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Beam self-focusing in the presence of a small normal time dispersion
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We present a system of modulation equations that approximate the focusing of the nonlinear Schrodinger
equation in the presence of a small normal time dispersion (TDNLS). Since the modulation equations are much

easier for analysis and for numerical simulations, they can be used to get a general picture of the TDNLS
focusing. Analytical and numerical agreement between the modulation equations and the TDNLS is estab-
lished.

PACS number(s): 42.65.—k

I. INTRODUCTION

The nonlinear Schrodinger equation with time dispersion
(TDNLS)

arises in the study of the propagation of ultrashort laser
pulses in media with a Kerr nonlinearity. Here P is the re-
scaled amplitude of the electric field, z is the axial coordinate
in the direction of the beam, A~ = 8„+8, /r is the Laplacian
in the transverse r=(x,y) plane, e is the time dispersion
coefficient, and t is the time in a coordinate system moving
with the group velocity. Initial conditions are given at z=0
for all x, y, and t. Thus z plays the role of time and t the role
of a third spatial variable in this problem.

The time dispersion parameter e depends on the optical
properties of the medium. In the case of ultrashort laser-
tissue interactions, where pulses in the visible regime propa-
gate through aqueous media, its value is given by [I]

a

cT(

where a is the beam width, c is the speed of light, and T is
the pulse duration. Hence e is positive (normal time disper-
sion) and is proportional to the ratio of the radial pulse width
to its axial length, indicating that time dispersion is still
small for "cigarlike" pulses (i.e., long and narrow) but is
dominant for "disklike" pulses.

When time dispersion is negligible each t cross section of
the pulse [i.e., the plane t= const in (x,y, t) space] evolves
independently according to the Schrodinger equation with a
cubic nonlinearity (CNLS):

In that case, CNLS theory predicts that sufficiently intense
beams undergo self-focusing and blow up in a finite propa-
gation distance.

The experimental evidence that ultrashort laser interac-
tions depend on the pulse duration [2—4] is related to the
increasing importance of time dispersion. Numerical simula-
tions have shown that even a small amount of normal time
dispersion in the TDNLS can have a substantial effect on the
focusing and lead to the temporal splitting of the pulse into
two peaks [5—8]. The peak splitting phenomenon has at-
tracted attention because it delays the focusing and may pro-
vide a mechanism for its arrest. Although the onset of pulse
splitting was explained based on a local analysis of self-
similar solutions very near the point of peak intensity [6,8],
this analysis is not valid past the onset of pulse splitting. In
addition, numerical simulation of the TDNLS cannot con-
tinue very far after the peak splitting, at present. Thus the
general question of whether or not normal time dispersion
arrests collapse is still open.

In this paper we analyze the TDNLS focusing when time
dispersion is small using an alternative system of modulation
equations [9]. This provides a theoretical understanding of
the focusing behavior well past the onset of pulse splitting.
We start by reviewing the CNLS focusing (Sec. II). In Sec.
III we derive the modulation equations by treating the
TDNLS as a small perturbation of the CNLS. We establish
the validity of the modulation equations by demonstrating a
correspondence between their analytical properties and those
of TDNLS (Sec. III C) and by extensive numerical compu-
tations (Sec. V). We analyze special solutions of the modu-
lation equations in Sec. III D.

Vysloukh and Matveeva [10]have analyzed the effects of
time dispersion on the propagation of planar waveguides and
have shown that normal time dispersion suppresses the
modulation instability of CNLS with a single transverse di-
mension and slows the self-focusing rate considerably. As a
result, the pulse splitting into one-dimensional (1D) solitons
is delayed. One cannot, however, extend this result to higher
dimensions: Self-focusing is always balanced by radial dis-
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persion in one dimension but not in higher dimensions,
where it can result in wave collapse. Indeed, the sensitivity
of self-focusing to small perturbations in two dimensions has
to do with it being the critical dimension for blowup.

In several papers it is argued that the paraxial approxima-
tion used to derive nonlinear Schrodinger equations may be
inappropriate when intense self-focusing occurs [11,12]. An
important issue in understanding experimental results is
whether time dispersion is the reason collapse is not ob-
served or whether it is the breakdown of the paraxial ap-
proximation of the wave equation. The answer to this ques-
tion depends on the initial pulse shape, since nonparaxiality
arrests focusing when the beam width becomes comparable
to a few wavelengths [13].The beam width at which the
effects of time dispersion become important depends also on
the initial conditions. Other interesting phenomena have
been observed in simulations of perturbed CNLS equations.
While some of these perturbations have a direct physical
origin (e.g. , anomalous dispersion [14], others (e.g. , satu-
rable nonlinearity [15])have a general, mathematical form.

f co

R2 rdr=1. 86.N, =
Jo

1 iiLL, $ti'~ —P( j, ()exp~
L '
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L (s) ds, L=Z, —z, z&Z, .
0

Based on this transformation and on the waveguide solution,
one can construct an exact CNLS solution that blows up in a
finite distance Z, :

1 t r ) i r /4+1).
R ~ exp~ —i

Z, —z ~Z, —z) i Z, —z I

The CNLS has a similarity transformation where a linear
function L(z) is used to rescale the solution as well as the
independent variables:

II. REVIEW OF THE CNLS FOCUSING

Since we will derive the modulation equations by consid-
ering TDNLS as a perturbation of CNLS, we start by giving
a brief review of the CNLS focusing. For more comprehen-
sive presentations see [13,16,17,15]. We consider only radi-
ally symmetric solutions in this paper.

Two important invariants of the CNLS (2) are mass

This solution is unstable and has not been observed in nu-
merical simulations because it has exactly the critical mass
for blowup. However, it motivates looking for blowup solu-
tions that have a quasi-self-similar structure in the vicinity of
the singularity

=1 iLLzg0=
L V(C, ()exP if+

Ã(P) =
~ P~ rdr=const

Jo

and energy

f oo 1
H(P) =,

oo ~ho

The variance identity

t
z

L (s) ds.
0o

Here V approaches the Townes soliton R and L is not nec-
essarily linear in z. The equation for V is

~v, +a, v —v+ivi'v+ g'pv=o,

where

oj V co

az' '
Jo2 =8H, V= r ~Pi rdr P= —L L„ (4)

can be used to show the existence of solutions that blow up,
because when H(go) ~0 there is a finite z for which V=0, if
the solution existed up to that point.

The CNLS has waveguide solutions

is an important parameter in this problem.
As the pulse focuses, p+0 and V can be expanded in an

asymptotic series of the form

V~ Vo + V) + ~ ~ ~

where R(r) satisfies

P= e "R(r), where the leading-order term Vo depends on g only through

p and satisfies [16,17]

b, iR —R+R =0, R'(0) =0, R(~) =0. (3)

N~N„

which is equal to the mass of the Townes soliton

The unique positive solution of this equation is monotoni-
cally decreasing and is called the To~nes soliton. A neces-
sary condition for blowup is that the initial mass be above a
critical value

5 Vo Vo+ Uo+ 4PPVo —i v(P) Vo=O,

(p)
—vr/~P (6)

Although v(p) is exponentially small compared with the
other terms, it has to be included in (6) to ensure the right
behavior for (&)1, since in its absence the solution would

—d/2 i ~Pghave large oscillations Vo-g "' e'~~~ .

When p(~1, it is related to the excess mass above critical
of the focusing part of the solution [15]
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A. Derivation of the modulation equations

At the initial stages of the TDNLS focusing the effect of
small time dispersion is negligible and each t cross section
follows the adiabatic law

L= $2P'"[Z, (r) —z],

The rate of radial mass loss becomes very slow compared
with the focusing rate:

where Z, (t) is the location of blowup. As a result, the rela-
tive size of the time dispersion term

N„&—= —M—v(P), (8)
—eL 2

which can be also written as

p — p(p)— (9)

In [16,17,6], p is written in the form p=a +a& so that
a= —L&IL. If we then regard a& as small compared to a,
(9) becomes

increases, indicating that the TDNLS solution is eventually
not a small perturbation of (11).

In addition, as the pulse is focusing according to (11), V
approaches R and the nonlinearity and the Laplacian almost
cancel each other. Hence time dispersive effects become im-
portant when eP«becomes comparable to (A~ /+ P~ P).
Since in this regime eP« is still a small term, for each t the
solution is a small perturbation the CNLS and it is natural to
look for it in the form

1
m/a

2a (10)
1 ( L I 2)

P(z, r, t)= V(j, (, t)exp ig+i ——,
L(z, r)

' '
~

I 4i'

which appeared in [16,17] without the exact exponential fac-
tor ~. This equation can be solved asymptotically, leading to
the log-log law [18,16,17]

r I'~ 1

L(z, t) '
J o L (s, t)

(12)

2~(Z, —z)L-
~

Inln[ I/(Z, —z) ]i

where now the radial scale L(z, t) depends also on t We call.
this the generalized Talanov transformation. Using this in (1)
we get the following equation for U:

One can, however, consider (10) or better yet (9) directly and
note that changes in p are exponentially slow compared with
changes in L. This then leads to the adiabatic law [15] for
the variation of the beam amplitude L

g2 P 1/2(Z )

Asymptotic analysis and numerical simulations show that the
adiabatic law, with p evaluated from (7) rather than from (9),
is valid even in the early stages of self-focusing, while the
log-log asymptotes are reached only at huge focusing factors
[13)

III. MODULATION THEORY FOR THE TDNLS

Self-focusing in the CNLS depends on the initial mass
and is also sensitive to perturbations of the power of the
nonlinearity: If the power is less than 2 (subcritical case) the
solution exists for all z, while if it is greater than 2 (super-
critical case) the solution blows up in general. As a result,
even a small time dispersion term can have an important
effect on the TDNLS focusing. Focusing is much easier to
understand in the case of anomalous time dispersion
(a~0) because this case is supercritical for self-focusing as
the dimension of the transverse variables is 3. It is the dif-
ference in signs between the Laplacian and the normal time
dispersion that complicates the TDNLS analysis.

i Vg+ E~ V —V+ V~ V+ P —V

V ( L r ) ( L—eL —exp i f+ i —— exp —i ( i ———= 0.
L

~
L 4i ~

L 4i

0&P(&1. (14)

The modulation equation can be derived from the mass
balance between nearby t cross sections of the solution.
From (1) we get the conservation relation

f co f oo

r dr=2m Im /*0«r dr
&Zap Jp

(15)

For P of the form (12) the rate of the cross-sectional mass
change is computed as in (7) and (8)

f oo

r dr= M[P, + v(P)]. —
~~ Jp

(16)

To estimate the right-hand side of (15) we use (12) and (14)
to approximate the time dispersive term

(13)

As in the stationary case, p is defined by (4) and we assume
that the cross-sectional mass is slightly above critical
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( L r ) ( L, r&1'
Im —exp ij+i ——

~ exp —i( —i ——L(L4(iL4( We look for solutions of the form L=Lp+ 6L, where
Lp

=—const and the perturbation BL is small compared to
Lp. The linearized equation for 8L is

4N, 1
(BL)„„= —6(BL)„.ZZZZ M L6

Using (16), (17), and the identity

f oo

(Rg)~R (d(=0
Jp

the mass balance (15) reduces to

(18)

Substituting BL=e xp(ikt —icoz) we get the dispersion rela
tion

2C
co = k

p

2eN,
P, + v(P) = (19)

which shows that the system is linearly unstable for all k.
However, it should be remembered the Lp ——const corre-
sponds to the waveguide solution

The exponentially small mass radiation effect had to be
retained in the analysis of CNLS focusing because it is the
only mass-reducing mechanism. However, radial mass losses
are now negligible compared with the temporal mass Aux so
the term v(p) can be omitted in (19).Equations (4) and (19)
and the (,L relation in (12) form a closed system, the modu-
Iation equations

1, ( r
P= —e'~R —',

Lp ~Lp)

which is unstable in the radial direction as well.

C. Lagrangian formulation2',
M

L-= PL '—
(20)

(21)

We can use the Lagrangian of the TDNLS

~» dz, ~=™(PP,*)—
I
tl'„I'+ el tl', I'+ —,

'
I
tl'I',

2 (22) x= (x,y, t)
The variables in the modulation system for the TDNLS

focusing are the pulse width L, the excess mass above criti-
cal p, and the local axial phase (. When e=0 we recover
the adiabatic law (11) and g has its maximum at the peak
mass cross section. Hence normal time dispersion results in
mass loss to the neighboring cross sections leading to the
pulse splitting, while anomalous time dispersion (e(0)
tends to enhance the focusing.

To leading order in p Eq. (20) can be written as a conser-
vation law

BN, = —[uN],

where

to derive a Lagrangian for the modulation equations, by fol-
lowing the same approach used in deriving the modulation
equations, namely, using (12) and (14) and averaging in the
radial direction (see the upper part of Fig. 1)

eN, (s„)
W~r dr= (gz) +

z

The modulation Lagrangian M can be written as a con-
strained one using only first derivatives:

(1
M~=M(L, ) + eN, (j,) +MP~ —

q
—g,

u=2egz with M p being the Lagrange multiplier.

is the velocity in the t direction. The modulation equation
can also be derived from energy balance arguments and from
the solvability condition for linearized CNLS operator about
the Townes soliton (Appendix).

B.Linear stability analysis

To check the linear stability of uniform solutions of the
modulation system we express it as a single equation in L:

2Ã, 11—(L Lzz)zz M L~

eN, ((„)
(s,)'+, dz dt

z

(23)

invariant to derive conservation laws for the modulation sys-
tem. Invariance to phase (i.e., the identity), time, and space
translations leads to mass, energy, and momentum conserva-
tion

Conservation laws

Based on Noether's theorem [19], we can use the trans-
formation groups that leave the action integral
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TDNLS
Equation

TM Modulation
Equations

L(z, t) =L(Z, (t) —z), P(z, t) =P(Z, (t) —z),

&(z, t) = f(z, (t) —z)

Therefore

(24)

j„=—Z, g, +Z, s«, (25)
TDNLS

Lagrangian
TM Modulation

Lagrangian where the overdot stands for differentiation with respect to
time. Equation (20) reduces to

TDNLS
Invariant s

TM Modulation
Invariant s

2N,
P, =y( —Z, s, +Z, '4„), y=

M
e.

Integrating this last equation gives

P=Po+y( —Z, g+Z, s, ), (26)

FIG. 1. Summary of the relations between the TDNLS (1) and

the modulation equations (20)—(22). TM is the transformation used
to derive the modulation equations from the TDNLS, namely,

changing from t// to the modulation variables using (12) and (14).
Since the modulation Lagrangian is uerived by applying TM to the

TDNLS Lagrangian, the operators TM and the variational derivative

(8) commute. Likewise, using the Noether theorem (NT) to derive

a conservation law for the TDNLS based on a symmetry group of
the TDNLS Lagrangian and applying TM to this law results in the

same conservation law for the modulation system as if we used the

symmetry group for the modulation Lagrangian.

where

1
Po(t) = P(0») —yZ. ' [L ( ))p

and Lo(t) =L(O,t) is the width of the beam at z=O. It is
convenient to make a change of variable to the reciprocal of
the radial width of the beam

(27)

p dt=const,

—
—,
' (L )«+ (g,) dt = const,

[pg, —2L,L,] dt=const.

Then p=A&&/A and (26) can be rewritten in the form

A~~=(Po —yz, j)A+ yZ, A .

Introduce also a new independent variable by

po — z 1/3
( yzc)

y c

Then Eq. (28) becomes

(28)

These conservation laws could also be derived from the cor-
responding conservation laws for the TDNLS (Fig. 1).

A symmetry group for (23) that does not exist in the
TDNLS is the dilation transformation j(z, t)
—+X g(k tzX/). The resulting conservation law is

where

A„=sA+ 2 y2A3,

1/3Z 2
2=

2Z 2/3
C

(29)

(30)

f t2 ~N
(L'), +pc+z --'(L')„+

M (c,)'
/

—t(pg, 2L,L,)]dt =const+ t (—L,) — ((,)
- t

1

D. Sperial solutions of the modulation equations

Let us look for solutions of the modulation equations
(20)—(22) under the assumptions that there is a singularity
curve Z, (t) of the solution in the (z, t) plane and that in the
neighborhood of this curve the solution depends only on dis-
tance from the curve. In this case solutions of the modulation
equations have the form

The initial condition at z= 0 or /=0 is now at

0"
(yZ. )'"

and we note that for sufficiently small time dispersion

so- poe ' &) l.

The focusing of each t cross section is described by Eq.
(29), which defines the second Painleve transcendent func-
tion [20]. When analyzing blowup in (29) we have to distin-
guish between three cases, depending on the relative size of
the terms in (29).

At the time to where Z, (t) attains its minimum we have
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Z (tp)=0, Z (to))0. (31) P= Po —7'Z, i (36)

Ap =1
A = . Ai(s), Ao=

Al sp 0
(32)

At this t cross section (29) reduces to the Airy equation
A„=sA and its solution is

and it goes below critical at s=0, prior to the arrest of the
collapse.

For t cross sections that are not in the neighborhood of
tp the first term on the right-hand side of (29) becomes neg-
ligible. This leads to solutions of the form

The asymptotic form of the Airy function is [21]

3/2Ai(s)- s "exp( —'-, s ' ), s&) 1. (33) and since

1 1
A ——

r/ s —s,(t) '

Using this in (32), we find that for O~g(&po/e

A —Ape ~po~. (34)
U3

( YZ.)

This shows that during the initial stage of self-focusing the
solution agrees with that of the one in the dispersion-free
case, in which e=O in (28):

Atg= PoA.

To express this dispersion-free solution in terms of the origi-
nal variables we use (12), (27), and (34) to get

(L'), = (L') zC, = —2Po,

from which the adiabatic law of critical collapse [13,15] fol-
lows:

( ~ ) 1/2

L- [a(Z, —z)]'", a = 3 ~ lZ, l

e" .
AM)

(37)

In order to estimate the size of the neighborhood of tp
where collapse is arrested a more careful analysis is required.
Let

B= r)A

so that

we get by integrating this equation solutions with a one-third
power law for self-focusing collapse

(35) B„=sB+2B . (38)

The effects of time dispersion become important for
j&)Po/e. In particular, since the Airy function attains its
maximum around s, =——1.02 and decreases for s(s „,
[21] the collapse at tp gets arrested at

The behavior of the solutions of (38) is characterized by the
following result [22,23]. Any solution of (38) satisfying

limB(s) =0
S

max

zing, ds=z max
Sp

1 &s() 1

(7z.) "'J ...„&'

Using (33) we find that for so&) 1

and hence the collapse is arrested at

2
p

Zm~~ 2 ~1/2

)Leap

&~o 1
2

&~o A i(so) Lp

J A' 'J A'() 2 '"

is asymptotic to kAi(s) for some k. If
l kl (1, then as

g~ —OO

B(.) = o(l.l-'"),

and if lkl) 1, B(s) has a pole at a finite s, , depending on k.
To apply this result we express k in terms of the param-

eters of the problem and note that A should agree with (34)
in the domain s(&pp/e, when it is given by (32). Thus

r)A pB-kAi(s), k= . , s-so
Ai(sp)

'

which is the location Z, of blowup of the dispersion-free
solution, as we can see by setting z=O in (35) [13].The
maximum amplification factor at tp can also be estimated:

A (z,„) Ai(s,„) 0.54

A(0) Ai(sp) Ai(sp)

1/4 1/6

P M/2//, Z~(to) a

+sr [2N,Z, (tp) e]"

and the solution does not blow up only if

I »/I (Ioui(so).

From (30) and (31) we see that near tp

2
—i/2 )/6Z 2/3

( t t )

or, using (39),

(39)

In addition, from (26) the excess power at tp is
I»

—tol-Lo [Z (t )]
—i/6p —i/ MPO /3/V Z,a—
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which is an exponentially small in e neighborhood of to.
The above analysis of the modulation equations suggests

the following picture of self-focusing with small, normal
time dispersion. Solutions of the form (24) blowup for nearly
all t cross sections following the one-third power law (37).
However, collapse is arrested in an exponentially small tem-
poral neighborhood of the cross section to for which the
initial focusing is fastest. Power will move away from the

to cross section to the nearby cross sections and the initial
peak at to will split into two peaks that will continue to
focus.

There are, however, at least two problems with this pic-
ture.

(i) The arrest of collapse at to becomes inconsistent with

Z, (tp) being the earliest z for which collapse takes place.
(ii) The one third po-wer law is not really valid for the

TDNLS focusing since it implies that the corresponding P is

P = —L'L„-(Z, —z)

1 7

P(z &.t) = — u(g ( t)
L(z) L(z)

i z

j(z) = ds,
~ o L'(s)

u (j,(,t) satisfies

u~=iAi u —ieL u„+a(u()(+ilul u,

where

dL 1 dL
a(j) =L

dz L ds

and the overbar indicates that a, L, and ( are independent of
t.

The split-step method has two stages.

(i) Solve for each t cross section (t=const)

which blows up, violating the basic assumption in the deri-
vation of the modulation equations requiring that P be small.

Regarding the first problem, the initial stage of the self-
focusing is described by (11) with Z, (t) the singularity curve
in the absence of time dispersion and in the above analysis
we assume that Z, (t) in (24) is this singularity curve, since
time dispersion is small. With this interpretation, to is the
cross section of fastest initial self-focusing. Time dispersive
effects, however, make the power go below critical at to,
followed by temporal peak splitting, arrest of the collapse at
tp, and departure from the form (24) of solutions that is
based on the dispersion free singularity curve Z, (t). Away
from to where collapse is arrested there may be a different
singularity curve for solutions of the modulation equations
with the one-third power law. So the first problem is due to
the way Z, (t) is defined.

The second problem indicates that solutions that follow
the one-third power law ultimately violate the assumptions
for the validity of the modulation equations. In that case,
another theory for the advanced stages of the self-focusing is
needed. It is not clear that there are initial conditions for
which the solution will follow the one-third power law, un-
less P is very small for all time cross sections of the pulse. In
our numerical simulations of both TDNLS and the modula-
tion equations we did not observe the one-third power law.

u;=in, u+a(u()~+ilul'u

by combining a Crank-Nicholson implicit method on the La-
placian term and Adams-Bashford extrapolation on the oth-
ers. The main modification to the method used in [25] for the
CNLS focusing is in the way that a is chosen:

] f loo

a(u) = dt lul Im(uk' u*)( d(,
Gp) o

where

Go= G(up), G(u) = dt
Jo

The global smoothness of u is maintained since G(u) =Go .

However, since L is averaged over all t cross sections it
cannot follow the fastest collapse once the temporal varia-
tions increase, which eventually causes the simulation to
break down.

(ii) Solve for each r cross section (r= const)

Lt~= —/L OI~

using an explicit Crank-Nicholson method.

As a consistency check, we monitor the conservation of

IV. THE NUMERICAL SCHEME

We have carried out extensive numerical simulations that
compare solutions of the full TDNLS to those constructed
with the modulation equations. In this section we outline

briefly the numerical method used in the simulations. For
more details, see [24).

A. TDNLS

l

m ff'co'
J ~o

' '
~ Jo

and verify the convergence of the radial profile of lul to a
Townes soliton.

B. Recovering the modulation variables

Recovering the modulation variables from the TDNLS
simulation results is done using

The TDNLS (1) is solved by a split-step method, using a
uniform (in t) dynamic rescaling in the radial direction. More
specifically, under the rescaling transformation

(=argu(r= 0), P= WSP] Wg L= — L
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These relations are only approximate since they are based on
the asymptotic form of the focusing CNLS solution. In addi-
tion, the relation for p is only O(p) accurate. Additional
inaccuracy is caused by the numerical differentiation and by
the truncation of the integral when evaluating N„&.

C. Modulation equations

We solve the modulation equations (20)—(22) using a
second-order line method with an adjustable "time" step

dz = dzo + L2.

D. The one-third law

Since with the current code we cannot integrate very far
after the peak splitting, we cannot check directly whether the
solution follows the one-third law (37). However, we can
detect a power-law behavior by noting that if L-(Z, —z)
then p-(Z, —z) and

2L"p- const, n = ——4I
The value of n is estimated numerically by fitting
n lnL+ ln p-const.

E. Numerical comparison of the TDNLS and the modulation
equations

V. NUMERICAL RESULTS

Po(r, t) =b(t)R(r)e

b(t) = 1.03+0.01 sin(27rt), (4o)

with e=0.01 and where R is the Townes soliton (3). The
comparison results with modulation theory are shown in
Figs. 2 and 3, with the comparison starting at z0=0.667 and

z 0 = 0.886, respectively. The modulation equations capture
the temporal distribution before and after the pulse splitting.
Quantitative agreement starts to deteriorate as

~ p~ increases.
The agreement is better in Fig. 3, since the initial condition
for the modulation variables is more accurate, since it is
recovered at a later stage.

Results for the initial condition

Various initial conditions were used for the comparison,
showing good qualitative agreement between the TDNLS
and the modulation equation. However, in order to demon-
strate a good quantitative agreement, the initial condition
should be chosen in such a way that the error in the recov-
ered value of the "modulation variables" (Sec. IV B) is
much smaller than their slow temporal variation. It should be
emphasized that this does not mean that the theory is valid
only for specially constructed initial conditions, but rather
rejects the difficulty of recovering the modulation variables
from the TDNLS simulation with sufficient accuracy.

We have integrated the TDNLS with the initial condition

The numerical agreement between the TDNLS and the
modulation equation for the case of periodic boundary con-
ditions

Po(r, t) =3e " [1+0.001si (2nt7)r], (41)

(and similarly for P, E„and P) was verified by comparing
the modulation variables that were recovered from the
TDNLS simulation with the solution of the modulation equa-
tions. The initial condition for the modulation system was the
recovered value of the modulation variables at zo and the
modulation variables were compared with those recovered
from TDNLS for various z)zo.

Since modulation theory is only O(p) accurate, compar-
ing for the same numerical value of z translates into an

O(p) error in the actual value of z, leading to an O(plL )
error in the modulation variables. To overcome this difficulty
we use the time averaged "distance"

ddt

instead of z as the basis for the comparison [since z(s) is a
monotonically increasing function, this is the same as com-
paring for the same z].

Resolving the increasing t gradients is limited by the grid
resolution in the t direction. While this resolution can be
easily refined for the modulation equations, it requires more
memory and slows the computations considerably for the
TDNLS (which again demonstrate the advantage of the
modulation equations).

which has 20% mass above critical with e= l, are presented
in Fig. 4. Although the initial t modulation is very small,
large temporal gradients are observed as the pulse is focus-
ing. During the initial nonadiabatic stage f&pdt is decreas-
ing because the large excess mass above critical is removed
by radiation. No peak splitting is observed in

~ f~ for a fo-
cusing factor of over 2000, although there is one in p. The
"fiip" of the minimum and maximum of p and L is typical
for the nonadiabatic stage of the focusing and was also ob-
served in other simulations. Note that most of the focusing
occurs over a very short distance z while this domain is
automatically stretched by the dynamical rescaling variable

j, increasing z resolution.

VI. DISCUSSION

A. Comparison with previous studies

Zharova et al. [8] predicted the peak splitting phenom-
enon, using arguments based on asymptotes and on numeri-
cal simulations. They went on to suggest that the new peaks
would continue to split, resulting in a fractal collapse. Peak
splitting was later observed in numerical simulations by
Rothenberg [7] and by Chernev and Petrov [5].

Luther et al. [6] have considered solutions of the TDNLS
of the form

P(z, r, t) = P(Z, ( t) —z, r),
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-0.14

0.49

-0.24

FIG. 2. Comparison of the TDNLS (dashed
line) and the modulation equations (solid line).
The initial condition for the TDNLS is (40) with

e = 0.01. The comparison was started at
zo=0.6662 when the peak splitting in P had al-

ready formed. The peak splitting in the field am-

plitude (I/L) follows later. For each line z,d and

z TDNLs are the recovered values of z from the
modulation equations and from the TDNLS simu-

lation, respectively.

7.82

3.02
0 0.5

t

zmoat = 0.9638

zo~gg = 0.9926

0.59

-0.25
0 0.5

where Z, (t) is the singularity curve of the stationary CNLS.
They showed that the evolution of the to cross section of the
peak mass [i.e., where Z, (t) attains its minimum] is de-
scribed by

2%,
Pt= —p(P) —Z, (to) —2(a +P)

Using phase plane analysis of (42) and

a&=a —P, L&=aL (43)

they showed that a becomes negative, leading to an arrest of
the focusing at to. They also demonstrated a numerical
agreement between the TDNLS solution at to and (42) and

(43) in the regime where the pulse peak intensity has in-

creased by a factor of 2 up to the peak splitting and then

decreased by a factor of 25%. In this comparison Z, (to) was
calculated separately from CNLS simulations with the same
initial condition.

The results of Luther et al. . fall within the framework of
modulation theory.

(i) Equation (42) corresponds to Eq. (36), which was de-
rived from the modulation equation (20) under the same as-
sumption of the special 2D form (24). The terms in (42) that
are missing in (36) were neglected in the derivation of (20),
since they are of lower order.

(ii) The arrest of the focusing at to was derived from
modulation theory in Sec. III D.

(iii) Both Eqs. (42) and (43) and the modulation equations
are in numerical agreement with the peak splitting of the
TDNLS (Figs. 2 and 3).

The main difference between the approach of Luther et al.
and ours is that they neglected the second term on the right-

3.59

2.35
zo ——0.8856

-0.05

4.40
1
L

3.00

6.26

3.78

z,g = 0.9498

zD~L, S = 0.9533

zmoa = o.988

z~~l, g ——0.9968

0.47

-0.18

0.61

-0.24

FIG. 3. Comparison of the TDNLS (dashed
line) and the modulation equations (solid line) for
the same conditions as in Fig 2. The comparison
was started at a later "time" zo=0.8856, at
which the error in recovering the initial values of
the "modulation variables" is smaller. As a re-
sult, the agreement is much better than in Fig. 2.

10.2

3.42
0

z~og = 1.005

znmI. s = j--02

0.76

-0.27r—
0 0.5

t
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FIG. 4. Evolution in z of ~tit(t, v=O)~ and p(t) for the initial
condition (41). p is a measure of the excess cross-sectional mass
above critical and is evaluated using (7).

hand side of (25) while we retained both terms. This allowed
us to show that this term in (25) can be neglected only in a
region around to, which is exponentially small in the time
dispersion parameter e. Therefore, while the modulation
equations are valid for all t cross sections, Eqs. (42) and (43)
are valid only in an exponentially small region around to. In
particular, the arrest of the collapse occurs only in a very
small temporal section of the pulse. Moreover, the modula-

tion equations do not depend on the unknown value Z, (to)
and continue to be valid for some distance after the onset of
peak splitting when the solution departs from the 2D form
(24).

B. The emerging picture of focusing in the TDNLS

The main stages of the focusing in the presence of small
normal time dispersion are the following.

Nonadiabatic 2D focusing Initially, .time dispersion is
negligible and each t cross section undergoes a 2D nonadia-
batic collapse, during which the focusing solution at each
cross section sheds by radiation most of its excess cross-
sectional mass above critical while approaching a Townes
profile.

Adiabatic 2D focusing Each cross . section continues to
undergo a 2D self-similar collapse according to the adiabatic
law [Eq. (11)],where the fastest collapse is at the cross sec-
tion with the peak cross-sectional mass.

3D modulation focusing As the higher. temporal gradients
become comparable to the balance of the Laplacian with the
nonlinearity, temporal mass Aux becomes important and the
dynamics becomes three dimensional [i.e., (x,y, t)].

Modulation theory covers the adiabatic 2D focusing stage
and the 3D modulation focusing stage. It is still an open
question whether at a certain point eP«becomes comparable
to the other terms or P becomes large, so that the validity of
modulation theory breaks down. Although the time disper-
sion term is increasing, this does not necessarily mean that

modulation theory breaks down, since the Laplacian and the
nonlinearity terms have also increased in the meantime. In
our simulations with periodic boundary conditions and in [7]
for short pulses, P does increase at some cross sections. It is
not clear, however, whether this increase is large enough so
as to invalidate the modulation equations.
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APPENDIX' OTHER DERIVATIONS
OF THE MODULATION EQUATIONS

1. Energy balance

Based on (1), we can write an equation for the energy
balance between the t cross sections

8 f
H+ 2 eRe —P,*P«r d r = 0,

8$

1
H=

i
cP„i'r dr

i
Pi'r dr.

2g
(A 1)

Since in the modulation theory ansatz

MH= M(L, PIL ) = (L ),z— ——(A2)

and

2@Re tit,*P„rdr= eN, —2,

(Al) reduces to

C. Why peak splitting, why only one?

Peak splitting received a lot of attention in TDNLS re-
search because it is the most conspicuous phenomenon that
is observed in numerical simulations and also because it may
lead to the arrest of collapse. We have seen in Sec. III D that
peak splitting is related to the departure of the solution from
the self-similar 2D structure of the focusing CNLS. Since
peak splitting occurs in the transition between the adiabatic
2D focusing stage and the 3D modulation focusing stage, the
new peaks are unlikely to split again, since by now the dy-
namics is fully three dimensional.

Numerical simulations of both the TDNLS and the modu-
lation equation support this explanation for peak splitting. In
particular, they predict correctly that peak splitting in P
would occur before peak splitting in L (Fig. 3 and [7]) and
explains why the splitting of new peaks has not been ob-
served. It also explains why a solution with large initial mass
may focus without peak splitting (Fig. 4): Since the 2D nona-
diabatic focusing stage is longer, the temporal gradients wi11

become large by the time the solution approaches a Townes
profile, thus skipping the 2D adiabatic focusing stage.



4228 G. FIBICH, V. M. MALKIN, AND G. C. PAPANICOLAOU

4', g„

This is equivalent to (20), since

L (L )„,= —2P, . (A3)

While the equation for the real part of V] is always solvable
[24], the solvability condition for the imaginary part of V, is
that R is perpendicular to the right-hand side of (A4):

t 8Vp V, i L, '
3p ( ~P

R Pt+ v(P)Vp —e L Im —exp ig+i ——
L

(
I. 4

2. Solvability condition

Motivated by the original derivation of the log-log law

[16,17], Eq. (19) can also be derived from the equation for
the second-order term Vt[(13), (5), and (6)]:

~z Vl Vl + 2l Vpl Vt+ VoVt*+ P Vt ' v(P) Vt

L I21
X exp —i g i ———

~
~ (d$=0.

L 4)

From (17) and (18) we get

V, j L r'~
L R Im —exp ig+i ——

L4,

(A5)

BVp= —i Pt+ v(P) Vp
olP

Vp ~ L, r
+eL (g) —exp ig+i ——

L I, L 4

L, r'
Xexp —ig i ———

L 4

I., r')
X exp —i g i ——— ( dg- g«L R ( d(.L 4J

Using the relations

Pt= L'f3,
I BVp M

R(dg= —,
J ot

A4
the solvability condition (A5) reduces to (19).
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