
lasing transition). However, the adiabatic elimination of the
occupation of levels (2) and (4) (because of their relaxation
times) reduces the system to a two-level active atom: we

The parameters 5 represent detunings between the "central"
atomic frequency and the cavity frequency. A "coarse-
grained" way to take into account the level fine structure and
the broad emission line will be the following: values larger
than one-half can be attributed to these parameters even if
they are normalized to T, and expressed in a homogeneous
broadening model. This will be detailed later.

We note that the set (1.12) already shows a coupling be-
tween the two transverse components of the field; this occurs
only via the medium since no direct interaction due to propa-
gation effects inside the fiber intervenes in the description.

where the occupation of level (2) at thermodynamical equi-
librium is neglected. The pump equations (1.6a), (1.6b), and
(1.6f) are considered in the long-time limit (steady values)
and the pump transition co can be different from the Bohr
frequency co: this induces a Lorentzian pump rate due to the
multiple possible pump frequencies.

Now we shall adapt the matter equations to the doped-
fiber-laser case using assumptions on the doping process and
its effects on the active-atom parameters.

C. Particular case of the doped fiber laser

The "material" equations (1.12) and (1.14) concern only
one active site. In this section, we shall extend the descrip-
tion to the whole medium. This study being directly related
to the spatial dependence of the atomic polarization and
population inversion, it needs more details on the doped-fiber
representation.

In a crystal, the position of the active sites inside the mesh
can be obtained with some precision and easily generalized
for the whole medium because the macroscopic variables can
be integrated from the regular microscopic phenomena. Thus
the electronic surroundings of the dipole moments are well
established and the interaction between the matter and the
propagating fields is the same for all the sites. In the fiber
case, the laser environment is made up of a silica matrix
which holds the active atoms and guides the fields. Silica is
known as an amorphous medium. However, during the in-
dustrial process of the fiber stretching, the silica may crys-
tallize locally [8]. This introduces privileged directions in-
side the fiber and breaks the disordered structure of the silica.
In this description, a concept of quasiperiodic mesh can be
used with a finite number of ordered structure sequences (or
"eigenstructures") particular to the glass nature. These se-
quences repeat themselves in the medium and even when the
macroscopic characteristics correspond to those of an amor-
phous type the microscopic sequences may be present [17].
In other words, an underlying order inside the host medium
is supposed to exist which is emphasized by the dopant in-
sertion. Indeed, the dopant atoms take up the free spaces
between the Si02 molecules but in a suitable e1ectronic en-
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LPx 1
(O~+ & )E (t) =

Bp 7T Qp Jp

tLr' 2vr'
dz dO n(0) g, (0,z, t),

(l.16a)

vironment the dopant position is not fully random. It may be
said that the active atom tests the sites before taking its place
I 14,15].

It may also organize itself in "clusters" with other active
atoms I 15]: these "clusters" are small dopant heaps orga-
nized such that the electronic environment lets the neody-
mium ions escape from the host constraints. In the case of
Nd atoms, these heaps have to our knowledge no contribu-
tion to the laser effect. But even if they intervene, this will be
more in accordance with the atomic "organization" process
rather than the random (and transversely inefficient) orienta-
tion of the dopants. Each active site (or combination
"dopant-silica" ) interacts particularly with the fields. Then,
depending on the active sites, some induced dipole orienta-
tions may be favored or forbidden. The problem is to extend
the description to the whole active medium by making a
discrete summation on all the dipoles.

In the material equations, the parameters and variables
contain the index a which takes into account all specific
characters of each active atom: the information on the in-

duced dipole moments inside the fiber, their position, and
their orientation are thus included. For the sake of simplicity,
we shall follow a plane-wave model and limit the physical
content of a to the efficiency of the pump and stimulated
emission processes with respect to the transverse orientation
of the induced dipole moments. As each induced moment has
an amplitude p, and lies in the 0 direction of the fiber trans-
verse plane (with respect to the X direction), this orientation
characteristic can be contained in a distribution function
n(0) allowing the passage from a discrete summation on a
to an integration over the fiber volume (the active sites and
more precisely the dipole orientation) leading to the macro-
scopic material variables. The meaning of such a distribution
function could then be the following. In the fiber representa-
tion, the induced dipole being submitted to the host environ-
ment, its orientation results from a competition between the
local and the applied fields. When one applies intense exter-
nal fields, as in four-wave-mixing experiments generating the
second harmonic, an orientation of defects is observed and
then creation of a permanent polarization occurs I18]. In
such experiments, the applied field imposes the orientation of
the induced atomic polarization. In the laser case, on the
contrary, the inverse situation predominates: the pump power
being relatively weak, the competition gives the benefit to
the fiber action and, although the dipoles are created by the
applied fields, their orientation is strongly perturbed by the
silica molecules surrounding the active site. In the quasior-
dered host structure, one can count a finite number of pos-
sible orientations and the concept of induced dipole classes
can be applied: an angle division d 0 is associated with each
class and a weight n(0) is assigned which represents the
number of moments having an orientation between
0—d0/2 and 0+dO/2. In cylindrical coordinates, only the
0 and z integrations are necessary and one obtains the fol-
lowing expressions for the field and population-inversion
equations:

Lpy 1
(8,+ ~Y)EY(t) =

2eo 2rrNL p gp

tL (2~
dz d0 n(0) g (O, z, t),

(1.16b)

0,+ —
~ dz d0 n(0)D(0, z, t)

&sj Jo Jo

IL I2~ Lt' '2 m

dz d0 n(0)[cr+R(0)] —— dz d0 n(0)
Jo Jo &Jo ~o

X[ rt, ( O, z, t)E*(t)+ g, ( O, z, t)E,*(t)—c.c.].

The functions y and yY are the atomic polarization compo-
nents given by Eq. (1.12). The parameters N and L are re-
spectively the number of active atoms and the fiber length.

The pumping coefficient can take several expressions

which depend on the relative orientation of p, 2, and E„[see
Eq. (1.15)].If their respective directions form with the X axis
the angles 0 and P, such that they are separated by 0—P,
the pump rate is given by

R( 0) g2 I
P'21I'IE, I'cos'( 0—0)

=8'cos (0—P) = (I+ cos2(0 —P)).2
(1.18a)

Then for a linear pump polarization parallel to the X direc-
tion, P vanishes. Two particular cases can also be analyzed:

(i) a pump polarization oriented in the Y direction, and

Bt
R( 0) =8 ' si n0= —(1—cos2 0),2

(1.18b)

B/ B'
R(0) = —

I
csoO~i sinOI

2 2
(1.18c)

These pump-polarization cases will be considered separately
in the following sections to analyze the different influences.

The problem to solve now is which distribution n(0) is
relevant? A complete treatment of the problem needs to num-
ber the classes and take into account each of them in the
equations; this leads to a complex mathematical formulation.
Thus we shall limit our analysis to soluble but still physical
situations.

If one reduces the description to one dipole-moment class,
the equations will correspond to the bimode ring-laser for-
mulation (which has already been analyzed) and we lose the
specific polarization property of the field [19]:the pump be-
ing linear, the output-field polarization will directly follow
the dipole-moment orientation. Moreover, and from the
fiber-physics viewpoint, the existence of only one direction
for the moment orientation is not realistic; a strong and iso-
tropic interaction between the active sites and the host matrix

(ii) and a circular polarization (right or left) which corre-
sponds to
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is rare but if it happens to exist it can justify such a repre-
sentation.

The opposite situation is characterized by the presence of
an infinite number of classes of equivalently weighted. This
corresponds to an isotropic distribution of the moments in
the transverse plane: in that case n(0) =N Such. a distribu-
tion shows the domination of the local-held effects in the
fiber compared to those of the applied field. Mathematically,
the equations underline different terms of the Fourier series
for the population inversion with respect to both 0 and z.

The properties of these series allow an expansion of the
equations which will be exploited in the next section.

D. Transverse and longitudinal expansions
of the population inversion

In this section we take advantage of the mathematical
forms appearing in Eqs. (1.16) and (1.17). Using Eqs. (1.11)
and (1.12) for r/, (H, z, t) and r/»(O, z, t), after some math-
ematical changes the model takes the form

(8,+1)E,(r) =dx(E, (r)[D(0,0, r)+D(1,0, r)]+E (r)D*(l, l, r)),

(8,+ IC i 8)E»—(r) = ad»ttE»( r) [D(0 0, r) —D(1,0, r)]+E,(r)D(1,1, r)),

(&.+ y)D(o.o. r) =+ y~ H—~.IE.(r) l'ID(o o. r+ D(1.o.r)]+ ~»IE, (r) I' t&(o.o. r) —D(1.o.r)])

(1.19a)

(1.19b)

——(E,( r)E*(r)D( 1,1 r) d»+ E»( r)E,*(r) D*(1,1,r) d,* ), (1.19c)

(8,+ y)D(1,0, r) =+ yH~' —y(u, ~E (r)~ [D(1,0, r)+-,'D(00, r)]+n ~E (r)~ [D(1,0, r) —
—,'D(00, r)]), (1.19d)

(8,+ y)D(l, l, r) = —yD(l, l, r)(n, (E,(r)[ + n /E (r)f ) ——E (r)E*(r)D(00, r)d,* .2 7
(1.19e)

The parameters n and n are given by Eqs. (1.13). We have
used the following notations: K is the ratio between the
losses of the two field polarizations (K)1 means less loss
on the X polarization), y is the normalized relaxation rate of
the population inversions, and 6 is a frequency detuning;
namely,

PYa=-
~x

'Y=
Kx73

=(b,, 5)—
&x Kx

(1.20a)

(1.20b)d, =a, —ia, », d =(n, +n )+i(n, —n ).

A new time scale 7. is defined with respect to the losses in the
X direction, following 7.= K t, and this explains the normal-
izations of most of the dimensionless parameters to K .

Reduced variables are also defined. The normalized com-
plex fields F and EY are expressed in a rotating reference
frame at a pulsation v, /K or equivalently

T.s PE (r)~ q E (r),2 fL PKx

E»(r) ~
2TsP Vy . Px

2 E»( r) exp —i —r exp i —r26 PKx Kx Kx

The dimensionless population inversion D, which is defined
as D( 8,z, r) ~[p T,p/8fiep tr, ] 'D(, H, z,, r), is expanded in
Fourier series, transversely at order i and longitudinally at
order j. The expansion coefficients D(i,j,t) are detailed in

Appendix A. One obtains a hierarchy of infinite equations
which has to be truncated to get a closed and soluble system:
we have supposed that the higher orders (i)1, j)1) of
these expansions are negligible compared to the first coeffi-
cients [19].The values of the variable D(l, l, r) are already
at the very most 10 times those of D (0,0, r) and
D(1,0, r) which are of the same order. This will be seen in
the analysis of the steady states and numerically verified for
the usual laser parameters.

M and K' are the two first-order terms of the pump-
parameter expansion. Their evaluation is also detailed in Ap-
pendix A and depends on the experimental pump polariza-
tion. For an X pump polarization M'=W/2 while for a I'
pump polarization H' = —M~/2. In a circular pump-
polarization case M'=0. We note that, if one supposes the
existence of two variables d and d~, each one contributing
to one polarization direction, then Dpo can be interpreted as
d, +d» (or the total inversion) and Dip as d, —

d» (or the
"difference" inversion). In that representation and for the
pump parameters M can be p, +p» and M~' the difference

p —p . However, this is only an interpretation: we describe
the laser process with two lasing states, but physically one
deals with a single population inversion; the existence of two
population inversions d and d~ supposes that some atoms
contribute to one or other emission, which implies differen-
tiating between active atoms. In our model (1.19) the vari-
ables and parameters appear naturally from the nonlinear in-
teraction respecting its coherence.

Finally, one deals with a system of eight coupled real
ordinary differential equations (three complex and two real).
We have obtained a theoretical justification of the presence
of two population inversions [11] [D(0,0, r) and
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D(1,0, r)], and also two pump parameters M~ and W' [20].
These additional variables and parameters are often intro-
duced phenomenologically in the medium equations while
they naturally appear in this theory, directly related to the
field polarizations and the underlying physics. The role of
each "population inversion" will be more explicit after the
analysis of the system dynamics in a second paper. However,
if one can consider D(0,0,r) as the usual population inver-
sion between the lasing levels (which contributes to the two
field polarizations), the presence of D(1,0, r) is a signature
of polarization states in matter: the variable D(1,0, r) adds to
D(0,0, r) when it is multiplied by E (r) or IE,(r)I and is
subtracted from D(0,0,r) with E (r) or IE~(r) I

. Hence a
positive sign suggests a reinforcement of the X polarization,
while a negative sign will favor the Y direction. In a para-
metric situation which could be preferential to the X mode
(K)1 or X-linear pump), the negative-sign situation will
tend to destabilize this mode and reinforce the Y mode.
These assumptions will be verified or rejected after the dy-
namical analyses expanded in a second paper. Finally, this
model keeps the material grating due to the propagation of
two field frequencies which appears via the D(l, l, r) vari-
able and whose role is well known essentially in the genera-
tion of the instabilities [21,19].

We shall now determine all the steady states that may be
presented by the system in the whole parameter space.

0 4
+ -,

' 4(p'-4)'+8(p'+ p'-1), (2 3a)

I,=O,

d =p —I„=—,'[(p +4) —vC],

(2.3b)

(2.3c)

2p'-I. .
dio=

2 ~
=-'[(—p' —2)+ D~],2+I, (2.3d)

d11=0. (2.3e)

The parameter C is defined as

C= (p' 4)'+—8(p'+ p' 1)— (2.4)

We also note the useful relation

dP + d10 1 .

An increasing effective population inversion do (via the

pump) decreases dio. the difference between the contribu-
tions to each polarization is reduced and this is favorable to
the weak model (WM).

The oscillation condition for the SM (1 &0) occurs when

p +p')1 and the threshold value for the pump parameters
is then

II. STEADY STATES p +p =1. (2.6)

In the long-time limit, the system reaches steady states
which depend on the parameter space. They are mathemati-
cally accessible by canceling the time derivatives of the vari-
ables. The complex steady states of the fields are denoted
E ~(r) = /I, ~exp(iA Yr) Three solut. ions appear.

(1) The trivial one corresponds to a laser below its thresh-
old and then I,=I~=0, Doo=&, Dio=&, and D»=0.

(2a) The monomode oscillation occurs when one polariza-
tion and only one is operating. Mathematically, there is a
symmetry with respect to the losses. We call the strong mode
(SM) the direction whose losses are less important (X polar-
ization when K) 1). In that case, the SM is characterized by
the following intensities:

a 0!y
PO Y~~ Q

—i 0

K
pi ~1 Q

—i iQNy

K
(2.7a)

For X-linear (respectively, I'-linear) pumping the X intensity
(or SM) starts its oscillation with lower (respectively, higher)
pump rates p since p' is positive (respectively, negative).
Moreover, and from Eq. (2.3d), we observe that the circular
pump polarization (p'=0) induces a steady negative dio
which increases the WM source terms. One can expect more
complex dynamical behavior in this particular pump case.

(2b) The natural variables and parameters of the weak
mode steady state appear as the following:

n, M~ —4
2A'

+ v'(n W —4) + 8(n, .&+n W' —1),
2 0,'x

0 Cly a CIy
Dp= Dpoz= Q do, Dio= Dioz= Q dio,

(2.1a) and

Iy=0,

and the frequency of the oscillating mode is

A = —6

(2.1b)

(2.lc)

Iys Ay Iy 0

The new parameter defined as

an a(1+6,)
&ny K(1+6 )

(2.7b)

(2.8)

p'= n,W, p'= n.W',

d0 ~x 00s ~ d10 ~xD10s ~ and I,=n I,
and the steady SM solution can be written as

Natural variables and parameters can be taken as

(2.2a)

(2.2b)

takes values around unity for reasonable values of 5 (be-
tween 0 and ~0.5). It measures how far from the central
atomic frequency are the two polarization frequencies: for
example, Q(1 implies a disadvantaged X polarization
(SM). However, in the second paper, we shall discuss some
experimental situations which may relax this Q —1 restric-
tion.
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The WM steady solutions are characterized by the follow-
ing relations:

pp —4
Iy. = + 2 u'(P' 4)—'+g(P' P—' —1)

5.0

= [(P' —4)+ v'C'] (2.9a)

I,=O, (2.9b)

where C' is now defined as

C' = (P 4) +—8(P —P' —1).

The frequency of the weak-field polarization is

(2.10) 1,0

0.0
0.0

I

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

A, =scA, —6. (2.1 1) pump parameter

Dpp=P —Iy, = —,'[P +4 —v'C'], (2.12a)

2 I' '+ I,
ys

(2.12b)

The population variables take the following steady values: FIG. 4. Bifurcation diagram representing the OFL steady states
versus the bifurcation parameter M~. The system is stable on the
full lines. The dashed lines correspond to the continuation of the
SM solution which becomes unstable. The parameters are

6,= 1.0, 6 =0.0, 6=0.01, a=K= 1.0, y=0.001, and
/2.

D»=0 One can lay down the definitions
2.12c

The weak-field polarization starts its oscillation when
P —P') 1 or p —p') Q, and the threshold condition for
the WM is

and h'=6 u —6 n,
(2.16a)

(2.16b)

or p —p'=Q. (2.13) I= 1+I,+I,= 1+u E,+ o.yE„

Some observations can be pointed out. This condition de-
pends now on the loss ratio: the threshold increases with K.
The effective pump threshold p of this mode is also in-
creased (p') 0) in the case of the X-linear pump while it is
decreased for a 1' pump (note that the WM is the F-direction
mode when K) 1). Finally, D,p is always positive above the
threshold whatever the p' values.

The population inversions follow now:

Dpp —Dip= 1 or dp —d, p= Q, (2.14)

and one can notice the negative role of d]p for the WM since
it increases with dp.

These two monomode fields can never oscillate simulta-
neously and in a stable way: when a parameter is varied the
system can switch from one steady state to the other via a
steady bifurcation. Thus even in regions of the parameter
space where these two steady states may coexist the system
will select one of them depending on the attraction basin (or
initial conditions).

(3) A bimode solution is also present in the system.
We get it in seeking for solutions of the form
E ~(r) =E„~,exp(iA, ~r+ @,~] for the fields, and

Dtt(r) =&~texp(iADr+ @Dj, Dpp( ):rH , pD&p(r) =u tp
for the population inversions. The P's are the initial phases
of the complex variables. The existence of such a steady
solution requires the following relation to be satisfied (solv-
ability condition):

Ao h cos@+h'sing = const.
y h sing —h'cosP (2.16c)

h cos@+h'sing
d»= N~H](= E,Ey,dp, (2.17a)

which supposes tang) —h/h' to get a d» positive ampli-
tude: the phases are not arbitrary and the solution is phase
locked,

I,—Iy,
Id jp=p dp2

(2.17b)

where the last equation appears as a conservative law for the
intensities: it expresses the fact that when a parameter is
varied an increasing intensity of one polarization necessarily
induces a decreasing of the other one. This feature is repre-
sented in Fig. 4, where we have plotted the steady-state in-
tensities versus the pump parameter p . The X polarization
starts oscillating around unity pumpings and the bimode at
3.5: the X intensity falls progressively as soon as the Y in-
tensity increases. For the displayed case, the X-linear pump
is considered and the parameters are a = 1.0, K= 1.0 (or
symmetric losses), y= 0.001, 8=0.01, b, = 0.0, and
5 =1.0.

The steady bimode solution is characterized by the fol-
lowing relations for the inversions where the notations (2.2)
of the strong mode have been used:

Qz)=A —A (2.1s) and the variable dp satisfies
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(I, I~—, ) (h cosP+ h'sing) I„I,
21 CY& AY

4I

=po —pt " ".(2.17c)I

2, 4

2.0

The amplitudes of the output fields are then solutions of

h cosP+h'sin@
1 = (dp+ d&o) I~, — do(cosg+ 5 sin@),4Iay

(2.1ga)
laser of f

h cos@+h'sing
Q = (dp dtp) I dp(cos@ —b, ~sin@),4In

(2.18b)

while the frequencies are given by

I~, h cosP+h'sing0 = 5 (dp+ d, o)
— dp( —sin@

Ay

0.4
0,0

25.0 i

20.0

(b)

0.2 0.4

detuning

0.6 0.8 1.0

+ A,cosP),

n, = —a+rCQ 'a, (do dto)—
(2.19a)

15.0
E
O

, I, h cos@+h'sing—ICQ ' — do(sing+ 6 cos@),
10.0—

(2.19b) 5.0—
stro ak mode

h sin@ —h'cos@
A, ~ = —yI

h cosP+h'sing ' (2.19c) 0.0 '

0.0 0.5
I

1.0

detuning

I

1.5

aser off

2.0 2.5

This last equation is identical to (2.16c).The general solution
of the system (2.17) and (2.19) is not easy to obtain analyti-
cally even if the method is straightforward. One gets a
second-order polynomial for the intensity I, using the con-
servative character of the intensities (which represents in fact
a function of the frequency AD). Then via I one has access
to I~, and all the other variables (still versus AD). The Ao
equation (2.19c) leads to a polynomial equation for AD that
solves the problem fully while the compatibility condition
(2.15) is finally utilized to fix the combined phase tt. The
formulas are complicated and cannot be explored in the pa-
rameter space: we shall not present them here. However, in
Appendix B some elements of these calculations will be ex-
panded in a perturbative case corresponding to a small y
expansion: the bimode solution is obtained, especially its
threshold, and this can be related to the stability analysis
detailed in a second part of this work.

As a confirmative element of the role of the variables and
a matter of discussion, we show in Figs. 5(a) and 5(b) two
cases of possible behaviors versus two parameters (.W and
b, ), obtained by a direct integration of the set (1.19) and for
a realistic parametric situation [b, =0.5, 8'= 0.001,
~ = jj= 1.0, y=0.001, and W'=0.0 for Fig. 5(a), and

/2 for Fig. 5(b)] corresponding to respectively circu-
lar (a) and linear pump polarization (b).

The observations confirm the previous analyses: as an ex-
ample, for a fixed detuning 5 favorable to the SM and thus
less than A~, the system first switches on the SM monomode
output and then as the pump intensity is increased it starts

3,2

3.0

2.8

2.6
O
O

2.4
E
CL

2.2

2.0

1.8
0.0

I

0. 1

I I

0.2 0.3

detuning

0.4
I

0.5 0.6

oscillating on the bipolarized solution. In contrast, when
the WM oscillates first. The WM threshold is higher

valued compared to the SM threshold and the bimode opera-
tion follows the same rule: "large detunings" means less
probability for atomic emission (with respect to the emission

FIG. 5. Steady states derived from a direct integration of the
system (1.19) versus the pump P and 5, for the parametric situa-
tion 6 =0.5, 8=0.001, a=IF=1.0, y=0.001, and (a) .~A'=0. 0,
which means a circular, and (b) H~' =M~~ /2, a linear pump polariza-
tion, while (c) is the same as (a) and (b) but versus 6 and for
M~'=M~/2, 5„=1.5.
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gain line) and hence need more pumping to realize the oscil-
lation. Comparing the two figures 5(a) and 5(b), one can say
that the X-linear pump [case 5(b)] presents a stronger stabil-

ity with respect to the monomode oscillation: the operating
thresholds are lower and larger pumpings are needed to start
the bimode oscillation. We also note that larger detunings

are necessary to realize the WM oscillation: the intersec-
tion point corresponds to g= 1 (or equal detunings) in Fig.
5(a) while Q is much lower (5,)b, ) in Fig. 5(b). The sta-

bilizing effect on the X mode due to the nonzero (and posi-
tive) value of P' (and then of D&o) is more effective when

the pump is X linear rather than circular. However, for large
detunings, the WM oscillation still occurs.

We must make clear that the direct integration includes
the stability characteristics of the solution: versus 5 and for
a fixed pump parameter, one can observe that the SM is
stable below the intersection point, while the WM is stable
above it. This is just the contrary if one studies the system
versus A~ as presented in Fig. 5(c). In this case, one has to
take a large enough 5, detuning (around 1.5) to ensure that
an existence domain of the WM exists. The worse pump
condition for WM oscillation, the X-linear pump, is consid-
ered. In the case of a circular polarization, 6 around 0.5 is
enough to allow a WM oscillation. These comments show
the counterbalanced effect of two parameters such as the
detunings and the pump rates which describe the competition
between their originating processes: the broadened emission
and the nature of the pumping. These stability conclusions
will be confirmed in a second paper.
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APPENDIX A: FOURIER EXPANSION OF POPULATION
INVERSION AND RELATED PUMP PARAMETERS

In its final form, the model presents two pump parameters
and three population-inversion variables. The aim of this Ap-
pendix is to outline their origin.

The pump parameter is related to the [o.+R(8)] term
in Eq. (1.17). The first contribution is due to occupation of
levels (3) and (4) at thermodynamic equilibrium while the
more relevant second term is the optical pumping and thus
depends on the polarization direction. Replacing the

ri, ~(a, z, t) (1.12) in the set (1.17) gives two nonlinear con-
tributions of the form cos 8E,+cos8 sin8 EYexp[i(k~
—k, )z] and sin 8 E~+ cos8 sin8 E exp[ —i(k —k,)z].

The exponential terms suggest Fourier expansion versus
the longitudinal z coordinate, the cos 8 (or sin 8) terms are
transformed to cos2 0, and the cos 0 sin 0 term to sin2 0:
terms of transverse expansion appear. Thus in this problem
two parallel series are needed. When it is applied to the
population inversion this mathematical tool leads to the co-
efficients D(i,j,t) and only three components of the expan-
sion are necessary (and kept) in our model. At order (0,0) in
0 and z, one obtains

CONCLUSION
tL f2

D(0,0, r) =
2mNL) p g p

dz d8 n(8)D(8, z, r). (Al)

We have presented a vectorial model describing a laser for
which the simultaneous oscillation of the two transverse field
polarizations is realized. This dynamic is supposed to have a
"material origin": the atomic polarization is transversely po-
larized so that the nonlinear interaction between light and
active atoms is modified. This choice of formulation follows
the observation of an experimental dynamical behavior gov-
erned by the population inversion (also called population dy-
namics). In this way and far from phenomenological model-

ing, a theoretical justification for the presence of two
"population inversions" [D(0,0, r) and D(1,0, r)] and also
two pump parameters A» and 5~ ' has been derived even if
we deal with assimilated "two-level" atoms. The calcula-
tions have been expanded for the siinplified case of spatial
isotropic distribution of the dipole-moment orientation. Nev-
ertheless, the steady solutions presented by the model and
the number and the role of the system variables confirm
qualitatively the main steady features presented by the OFL.

One needs now to explore the stability of these steady
states and to go further in the study of the dynamical behav-
iors presented by this model, the goal being a comparison
with the experimental observations. A second paper will be
devoted to linear stability analysis using the bifurcation
theory. This asymptotic study measures, in the immediate
neighborhood of the variables, the differences induced by a
small perturbation. The parameter space will be analytically
explored as far as possible in terms of the system dynamics.

at the first order in 0 and zeroth in z one has

1
D(1,0, r) =

27rNL 0 g 0
dz d8 n(8)D(8, z, r)cos28,

(A2)

and finally the order unity in both 0 and z is the following:

l (' L f2~'
D(1,1, r) = dz d8 n(8)D(8, z, r) sin28

2rrNL J 0 0

Xexp( —i(k, —k )z). (A3)

v T,p,
d 8 n(8) [a.+R(8)],

SA 8p/K J p
(A4)

When n(8) =N, D(0,0,r) is the normal averaged population
inversion between the lasing levels, while D(1,0,r) is the
effective transfer population inversion between the two
transverse directions: it represents the existence of polarized
states in the medium. D( 1,l, r) is essentially the longitudinal
grating due to the propagation of two frequencies.

For the pump parameters, only their angle dependence is
considered (which is probably a strong approximation) and
so only the 0 expansion is needed. One can easily show that
only the two following orders:
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v T,p,
d0 n(0)[rr+R(0)]cos20 (A5)

8@soy~ ~o

appear naturally in the equations.
The optical pumping R(0) is given by Eqs. (1.18) which

can be summarized in the following way:

6,0

B'
R(0, P) = —(I + cos2(0 —P)t

2
(A6a)

to take into account the P-linear transverse polarization of
the pump, or for the I-, or 7-linear pump and circular
pump:

V)
Q

C

2.0

B'
R(0) = —(I+n cos 20),

2
(A6b)

where n is respectively + 1,—1, and O.

In the case of an isotropic distribution of dipole moments
and defining the coefficients A and B such that

0.0
0.0

Q (rad)

P T/L &&TspA= o and B= ' B'
4fl Rp yK 86epyx

the two first-order pump parameters reduce to

P2
A+ — d0 n(0),

2/ 27rW J p

)2vr
.~Z~' = n — d 0 n ( 0)cos 2 0,

2 2mN„p

(A7)

(A8)

(A9)

FIG. 6. The bimode intensities are plotted versus the angle P of
the linearly polarized pump with the X axis for the parametric situ-

ation M~~ =8, 6 =0.9, 6,=0.1, 8'=0.01, a=IC=1.0, and

y= 0.09.

In the second paper, we shall consider only the cases (a)
and (c). The relation between the cases (a) and (b) is evident
when one observes Fig. 6: this graph gives the intensities of
two polarizations versus the angle P of a P-linear pump for
which. P~=A+B/2 (taken around 8) and PA' =(B/4)cos2$.
In that case the thresholds of the SM and WM are respec-
tively given by

where N is the total number of active atoms. Therefore, and
because of the n(0) choice, .A~ is the 0-independent term (or
the effective pump) while:P~ contains the pump contribu-
tions to the dipole moment directions (0).

(a) In the case of an X-linear pump, n= 1, one easily
obtains B, B

=A+ — and P~'=—
2 4

At thermodynamic equilibrium, the levels are generally little
populated, the spontaneous emission contribution and the
parameter A are negligible, and one obtains the relation

The threshold value of the SM (X-polarization
oscillation) is p = —, while for the WM its value is higher:
PO g

—lp0

(b) In the case of a I'-linear pump (n = —1) one getsB, B
=A+ — and M'= ——.

2 4

At thermodynamic equilibrium, A~'= —
—,'P'. The threshold

condition for the SM becomes p =2 and for the WM (the I'
direction) the oscillation starts when P = g 'po) —,.

(c) For a circular pump polarization, r~
' = 0 and the pump

contribution to each polarization is equal. The threshold con-
dition for the SM becomes p = 1 and for the WM (the I'
direction) the oscillation occurs when P = g 'p )1.

(A~+5~ '),h,
= 1/n, and (5~+ —A~'), h,

= IC/an, , (A 10)

and one can see from these formulas that the WM threshold
directly increases when the loss ratio increases while the
SM s is independent [7(b)]. In Fig. 6 the parametric situation
is 5,=0.9, 5,,

=0.1 (the I'-polarization oscillation is advan-

taged), 8=0.01, a=K=1.0, and y=0.09. We have plotted
the two steady bimode polarization intensities versus the
angle P of the linearly polarized pump and the X axis of the
fiber. The values of the intensities are somewhat cosine (sine)
related to the angle P [7,20]: the asymmetry of the curves is
due to the detunings.

APPENDIX B THE BIPGLARIZED STEADY
GSCILLATIGN

The system (2.5) and (2.19) can give us more information
about the bimode oscillation in the particular but real situa-
tion where y(&1. We start the calculation by imposing the
following necessary requirements: the steady values of I, ,

I~, , dp, and d&p are of order unity in the small-y expansion,
while d» is taken as o(y).

Following Eq. (2.17a) the lowest order of the combined
phase is fixed: h cos@ +h'sin@ =0, and the phase is
locked such that
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tan@(0)=- a, +n
5 n, —A, u,

(Bl) (a)

The symmetric case (A, =Ay) corresponds to a m/2 —P
phase.

From the zeroth order of Eq. (2.18), one easily gets the
real "inversions" as Po 2.0

ode

do{ )=(Q+1)/2 and d10 =(1—Q)/2, (B2)

while d» evidently cancels [since it is an o(7) term]: this(0)

confirms the truncation of the infinite longitudinal Fourier
series to this order.

The intensities are then derived from Eqs. (2.7lb) and
(2.17c) and are given by

0.0
0.0

rnonomo

()/tIIM ?

0.5 1.0

laser off

I

1.5
I

2.0 2.5

( 1 3 Q)/3 4Q/3

2 Q —6Q+1 (B3a) (b)

(Q —3)/ '+4/ '

2 Q —6Q+1 (B3b)
2.0—

The simultaneous existence of the two polarization intensi-
ties is governed by the following inequalities:

E
O
O
CL

1.5—

Q —6Q+1
(1 —3Q)/ ' —4Q/ '- (B4a)

1 0 rr)onorr)od

(Q —3)/ '+4» '- Q —6Q+1
2

(B4b) 0.0
0. 1

I

0.2
I

0.3

laser off

0.4
Q

0.5 0.6 0.7

Q —6Q+1
2(1 —5Q)

(B5a)

For a linear pump polarization, these inequalities take the
form FIG. 7. Same as Fig. 5 with (a) H~ =0 (circular pump polariza-

tion) and (b) W' =W/2 (linear pump polarization) obtained with the
asymptotic Eqs. (B6) and (B5), respectively. The full lines corre-
spond to the bimode existence domain while the large-dashed lines
are the WM threshold and the small-dashed lines the SM threshold.

Q —6Q+ 1

2(Q —1)

while in a circular-polarization situation one gets

Q —6Q+ 1

2(1 —3Q)

(B5b)

(B6a)

Q[=K(1+8, )/a(1+6, )], an increasing 5, induces a de-
crease in Q, so that one can suspect the WM to be stable for
Q(Q;. The linear stability analysis in a second paper will
provide more information.

From the point of view of frequencies, one easily gets

Q —6Q+ 1

2(Q —3) (B6b)
(B7)

The systems (B6) and (B5) are represented by Figs. 7(a)
and 7(b), respectively, around their intersection points

1

( Q; = —, and 1, respectively). These figures correspond
to Figs. 5(a) and 5(b) which are obtained by a direct integra-
tion of the system of differential equations (1.19) and are
given versus the parameter 6 . One can notice, however,
that for Q~Q; the existence of the bimode solution is
governed by the 1'-polarized oscillation (B4b) while above
the intersection point it is the X polarization that fixes
this existence limit. We have also reported on the same graph
the monomode thresholds [large- (WM) and small- (SM)
dashed line]. At this stage, one cannot say which mode
is stable. However, keeping in mind the definition of

while

~(0) ~{0) ~{0) ( 1 + I(0)+ /{0))
D y x xs ys y(1)

gh'+ h'
d(')— (O) (o)

8(b—KA +b, )y x
(B9)

This last equation leads to the combined-phase first-order
correction and contributes to the next order. The inversions
are given by
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h' —h
o h2+h z 16( ~+ILL)t g )

t~ y ~( y)
y x

2x(1 —Q}+y(1+ Q}= —4x )dIO —2y do (B12a)

—2(~,~,I(', )-,~.I(',))}, (B10) x((Q+ 1)(2x +y ) —4p y }+Y(4p x —2x y

I2 h2

16( $+gg —g )
( ' » - +

y x

(I(o) I(o))(g g )}

The corrections to the intensities are then given by the fol-

lowing linear set of equations for x =I,' + I ', and
I(&) I(&) .

xs ys

d(1)
X(1+Q)}=—Sx (p x —p'y }, (B12b)(Q+1)

where x~ = l+ I + I and Y
= I +I, are known.xs ys xs ys

The calculation to this and further orders does not give
any interesting and complementary information on this bi-
mode solution.
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