
PHYSICAL REVIEW A VOLUME 52, NUMBER 1 JULY 1995

Photorecombination of highly charged uranium ions
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Photorecombination cross sections for highly charged uranium ions are calculated using many-
body perturbation theory. The cross sections are resolved with regard to the final recombined
level, corresponding to diQ'erent x-ray light emitted during radiative stabilization of the dielectronic
capture resonances. Interference between the radiative and dielectronic recombination processes is
found to be more important for the weaker x-ray-resolved partial photorecombination cross sections
than for the total cross sections.

PACS number(s): 34.80.Kw

I. INTRODUCTION

Recent experimental observations [1—3] of photorecom-
bination processes in highly charged ions have challenged
our theoretical understanding of strong-field quantum
electrodynamics. The energy positions of the observed
resonance structures provide sensitive tests of Lamb shift
calculations in multielectron systems [4]. Information
on the detailed shape of the nuclear charge distribution
may also be extracted from the resonance energies [5].
The cross section heights of the observed resonance fea-
tures provide good tests of Auger rate calculations in
which static, magnetic, and retardation efFects need to
be included in the electron-electron interaction [6—8]. Fi-
nally the detailed shape of the observed resonance struc-
tures provide tests of theoretical studies which include
the quantum interference between the processes of radia-
tive and dielectronic recombination [9,10].

In this paper we present total and partial photorecom-
bination cross sections for highly charged uranium ions
which include the interference between radiative and di-
electronic recombination. The partial photorecombina-
tion cross sections are resolved as to the final state of the
recombined ion and can be experimentally identified by
the difFerent x-ray light emitted during radiative stabi-
lization of the dielectronic capture resonances. We find
that although interference may have a small efFect on the
total cross sections, it can be important for some of the
weaker x-ray resolved partial cross sections. This con-
firms the possibility that recent asymmetries seen in the
x-ray resolved photorecombination spectra from a mix-
ture of highly charged uranium ions [3] may be due to
quantum interference. In Sec. II we outline the the-
ory of interference between radiative and dielectronic re-

combination, in Sec. III we describe our fully relativistic
Dirac-Fock numerical methods, in Sec. IV we present to-
tal and partial photorecombination cross sections for the
KLi2L3 resonances in U + and U +, and in Sec. V we

conclude with a brief summary.

II. THEORY

M(cr —+ P) = (QpIDIvP ) 1—iA (n m P)/2 \

a+i —'," )
I'
2

(2)

where A (n ~ P) is the autoionizing rate; V is the
electron-electron interaction: L is the energy detuning
from resonance, rl = 1 + p/I'; p is the total radiative
width; and I' is the total autoionizing width. It is conve-
nient to define the line-profile function [11]

(&I&I&-)(@-IDI&-)
(&pl&l@ )(A (n ~ P)/2)

and recast Eq. (2) in the form

In lowest-order perturbation theory the matrix element
for the photoionization of an atomic ion is given by (in
atomic units):

M(~ ~ p) = (MIDI&-)

where lg ) is a bound state, l@p) is a continuum state,
and D is the radiation field interaction. The contribution
from a single autoionizing resonance state I@ ), obtained
by considering either bound-continuum configuration-
interaction theory [11] or diagrammatic many-body per-
turbation theory [12], yields the following modified ma-
trix element [13]:
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M( p) =(& I&l@-) I

r(+ ii1
(4)

where ( = A/z.
Further perturbation theory terms may be incorporated. into the matrix element for photoionization utilizing a

projection-operator formalism [14]. The further modified matrix element is given by

M(~ ~ P) = Wnl&l&-)

where

1 l A„(n —+ n)+
Cpa r p /pa (qp A (n -+ P)

(6)

and A, (n ~ n) is the radiative rate.
The electric-dipole photoionization cross section for an

atomic ion is given by

ass = lM(n m P)l2,3')p

where w is the frequency of the radiation field, c is the

speed of light, p = 2e+ —', is the photoelectron linear

momentum, e is the total energy of the photoelectron
minus its rest energy, and the continuum normalization
is gl + 2, times a sine function. With the aid of the
principle of detailed balance, the electric-dipole photore-
combination cross section for an atomic ion is given by

energies. The continuum-state orbitals are solutions to
the single-channel Dirac equation, where the scattering
potential is the sum of the nuclear potential and a dis-
torting potential constructed from previously calculated
bound orbitals for the target.

The electric-dipole radiative rates found in Eqs. (2)—
(6) are given by

where

(8)

We note that for level to level photorecombination one
must multiply Eq. (8) by the additional factor of (g /gp),
where gp is the statistical weight of level P in the target
ion and g is the statistical weight of level o. in the final
recombined ion.

For all of the photorecombination cross sections re-
ported in this paper, we found no significant difFerence
between employing either the matrix element of Eq. (4)
or the matrix element of Eq. (5). The last term in the
numerator of Eq. (4) originates in the third order of per-
turbation theory and should be the most important term
in that order. The additional terms found in both the
numerator and denominator of Eq. (5) originate in both
the third order and fourth order of perturbation theory.

III. NUMERICAL METHODS

the c; are the subconfiguration mixing coeKcients for
the atomic state o, , and the d, ~ are the electric-dipole
angular coeKcients between subconfigurations provided
by a relativistic tensor operator code [18]. The reduced
matrix element of Eq. (10) is given by

where j is the total angular momentum of orbital a, and
the usual notation for a 3j symbol is employed. In the
Coulomb (velocity) gauge the radial function of Eq. (11)
is given by

1T i, (r) = —(~ —Ks)I~+(r) + I2 (r)
2

(12)

where

The photorecombination cross sections for highly
charged uranium ions are calculated within a fully rel-
ativistic Dirac-Fock approach. Resonance energies and
bound-state orbitals are obtained using a multiconfigu-
ration Dirac-Fock-Breit atomic structure code [15—17].
Additional @ED corrections are made to the resonance

(& Qb «Q &r)ii ( ) «

P is the large component radial wave function for the
orbital a, Q is the small component radial wave func-
tion for the orbital a, jp is a spherical Bessel function,
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= —2(j —/ )(j + 2), and I is the orbital angular
momentum of orbital a. In the nonrelativistic limit

.—+ U"+(i") ~ U"+(i.2.2p) ~ U"+(1"2.) + ~„

1 (d E (l +1) —Ei(Lb+1)b
T~g r: s +

e o (dr 2r

xPdr. (14)

Expressions for radial functions similar to Eqs. (12)—(13)
were also derived in the Babushkin (length) gauge.

The autoionizing rates found in Eqs. (2)—(6) are given
by

A (nmP) = —(M p)',
p

(i5)

where

M p = ) ) ) c, c a, ~~(. ah~my~cd), (16)

and a, & are the multipolar angular coefFicients between
subconfigurations provided by a relativistic Coulomb al-
gebra code [19] and a relativistic Breit algebra code [16].
The matrix element of Eq. (16) for the electrostatic in-
teraction between electrons is given by

(ab~mg~cd) = (P Pb+ Q Qi)

x (P,Pg + Q, Qg) q dridr2 .
F) (17)

Expressions for matrix elements similar to Eq. (17) were
also derived for the retarded electromagnetic interaction
between electrons.

Besides rates, various matrix elements between bound,
resonance, and continuum states are needed for the com-
plete evaluation of the photorecombination cross section
of Eq. (8) via either Eq. (4) or Eq. (5). Our organi-
zational procedure involves generating lists of bound-
resonance radiative rates, resonance-continuum autoion-
izing rates, and bound-continuum photoionization cross
sections which include the signs of all matrix elements.
It is important that the direction of the matrix element
evaluation in the direct contribution is the same as that
used in the indirect contribution.

e + U +(ls ) + U +(ls2p2p) -+ U +(1s 2p) + cui,

(19)
e + U +(ls )+ U +(is2P2p)

~ U"+(is'2p) + ~, .

In Table I we present the energies and the 18 autoion-
izing rates for the eight possible levels in the 18282p
and 182p2p subconfigurations. In Fig. 1 we present the
total photorecombination cross section for the KLq2L3
resonances in U +. The solid curve includes interfer-
ence between radiative and dielectronic recombination
via Eqs. (4) or (5), while the dashed curve neglects the
quantum interference between the two processes. The
heights of the resonance features are generally propor-
tional to the 1s autoionizing rates found in Table I,
while the widths are proportional to the much stronger
radiative rates. There are four strong resonance fea-
tures in the total cross section due to the ls2p(l)2p(j =
5/2), ls2p(l)2p(j = 3/2), ls2s(0)2p(j = 3/2), and
1s2p(0)2p(j = 3/2) levels. As stated previously [10], al-

though quantum interference effects are noticeable in the
line shapes, the integrated cross sections are much less
affected.

In Fig. 2 we present the partial photorecombination
cross section into the ls 2s(j = 1/2) and ls 2p(j
1/2) final recombined levels resulting in the emission
of 1DO keV x-ray light. The contribution &om the
ls2p(1)2p(j = 5/2) resonance has disappeared since it
cannot dipole radiate to the j = 1/2 levels. Inclu-
sion of M2 radiative transitions could restore some of
its strength. In Fig. 3 we present the partial photore-
combination cross section into the ls 2p(j = 3/2) final
recombined level resulting in the emission of 95 keV x-
ray light. The contribution &om the ls2s(0)2p(j = 3/2)
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IV. RESULTS

The following direct (radiative recombination) path-
ways contribute to the total photorecombination cross
section for U in the vicinity of the KLq2L3 resonances:

e + U +(is ) -+ U +(ls 2s) +(ui,

e
—+ U"+(1s') m U"+(1s'2p) + a i,

e + Uso+(ls') -+ Uss+(ls'2p) + (u2,
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where w~ = 100 keV and w2 —95 keV. The following
indirect (dielectronic recombination) pathways are the
dominant contribution to the total cross section:

FIG. 1. Total photorecombination cross section for U

in the vicinity of the KL i2L3 resonances. Solid curve —with

quantum interference; dashed curve —without quantum intef-

erence.
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TABLE I. Energies and 18 autoionizing rates for the U
KLg2Lg resonances.

Level
1s2s(1)2p(j = 5/2)
1s2s(l)2p(j = 3/2)
1s2s(1)2p(j = 1/2)
1s2p(1)2p(j = 5/2)
ls2p(l)2p(j = 3/2)
1s2p(1)2p(j = 1/2)
ls2s(0)2p(j = 3/2)
ls2p(0)2p(j = 3/2)

Energy (keV)
67.370
67.489
67.565
67.641
67.659
67.697
67.702
67.789

Rate (Hz)
9.44 x 10"
2.61 x 10'~
2.36 x 10
1.12 x 10'4
5.72 x 10'
1.70 x 10'
2.04 x ].0'4
7.68 x 10'

resonance has disappeared since it cannot dipole radiate
to the j = 3/2 level because they have the same parity.
Inclusion of M1 or E2 radiative transitions could restore
some of its strength. We note that due to propensity rules
the ls2p(0) 2p(j = 3/2) resonance has a 20 times stronger
probability for radiative decay to the ls22p( j = 1/2) level
as to the ls 2p(j = 3/2) level, and thus it appears as a
stronger feature in Fig. 2 than Fig. 3.

The following direct (radiative recombination) path-
ways contribute to the total photorecombination cross
section for U + in the vicinity of the KL q2I 3 resonances:

e
—+ Uss+(] s22s2) ~ U87+(ls22s22p) + ~

e + U"+(ls'2s') + Us~+(ls'2s'2p) + cu, . t20)

The following indirect (dielectronic recombination) path-
ways are the dominant contribution to the total cross
section:

e + U +(ls 2s ) -+ U "+(ls2s 2p2p)

m U +(ls 2s 2p) + ~i
(21)

e + U +(ls 2s ) m U "+(ls2s 2p2p)

m U +(ls 2s 2p) + (u2 .

TABLE II. Energies and 1s 28 autoionizing rates for the
U KLg2, L3 resonances.87+

Level
1s2s 2p(1)2p(j = 5/2)
1s2s'2p(1)2p(j = 3/2)
1s2s 2p(1)2p(j = 1/2)
ls2s 2p(0)2p(j = 3/2)

Energy (keV)
68.129
68.147
68.184
68.274

Rate (Hz)
1.10 x 10
5.56 x 10'
1.63 x 10
7.60 x 10

In Table II we present the energies and 18 28 autoioniz-
ing rates for the four possible levels in the 1828 2p2p
subconfiguration. The resonances associated. with the
18282@ 2p subconfiguration are also in the same energy
range, but are not accessible from the 18 28 ground
state. The 1828 2p2p resonances may autoionize to the
18 282p and 18 2p2p subconfjguratjons of U 8+ and thus
contribute to the overall autoionizing width I'. The over-
all radiative width p is again much larger than I'. In
Fig. 4 we present the total photorecombination cross sec-
tion for the KI ~21 3 resonances in U +. Again the
solid curve includes the interference between radiative
and dielectronic recombination via Eqs. (4) or (5), while
the dashed curve neglects the quantum interference be-
tween the two processes. There are three strong res-
onance features in the total cross section due to the
ls2s22p(l)2p(j = 5/2), ls2s 2p(1)2p(j = 3/2), and
ls2s 2p(0)2p(j = 3/2) levels.

In Fig. 5 we present the partial photorecombination
cross section into the ls22s22p(j = 1/2) final recombined
level resulting in the emission of 100 keV x-ray light, . The
contribution from the ls2s 2p(1)2p(j = 5/2) resonance
has disappeared since it cannot d.ipole radiate, although
some of its strength could be restored by inclusion of M2
radiation. In Fig. 6 we present the partial photorecom-
bination cross section into the ls 2s 2p(j = &/2) final
recombined level resulting in the emission of 95 keV x-
ray light. The contribution from all the strong resonances
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FIG. 2. Partial photorecombination cross section for U +
in the vicinity of the KL&2L3 resonances corresponding to
emission of 100 keV x-ray light into the 1s 28 and 18 2p states
of U +

~ Solid curve —with quantum interference; dashed
curve —without quantum interference.
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FIG. 3. Partial photorecombination cross section for U
in the vicinity of the KL&2L3 resonances corresponding
to emission of 95 keV x-ray light into the 18 2p state
of U +. Solid curve —with quantum interference; dashed
curve —without quantum interference.
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levels in the 1s2s 2p2p subconfiguration. Further inter-
actions between resonances through the adjacent contin-
uum [20] may also be handled in many-body perturbation
theory.
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