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Ultrashort pulsed squeezing by optical parametric amplification
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We investigate temporal effects in pulsed squeezing by parametric amplification, including effects
of group-velocity dispersion. Our calculations show that the local oscillator pulse used to detect the
squeezed field cannot be made shorter than the inverse phase-matching bandwidth of the generation
process without degrading the amount of squeezing detected. This result generalizes an earlier result
that showed that in the absence of dispersion, the local oscillator pulse duration should approach zero
for optimum squeezing detection. We further show that by using local oscillator amplitude and phase
pulse shaping it should be possible to achieve more than 20 dB of detectable quadrature squeezing.
This is applicable where it is possible to neglect transverse spatial dimensions and diffraction, such as
in a waveguide. We derive the s-parametrized quasiprobability evolution equation for the traveling-
wave parametric amplifier. As the Wigner representation results in third-order derivatives, we also
use the positive- P representation as an exact representation with equivalent Ito stochastic differential
equations. This allows us to compare approximate — but easily simulated — Wigner representation
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results with those using the positive-P representation.

PACS number(s): 42.50.Dv, 42.65.Ky

I. INTRODUCTION

It has been an aim for some time to produce a source
of broadband, highly squeezed light. Following the first
demonstrations of continuous-wave quadrature squeezing
of light fields via four-wave mixing [1], parametric oscilla-
tion [2], and the Kerr effect [3], attention turned to exper-
iments using pulsed interactions as a possible method to
obtain wideband squeezing with large numbers of pho-
tons per mode [4-8]. The traveling-wave optical para-
metric amplifier (OPA) has been used as a relatively
simple source of pulsed squeezed light. By propagating
a collimated pulse of intense laser light, with frequency
ws, through a medium with a x(? optical nonlinearity,
light near the subharmonic frequency (w; = w3/2) can be
spontaneously generated by parametric down-conversion.
When phase-matching conditions are met and if the laser
field is intense enough, optical parametric amplification
occurs during a single pass through the medium. This
converts the fundamental frequency to wideband, tun-
able light. It has been shown that this light is quadrature
squeezed, leading to noise below the shot-noise level in
homodyne detection [4-6].

This paper will concentrate on the temporal and dis-
persive effects involved in pulsed squeezing and will con-
sider both a typical experimental configuration and more
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idealized situations to demonstrate the possible direction
of future experiments. Here we consider only temporal
effects, as would be appropriate for a parametric wave-
guide. Experimental results on quadrature squeezing in
x(® waveguides have recently been reported [9]. In a
future paper we plan to include the spatial effects in a
nonlinear dispersive medium that are important for typ-
ical bulk crystal experiments. We emphasize the Wigner
representation as an efficient computational approach for
large photon numbers. Use of the Wigner representa-
tion for squeezing in traveling-wave parametric ampli-
fiers has been suggested previously by Kupiszewska and
Rzazewski [10].

We also develop a rather general analysis for realistic
pulsed squeezing experiments in one-dimensional prop-
agation systems. We confirm that the local oscillator
pulse used to detect the squeezed field cannot be made
shorter than the inverse phase-matching bandwidth of
the generation process without degrading the amount of
squeezing detected [11]. This result generalizes that of
Yurke and co-workers [12], which showed that in the ab-
sence of dispersion, the local oscillator pulse duration
should approach zero for optimum squeezing detection.
Using local oscillator pulse shaping, it should be possi-
ble to achieve more than 20 dB of detectable quadrature
squeezing, provided that linear losses are negligible.

An analysis of pulsed squeezing assuming perfect phase
matching and no medium dispersion was given by Yurke
and co-workers [12]. The assumptions of perfect phase
matching over an infinite bandwidth and no pump deple-
tion simplify the problem considerably and provide useful
solutions for a limiting case. Their conclusion was that
the duration of the local oscillator (LO) pulse used for
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homodyne detection should be shorter than the duration
of the pump pulse. In fact, the prediction dictates that
the shorter the local oscillator pulse, the stronger the de-
tected squeezing. Also, they indicate that the technique
of using a much shorter local oscillator pulse would allow
detection of squeezing variations along the signal pulse
envelope. They suggest that pulse compression tech-
niques on the local oscillator or passing the pump pulse
through a cavity could be used to achieve the desired
shorter local oscillator, given the fact that the pump field
is derived by second-harmonic generation of the source
from which the local oscillator is taken.

We note that pump pulse dispersion and group-velocity
mismatch both temporally broaden the down-converted
field. In the pulsed OPA experiments reported to
date [4-6,13] the LO pulse was somewhat longer than
the squeezed signal pulse since it was derived from the
fundamental beam before frequency doubling (in a wide-
bandwidth crystal) to produce the pump pulse. The tem-
poral mismatch between the squeezed light and the LO is
one likely contributor to the degradation of the observed
squeezing from values predicted by simple theories [13].
The other important factor is spatial behavior, discussed
by LaPorta and Slusher [14].

The temporal mode matching of squeezed and LO
pulses plays an important role in the generation and de-
tection of squeezed pulses using temporally incoherent
light [6]. Titulaer and Glauber [15] demonstrated that
nonmonochromatic modes can be first-order coherent, al-
lowing the possibility of a general time-dependent field as
an excitation of a single spatiotemporal mode. However,
the mode functions are not in general an orthonormal
set. Kumar, Aytur, and Huang suggest that in order to
optimally detect the squeezing generated, one needs the
temporal profile of the local oscillator to be that of the
squeezed mode [6]. While this choice might be optimal
in a practical sense, we will show that it is not optimal
for single short pulses.

In the steady-state pump case the effects of disper-
sion in the parametric medium have been theoretically
treated by several authors [16-19]. It was found that the
phase-matching bandwidth of the down-conversion pro-
cess limits the bandwidth of the quadrature squeezing, as
would be expected. In realistic crystals (of length 1 cm)
this phase-matching bandwidth is typically of the order
3 x 104 rad/sec.

A treatment combining the effects of finite pulse du-
ration and dispersion was provided by Raymer, Drum-
mond, and Carter [11]. They introduced the positive-
P representation to calculate numerically the squeezing
spectrum. The results presented were for a classical un-
depleted pump and a local oscillator taken to be the
square root of the pump pulse. It was shown that the
generated squeezing had a bandwidth that was limited by
the group-velocity dispersion and for pump pulse widths
less than the inverse phase-matching bandwidth would
result in a significant reduction in detected squeezing.
The present paper presents a more complete analysis of
this model and explores its predictions for realistic ex-
perimental cases, including LO pulse shaping as a means
for detecting larger squeezing.

4203
II. EQUATIONS OF MOTION

The traveling-wave parametric amplifier is modeled
here as a nonlinear, dispersive dielectric waveguide that
allows propagation in the 2z direction in single transverse
modes for both the fundamental (signal) and the sec-
ond harmonic (pump) and is orientated such that type-I
phase matching for the x(?) process is dominant. The
Hamiltonian used here is the same as that appearing in
the earlier work of Raymer et al. [11],
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H =Z hwMad) al) 4 Z hw@a®' 63
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where the notation : : represents normal ordering. Here
the electric displacements D(*)(x) in the nonlinear term
are expanded in terms of the boson field operators as

e 1/2
DO (x) =4 Z (6‘ e ) a®u® (x) exp (ikﬁ,’;)z)
+H.a., (2)

where the frequency dependence of the parameters has

been kept only for the phase-shift term exp (ikf:,)z). The
electric permittivity at frequencies w; and w; are given
by €1 and e;. The annihilation operators aS,? correspond
to a mode with propagation constant

1/2
k(t) ( ) ﬂ+mAk,'m=—M,---,JM (3)
€9 c

with mode spacing Ak = 27/L. The mode volume is
then defined by the normalized transverse mode function
u()(x) and the length L of the medium. Here x repre-
sents the transverse coordinates. The mode frequencies

w) are approximate, corresponding to a second-order
Taylor expansion, so that

w® ~ w; + (mAk) W) + %(mAk)zwg', (4)

where the derivatives w; and w} are with respect to k.
This is easily extended to include higher-order dispersion
if desired. The procedure for transforming to local field
operators has been given in the work of Drummond and
Carter [20]. The local field operators are defined on a
lattice of length L with 2M + 1 points by

~(1) 12mml
Z m’ XP (2M+1 (5)

so that the lattice cell denoted by ! corresponds to the
longitudinal position 2; = Az = IL/(2M + 1). Local

operators 3; are defined analogously from the a2 oper-

ators. The Hamiltonian can be written in an interaction
picture, which removes the carrier frequency oscillations,
as
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where the definition of Awy follows directly [20] from
substituting Eq. (5) into Eq. (1) and
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It is instructive to use the s-parametrized quasiproba-
bility distributions of Cahill and Glauber [21], which we
denote by W(a,B;s,t). With these distribution func-
tions, s-ordered products {{(af)"a™},) can be obtained
by integration in the complex a plane according to

@y = [@)amWies oda ()

The parameter s = 1,0, —1 corresponds to normal, sym-
metric, and antinormal ordered products and the P,
Wigner, and @ quasiprobability distributions, respec-
tively. The evolution equation for the s-parametrized
quasiprobability densities is obtained from the Liouville
equation for the density operator in the usual way [22]
and is
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+ Z _Ba;‘ (—H Z Awphag + xiau By )

l
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k(()z))zl]. The evolution equation for W (a, 3; s,t) corresponds to a multivariate

Fokker-Planck equation for the P and the @Q representations. By rewriting the differential operators and amplitudes
in scaled variables, we can see the contribution given by each component. The scaling is related to the peak photon
flux of the pump so that the evolution equation becomes

0
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where a; = ea; and B; = €8; so the system size param-
eter ¢ = n~1/2 allows the third-order derivatives to be
dropped for large 7i. An explicit expression for 72 will ap-
pear later once we scale the evolution equations for a, 3.
The two distributions of interest here are the Wigner and
the positive-P distributions. We can extract the Wigner
results directly from above with s = 0. For the positive-
P representation [23], we need to double the phase-space
dimension of the usual P representation whose evolution
equation is given above with s = 1. Now we consider
the parameter s to be restricted to {0,1}, where s = 1
now corresponds to the positive- P representation. Drop-

ex1 83
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W] W(e, B;s,t), (11)

ping the third-order derivatives for s = 0 in Eq. (10), the
corresponding Ito stochastic differential equations are
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where the noises are real Gaussian stochastic processes
with correlations given by

(G () = duwd(t —t),
(GO ) = (@) = (@) =o.

It is important to note that in the positive-P representa-
tion a;' (ﬂ;f) is not necessarily the complex conjugate of
oy (B1), except in the mean. The derivation of the evo-
lution equation for W(a, 3;s,t) relies upon the use of
partial integration and assumes that the distribution is
sufficiently rapidly vanishing at the phase-space bound-
aries where |oq|,|B;] — oo. The equivalence between
a Fokker-Planck equation with second-order derivatives
and stochastic differential equations also requires a pos-
itive semidefinite diffusion, which Eq. (10) does not pro-
vide explicitly. However, an evolution equation for the
positive-P distribution (s = 1) can always be found such
that it has a positive semidefinite diffusion using the non-
uniqueness of the time development of W(a,3) corre-
sponding to the original master equation [23]. Given that
such a diffusion matrix exists and it is the noise correla-
tions of the SDE’s that are the important property, one
can write down a convenient noise term with the appro-
priate correlations. There are no third-order derivative
terms in the case of the positive-P representation, so
no additional assumptions are needed to transform the
Fokker-Planck equation into stochastic equations.

In the Wigner case (with s = 0), the equations of mo-
tion are classical and all the quantum noise enters in the
initial conditions. However, the final truncated or “semi-
classical” equation is only approximate since it requires
the neglect of third-order derivative terms. This approxi-
mation is justified by the argument that, with large pho-
ton numbers, € is relatively small. The large photon-
number approximation is difficult to check directly and
can lead to incorrect results if higher-order correlations
are calculated. However, we can compare results with the
s = 1 case, since the neglect of boundary terms in the
positive-P simulations is readily justified for the parame-
ters used here, from the numerical results (which show no
signs of large excursions). A comparison of these results
with our Wigner simulations demonstrates agreement for
squeezing calculations with our choice of parameters and
interaction lengths.

Either type of equation can be transformed to evolve
photon flux amplitudes by defining

1/2
wl
P = (A—lz) )

Wl 1/2
=ﬂl (A_Z) )
z

where <I>;r‘1>l and TI\III equal the number of photons per
second passing the z; plane for signal and pump fields,
respectively. This gives

(13)
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We now transform to a comoving frame at speed wj and
evaluate the terms involving Awy that are related to
the discretized first and second derivatives with respect
to z. We retain only the first-order derivative in z in the
comoving frame to give continuum equations for ®(z,t,)
and ¥(z,t,):

9 n 9 t .
(6z k(?tz ® = x"®'Y + 54/x*V((2,t,), (15a)
O i1 @ Yt _ gt T
0, (1_1)0
0z wh  wi/) Ot
2
—i (k(‘,z) —2kf,”) 4= k”c,;z = —%Xqﬂ, (15¢)
o (L _1)9
0z wh  wy) Ot,
(1 (2) 1) & | ot 1 cpt?
+z(k0 — 2k )——kzat vt = —2xe, (15d)

where t, = t — z/v,k! = d?k/dw?|k=k, = —w!'/v3, and
t is the time measured in the laboratory frame while ¢,
is the time measured in the comoving frame with speed
v = wj. The factor (k((lz) — 2k$Y) accounts for any mis-
match of phase velocities, while (1/w) — 1/w]) accounts
for group-velocity mismatch and k! accounts for group-
velocity dispersion (GVD). These equations can be cast
into the dimensionless equations

% - _% (k”) ¢+ o' +sV/YC(E,7),  (16a)
.
%‘% (k")a 8 owt 4 sV/ARCHE ), (16b)
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where £ = z/zg is the propagation distance scaled by zg
and 7 = t,/to is the scaled time in the comoving frame.
Here zo = |x¥o| ™! is the classical undepleted pump gain
length and to = 4/20k} is the inverse phase-matching
bandwidth when W, is the initial peak value of . The
noise correlation is

(16d)

(C(6TCE ™) = 28E N6 —7),  (17)
where 7 = W¥3t, is the parameter governing the system
size expansion. The dimensionless fields ¢ and 7 are
defined by ¢ = ®/¥ and ¢ = ¥/T,.

In the Wigner representation the evolution of the field
#(&€,7) is governed by Eq. (16) with s = 0 provided the
parameter governing the system size expansion € = a~1/2
is sufficiently small that the third-order derivatives in
the evolution equation for the Wigner function can be
neglected. This means that the photon number of the
quantized pump pulse has to be sufficiently large and the
propagation distances sufficiently short (£ < al/ 2). This
is in contrast to the positive-P representation for which
Eq. (16) is exact (in the absence of boundary terms),
since the Hamiltonian is only quadratic in boson cre-
ation operators for the subharmonic field and linear for
the pump field. If, however, the Hamiltonian does not
include a quantized pump, then the partial differential
equations with s = 0 correspond exactly to the Fokker-
Planck equation for W and give identical results to the
positive- P representation. We note that for the paramet-
ric amplifier there are no additional self-frequency shifts
introduced by using the Wigner representation, as in the
case of the quantum nonlinear Schrodinger equation [24].
In the Wigner representation the dynamics is restricted
to the classical subspace {¢f,%1} = {¢*,%*} so that the
boundary conditions at £ = 0 for an input coherent state
can be written (neglecting the nonzero mean amplitude)
as ¢(0,7) = A¢(0,7) and ¥(0,7) = A¢(0,7) and

1
27

(Ap(0,7)A9*(0, 7)) = % (‘:_?) 5(r — ),

(A¢(0,7)A¢*(0,7)) = —d(1 — T'),

(18)

where A¢ and A represent delta-correlated Gaussian
stochastic processes with a mean of zero. Because s = 0
in this representation, the distributed noise {(£,7) does
not contribute in Eq. (16).
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III. ANALYTIC SOLUTIONS
IN LIMITING CASES

In this section we solve Egs. (16) in several special
cases, as a guide to some of the qualitative physical prop-
erties of the full dynamics, which are studied numerically
and presented in Secs. IV and V.

A. cw pump with dispersion

Here we use the positive-P representation to solve di-
rectly for the ¢(§,w) field used in calculating the squeez-
ing spectrum. In the positive-P representation, the sub-
harmonic field evolution for a constant pump is of simi-
lar form to the linearized nonlinear Schrodinger equation
discussed by Drummond and Carter [20]. For an initial
vacuum state for ¢(0,7) and a constant pump in a coher-
ent state ¥ (&, 7) = ¢/2, the evolution of the subharmonic
field as given by Eqgs. (16a) and (16b) is given by

¢ _ i 0? '
8—? = %[— sgn(k'l')agqS + ¢T] + \/%C(S’T)a (19)

oot ; 9? i
O = 3 [ o' o] + Jricen. e

These two coupled equations can be integrated directly
in Fourier space to give

. i 1/2 ¢
i =(3) [ ds'{cos (e - €)/2]
2 sy (€ - s')/zl}c(e, w)

_ (%)”2 / ‘ dg'Lsinly(e - €)/2)

x¢T (¢, w), (21)
where v = (w* — 1)'/2, 8 = +w?, and
7 1 iwT
#ew) = = [ dre (e, ). (22)

Equivalent solutions for this case have been given previ-
ously [17-19]. The normalized maximum squeezing spec-
trum is defined as

Smax(gs w) = 27—"[(‘5(5’ _w)(gf(g’ w))
(€, —w) (€, w))]

and corresponds to the optimum and independent choice
of LO phase at each frequency. This represents the
noise seen in a quadrature-field measurement using a bal-
anced homodyne detector, consisting of a beam splitter
to equally mix the signal with the LO, and two photodi-
odes whose currents are subtracted and spectrally ana-
lyzed. We find

(23)
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Smax(§,w) = ’[‘]-_:—C’Y(Z:—(ﬁ)‘l
_ w Pl —es(0) @)

so that the maximum dc squeezing is simply
Smax(&v 0) =-1+ e t. (25)

The shot-noise level is defined by S(§,w) = 0 and
S(§,w) = —1 is perfect squeezing. Since the pump is
constant in this case, treating the pump as a ¢ number
is the same as a coherent state in a P representation so
that the Wigner representation (with a c-number pump
field) is exact and hence must give identical results.

Comparing this result to that given by Drummond and
Carter [20] for the linearized nonlinear Schrédinger equa-
tion given by

6 : 8? ' :
(26)

where ¢ = 1/4/2 + 6¢ and the maximum squeezing spec-
trum is

[1 — cos (v€)]
72

208y Beos i) -], (2)

Smax(£7 UJ) =

where v = w(w?4£2)?/? and B = (1£w?). Despite the sim-
ilarity between the evolution equations there is an impor-
tant difference in the squeezing spectrum. The squeezing
spectrum for the linearized nonlinear Schrodinger equa-
tion is very different for anomalous and normal dispersion
regimes whereas the parametric amplifier shows no such
distinction when phase matched.

B. Pulsed pump with no dispersion

With no dispersion each quadrature is independent and
the phase-matching bandwidth is infinite, allowing the
@(&,t,) field to be integrated directly, giving the usual
exponential dependence. In this case there is no need to
solve coupled equations and so the Wigner representation
is employed. In the Wigner representation, the subhar-
monic field evolution for nondispersive propagation with
classical undepleted pulsed pump and equal group veloc-
ities is given by [12,25]

#(&,ty) = ¢(0,ty) cosh [|¢(ty) €]
+e'29¢*(0,t,) sinh [|¥(t,)]€], (28)

where 0 is the phase difference between ¢ and x. The
normalized maximum squeezing [12] is equal at all fre-
quencies and is given by

T/2 2 —2$®)E _
12 dtdio(t) (e 1)
Smax(§w) = 2 T/2 ’ (29)

_T/2 dt ¢%O (t)
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where the measurement period T corresponds to the de-
tection integration time in laboratory time units. Using
a local oscillator amplitude ¢ro(t) = sech(t/tLo) with
pulse width t;,0 measured in the same units as T and
pump amplitude ¥(t) = sech?(t,/tp) with pulse width
tp, the maximum dc-squeezing as predicted by Eq. (29)
is shown in Fig. 1 and predicts maximum squeezing for
tLo < tp. There is also a finite amount of squeezing for
long local oscillator pulses (tLo > tp), which is deter-
mined by the integral

_111/32 dt {exp [—2sech®(t/tp)€] — 1}

2 tanh (T/2)

Smax(E, w) =
(30)

Consider the result for equal pulse widths tequal = tLo =
tp for the local oscillator and pump, where now ¥(t) =
—;—sechz (to/tp) so that the peak amplitude corresponds to
that used earlier for the cw result. In this case the result
can be found to be

1 [ T
Smax 9 = —1—-C —e ¢
(&, w) 1 5 \/ge coth (2tequa1>

T
xerf [i\/gtanh ( )} , (31)
2tequal
which in the limit of long pulse widths gives
lim  Spax(é,w) = —14e7¢. (32)

tequal =00

In this case, the nondispersive theory predicts the same
squeezing for all frequencies and corresponds to the cw
dispersive theory predictions for zero-frequency squeez-
ing.

Sté )

FIG. 1. Plot of squeezing with no dispersion versus propa-
gation distance and the ratio of the local oscillator to pump
pulse temporal widths.
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IV. PULSED PUMP WITH SIGNAL DISPERSION

We now consider the dc squeezing for various local
oscillator pulse widths while including signal dispersion
and thus finite phase-matching bandwidth. The evolu-
tion considered is for a phase-matched interaction in a
waveguide with no pump dispersion and equal group ve-
locities for the subharmonic and pump pulses. This cor-
responds to Egs. (16) with k) = 0, k((]z) = 2k81), and
wh = w}. Pump depletion is included in all calculations
for completeness. The system is idealized; however, it
does allow one to investigate clearly the effects of the lo-
cal oscillator pulse width on the detected noise reduction.
We will later compare this result with the case of nonzero
pump dispersion. We treat ideal, pulsed, balanced, ho-
modyne detection and the quantity needed for calculating
the squeezing spectrum is given by the normally ordered
and time ordered operator expression [26,27]

272 (: X (—w)X (w) :), (33)

where
X(r) = ¢ () dLo(1)e” + e Pl o (T)p(r),  (34)

where 6 is an experimentally adjustable phase shift,
<;Z>Lo (7) is the pulsed local oscillator field operator, and
(}3(7’) is the signal field operator. One can calculate cor-
relation functions such as Eq. (33) directly using the
positive-P representation as ensemble averages corre-
spond to normally ordered and time ordered moments.
It is convenient to calculate a normalized squeezing spec-
trum such that the minimum value of the correlation
function is —1, as in Sec. III. In the positive-P repre-
sentation

(X (~w) X (w)) > _%</d,, (¢£0¢Lo + ¢*¢) > (35)

where the angular brackets correspond to a stochastic av-
erage. Now we can define the pulsed squeezing spectrum
as

21 (: X (€, —w) X (£, w) :) _

( [ar (oo +dd) )

In the positive-P representation, the squeezing spectrum
is then given by

Se(&,w) =

(36)

2m( X (€, —w) X (&, w))

([ (slotro+oe) ) |

In the Wigner representation, the stochastic moments
correspond to symmetrical operator ordering resulting
in the stochastic moment (X(—w)X(w)) being non-
negative. The squeezing spectrum in the Wigner rep-

So(f,w) = (37)
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resentation is then

2 (X (€, —w) X (€,w))

( [ar1oroP +167 - 1/am] )

(38)

59(5,"-’) =-1+

where A771 is the frequency cutoff. The dc squeezing
and dc unsqueezing [1 + Sg(§,0)] using the positive-P
and the truncated Wigner representations for no pump
depletion or dispersion are compared in Fig. 2. The pa-
rameters were chosen such that the positive-P result cor-
responds to the earlier calculation presented in Ref. [11].
The results show agreement between the positive-P and
the truncated Wigner representations. We note that the
sampling error for the positive-P stochastic equations
is more difficult to reduce in this system than for the
squeezed solitons of the quantum nonlinear Schrédinger
equation.

The dc squeezing calculated using the truncated
Wigner representation, for a pulsed coherent state pump
(¥(0,7)) = sech?(r/7p) with width 7p = 5.0 (in phase-
matching bandwidth units ¢9) and no pump dispersion,
using a local oscillator pulse (¢ro(7)) = sech(r/7Lo)
for various local oscillator pulse widths ranging from
Lo = 1.0,...,10.0 is shown in Fig. 3. Perfect phase
matching (Ak = k{2 — 2k(()1) = 0) is assumed.

Several important points can be seen from the results
in Fig. 3. Contrary to the prediction of Eq. (29), a shorter
LO pulse is not necessarily better. The optimum local
oscillator width in Fig. 3 lies between the inverse phase-
matched bandwidth (1 in these units) and the pump
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o
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0.2

0.0 . ]
0.0 1.0 2.0 3.0 4.0 5.0

g

FIG. 2. Plot of dc squeezing and dc unsqueez-
ing versus propagation distance with no pump deple-
tion or dispersion using the positive-P and the trun-
cated Wigner representations. Solid lines represent up-
per and lower limits of truncated Wigner results with
5000 trajectories. Error bars represent sampling errors us-
ing 100000 positive-P trajectories with parameter values
(¥(0,7)) = sech®(7), (¢Lo(0,7)) = sech(T),kéz) = 2kf,1), and
ki =0,7 = 10°.
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1+S(§,0=0)

FIG. 3. Plot of dc squeezing versus propagation distance
with no pump dispersion for various values of the local os-
cillator pulse width 7o = 1,2,5,7.5,10 corresponding to
TLo/Tp = 0.2,0.4,1.0,1.5,2.0. The statistical errors are of
the same order as the thickness of the lines in the regions
of maximum squeezing (minimum S) and increase in either
direction but remain less than +0.02. This is a Wigner
simulation using 10000 trajectories and parameter values
($(0,7)) = sechz(T/S) (¢ro(0, 7)) = sech(r/mL0), kS = 2KV,
and k5 = 0,72 = 10

width. This result is also in contrast to an assumption
by Blow, Loudon, Pheonix, and Shepherd [28] that it is
a generic property independent of the generation process
that the local oscillator and signal pulses should have the
same shape for optimum squeezing detection. If the local
oscillator width is too short then it includes contributions
from non-phase-matched frequencies. If the local oscilla-
tor is too long then the signal-LO overlap includes con-
tributions from unsqueezed noise in the temporal wings
of the subharmonic. That is, the squeezing generated
by the pump pulse is localized in time and is of finite
bandwidth due to the dispersion-limited phase-matching
bandwidth.

It can also be seen from Fig. 3 that for each local
oscillator pulse width there is an optimal propagation
distance after which no improvement in the noise re-
duction is seen. As the signal propagates through the
dispersive material, it develops a phase structure that
eventually decreases the detected squeezing. Typically
a device is used to alter the phase relationship between
the local oscillator and the pump. This phase is opti-
mized for each frequency component separately, which
gives the maximum noise reduction for a particular real-
ization of the local oscillator. Since dc squeezing detec-
tion involves averaging across the entire local oscillator
and signal pulses, if the local oscillator has a different
phase structure to the ensemble-averaged signal, then the
detected field has contributions from different quadra-
tures of the signal. An important effect to counteract is
group-velocity dispersion induced frequency chirp. We
show below that dispersing the local oscillator pulse by
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propagating through a medium with suitably chosen lin-
ear dispersion embeds approximately the correct type of
phase structure to compensate the dispersive propaga-
tion of the signal through the nonlinear medium. Note
that no pump dispersion was included for the results in
Fig. 3 so that the pump pulse does not acquire a fre-
quency chirp from group-velocity dispersion as it prop-
agates. However, the squeezed vacuum does acquire a
frequency chirp as it propagates.

In Fig. 4 we plot the dc squeezing for the same local os-
cillator pulse widths as in the previous figure, but include
equal pump and signal dispersion (i.e., k5 = k{). All pa-
rameters except for the pump dispersion are the same as
in Fig. 4. This shows that there is a negative effect on the
detected noise reduction of the signal from the dispers-
ing pump pulse. The dc squeezing for the shortest local
oscillator pulse is, however, relatively unchanged by in-
cluding the pump dispersion for the parameters we used
here. One would expect that for shorter pump pulses the
effect of pump dispersion would also be important for the
shorter local oscillator pulse widths. One possibility that
has not been explored here is that the negative effect of
pump pulse dispersion can be reduced by pumping the
parametric process at a frequency such that the pump
and subharmonic experience group-velocity dispersion of
opposite sign.

To illustrate the advantage of using a dispersed local
oscillator, we compare the dc squeezing for nondispersed
and dispersed local oscillators in Fig. 5. Using again
7p = 5.0, the nondispersed curve (dashed curve) corre-
sponds to the result in Fig. 4 for 7,0 = 2 (and k{g = 0)
while the full curve corresponds to exactly the same pa-
rameters except kjo/ky = 0.2. This means that the
local oscillator pulse that is mixed at the beam splitter
of the homodyne detector is treated as a seperate quan-

1+S(&,0=0)

FIG. 4. Plot of dc squeezing versus propagation distance
with pump and signal dispersion (k3 = ki'). The statistical
errors are within the same limits as in Fig. 3. This is a Wigner
simulation using 10 000 trajectories and other parameter val-
ues are the same as in Fig. 3.
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FIG. 5. Plot of dc squeezing versus propagation distance
comparing dispersed (solid curve) and nondispersed (dashed
curve) local oscillators. The initial LO duration is 7.0 = 2
and other parameters are the same as in Fig. 4.

tum field having passed through a linear dielectric of the
same length and GVD 1/5 of that experienced by the
signal. By using the dispersed LO, the maximum de-
tected squeezing improves from S = —0.938 + 0.001 to
S = —0.9949 £ 0.0001. The LO GVD is optimal at ap-
proximately 1/5 of the signal GVD (for the parameters
used here) because the LO pulse is temporally shorter
than the signal produced from vacuum. Note, however,
that the LO does not have a larger bandwidth than the
signal as the LO is initially transform limited. By using a
linear medium with a well chosen group-velocity disper-
sion, the phase structure of the LO (predominantly the
frequency chirp) more closely follows that of the signal.
If higher-order linear dispersion were important for the
signal as well, then it too should be considered in choos-
ing the properties of the LO dispersive medium. Such
effects could also be easily included in our treatment.

V. REALISTIC EXPERIMENTAL CASE

We will now present some results for a more realis-
tic case where we simulate a realistic experiment using
a 150-fs (intensity full width at half maximum) mode-
locked titanium sapphire laser operating at 830 nm. We
include group-velocity mismatch and group-velocity dis-
persion for both fields in both the frequency doubling and
down-conversion media (see Table I). The laser pulses
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FIG. 6. Plot of pump intensity at 830 nm in LBO ver-
sus propagation distance including group-velocity mismatch
and group-velocity dispersion. The parameter values are
#(0,7) = sech(r/17),k$? 2k$ to(wh — wh)/ |kl jwhwh
=11.75, and kY = 2.278k.

are first frequency doubled in an LiB3O5 (LBO) crys-
tal assumed to correspond to 10 gain lengths in a 5-
mm crystal. The frequency doubling was also simulated
using Eq. (16) and the pulse shape of the frequency-
doubled pulse at the output face (§¢ = 10) was used
as input to the down-conversion simulation. The pulse
shapes obtained are given in Figs. 6 and 7, showing the
pump intensity at 830 nm and the second-harmonic in-
tensity at 415 nm, respectively. Figure 7 clearly shows
the effect of group-velocity mismatch in the LBO crys-
tal. In LBO, the group-velocity mismatch compensated
GVD ratio kJw} /2|k!|w! was taken to be 1.091, while
the scaled walkoff to(wj — wj)/|k{|wiw) was taken to
be 11.75. These frequency-doubled pulses pump a 5-
mm [-BaB;04 (BBO) crystal that is phase matched
at 830 nm and the down-converted light is directed to-
wards a homodyne detection system using local oscilla-
tor pulses derived from the original 830-nm pulses. In
BBO, the group-velocity mismatch compensated GVD
ratio kJw} /2|k}|w) was taken to be 1.27, while the
scaled walkoff to(w] —w})/|k{|w]w) was taken to be 29.26.
The generated pump pulse is asymmetric and broad-
ened compared to the local oscillator. The group-velocity
mismatch in LBO causes the asymmetry in the gener-
ated second-harmonic (pump) pulse, which travels slower
than the 830-nm pulse in LBO. The nonlinear interaction
tends to broaden the generated second harmonic as it lags
the 830-nm pulse.

The squeezing spectrum is shown in Fig. 8 and indi-
cates significant squeezing even with group-velocity mis-

TABLE I. Material parameters for LBO and BBO.

ki (sm™) k3 (sm™h) kY (s°m™1) ky (sm™1)
LiB3;0s* 5.432 x 10~° 5.5495 x 10~° 5 x 10~ 2° 1.139 x 10~ %%
B-BaB;04P 5.613 x 10~° 5.783 x 10~° 6.74 x 10726 1.82 x 10728

*Values were calculated from the Sellmeier equations presented in Ref. [30].
PValues were calculated from the Sellmeier equations presented in Ref. [31].
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FIG. 7. Plot of second-harmonic intensity at 415 nm in
LBO versus propagation distance including group-velocity
mismatch and group-velocity dispersion. The parameter val-
ues are the same as in Fig. 6.

match and group-velocity dispersion. No local oscillator
pulse shaping or dispersion was used in obtaining these
results. Due to group-velocity mismatch in BBO, the
local oscillator pulse has to be shifted with respect to
the comoving frame in order to overlap with the gener-
ated squeezed pulse. This procedure has not been op-
timized, here but was allowed for in the simulations by
giving the local oscillator a finite velocity. One expects
that the asymmetry in the dynamical equations from a
group-velocity mismatch will be reflected in the squeez-
ing spectrum. As has been demonstrated, the group-
velocity mismatch in LBO causes an asymmetric pump
for the down-conversion in BBO. The scaled walkoff in
BBO, which is larger than in LBO, results in the pump
pulse lagging behind the signal field initially generated

FIG. 8.

Plot of squeezing
gation distance including group velocity mismatch and

spectrum versus propa-

group-velocity dispersion. The local oscillator has been
given a group-velocity such that it overlaps with the cen-
ter of the signal at € = 5. This is a Wigner simu-
lation using 10000 trajectories with the parameter values
(¢10(0,7)) = sech(r/7.3), k§? = 2k, to(wi — w})/|kY |wiw)
= 29.26, and ky = 2.54k{,n = 10'2.
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FIG. 9. Plot of dc squeezing versus propagation distance
using the Wigner representation for various scaled local oscil-
lator walkoffs equal to to(w; — wio)/|k? |wiwlo and all other
parameters are the same as in Fig. 8. A scaled local oscillator
walkoff of 16 corresponds to the previous plot.

from vacuum. Typically, most of the squeezing is gen-
erated in the first one to two gain lengths. One would
predict then that a local oscillator overlapping with the
leading component of the signal pulse will detect more
squeezing than one overlapping with the trailing compo-
nent. This expectation is borne out by calculating the
squeezing spectrum for various timings of the local os-
cillator. In an experiment, the timing of local oscillator
pulse is adjusted by a delay line. Here this is simulated
by varying the scaled walkoff of the local oscillator. The
dc squeezing variations due to timing of local oscillator
pulse are plotted in Fig. 9. This particular qualitative
result has been verified in recent experiments using bulk
crystals on which these parameters are based [9].

VI. CONCLUSION

We have presented a study of the pulsed, traveling-
wave parametric amplifier, exploring the consequences
of medium dispersion on the pump and signal fields, as
well as amplitude and phase structure of the local oscil-
lator pulses. Such dispersion strongly affects the level
of detectable quadrature squeezing when the pulses have
durations less than 1 ps in typical parametric crystals.
The present theory is restricted to cases where the trans-
verse spatial structure of the fields does not change with
propagation, such as in a waveguide [9]. We have empha-
sized the use of the semiclassical Wigner representation
as an efficient computational method for investigating
squeezing in parametric amplifiers at large pump photon
number and verified its applicability by comparison with
the positive-P representation.

A major conclusion of this study is that the LO pulse
cannot be made shorter than the inverse phase-matching
bandwidth without degrading the amount of squeezing



4212

detected. This result generalizes that of Yurke and co-
workers, who showed that in the absence of dispersion,
the LO pulse duration should approach zero for optimum
squeezing detection. Our conclusion corrects an assump-
tion by Blow and co-workers [28] that the optimum in
the presence of dispersion is attained when the LO pulse
shape matches precisely that of the signal field. The con-
clusion of Blow et al. properly arises only if the nonlin-
ear optical process excites only a single spatial-temporal
mode, leaving all other modes in the vacuum. Our work
here shows that this assumption does not apply to para-
metric amplification of the vacuum in traveling-wave ge-
ometry.

To understand this conclusion, note that in traveling-
wave OPA the down-converted field is generated with
a very wide bandwidth (of the order of 1 THz) deter-
mined by the phase matching. To detect optimally a
large reduction of LO shot noise, it is necessary for the
spectrum of the squeezed field to be wider than that of
the LO pulse, so all frequency modes of the LO can be
influenced. This is possible because the squeezed field
is very far from being transform limited, while the LO
pulse is near transform limited. If the LO pulse dura-
tion becomes too short, however, its spectrum becomes
wider than that of the squeezed field, resulting in less
noise reduction.

A second major conclusion is that the action of signal
and pump dispersion does not prevent the detection of
very large amounts of quadrature squeezing. This can
be achieved by giving the LO pulse the proper duration
and phase structure. Since the group-velocity dispersion
terms in the equations of motion are second order in time,
they produce a quadratic phase shift across the pulses.
Fortunately, the needed phase structure can be induced
by passing the LO pulse through a transparent, linear
medium with the proper degree of dispersion.

It is likely that the small amounts of squeezing de-
tected so far in OPA experiments results from a combi-
nation of poor choice of pulse durations and transverse
spatial effects, as discussed by LaPorta and Slusher [14]
and Kim, Li, and Kumar [29]. The present treatment
can be generalized to include such spatial effects; this
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will be reported in a future paper. We showed that more
than 20 dB of squeezing is possible using group-velocity
matched parametric waveguides. Using typical experi-
mental parameters for LBO and BBO, including group-
velocity mismatch and group-velocity dispersion, we also
showed that waveguides of this type would generate large
amounts of squeezing, in spite of the effects of group-
velocity mismatch. In fact, these results predict far more
squeezing than has ever been observed with bulk crystals
in a traveling-wave configuration. Experiments utilizing
these devices have recently been reported, but without
attaining the predicted levels of squeezing [9].

We have emphasized the truncated Wigner representa-
tion as an efficient computational method for investigat-
ing squeezing in pulsed parametric amplifiers. It requires
only half the number of variables as does the positive-P
method. It is also more advantageous on vector proces-
sor computers as the positive-P method requires inde-
pendent Gaussian noise sources to be generated for all
space-time points whereas the Wigner method requires
noise sources only at the medium input, if losses are
neglected. Providing there are no boundary terms, the
positive-P representation is an exact method since quan-
tum noise arising from the nonlinearity is included by
second-order diffusive terms in the Fokker-Planck equa-
tion. The exact Wigner representation leads to third-
order derivatives in the quasiprobability evolution equa-
tion, which have been neglected here. We have demon-
strated that this approximation is valid for large photon
numbers and small propagation distances when calculat-
ing the squeezing spectrum. The reduced sampling error
for low frequencies using the Wigner method has been
noted previously by Drummond and Hardman [24]. How-
ever, the Wigner method tends to have larger sampling
errors at high frequencies.
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