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Dark-soliton timing jitter caused by fluctuations in initial pulse shape
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The dark-soliton timing jitters caused by fluctuations in either the soliton initial phase angle or the back-
ground amplitude when such a soliton propagates in a monomode optical fiber under the influence of the
stimulated Raman scattering are investigated and compared with those that exist when the stimulated Raman
scattering is not present. In addition, it is demonstrated that in the presence of the stimulated Raman scattering,
there exists a distance at which, for the negative soliton initial phase angle, the dark-soliton timing jitter caused
by fluctuations in the background amplitude becomes zero.

PACS number(s): 42.50.Rh

The possibility of propagation of dark solitons in the re-
gion of normal (positive) group-velocity dispersion (GVD)
in monomode optical fibers has been theoretically predicted
by Hasegawa and Tappert [1] and has been successfully dem-
onstrated in a number of elegant experiments [2]. Since then,
the properties of dark-soliton propagation in optical fibers
have been thoroughly studied in several works [3—10] and
have been reviewed in two recent articles [11,12]. The dark-
soliton propagation in real fibers is subject to various kinds
of perturbations such as the third-order dispersion, the ab-
sorption loss, the stimulated Raman scattering (SRS), and the
stochastic perturbations. The stochastic perturbations could
be classified into two groups [13]: the homogeneous one,
when the stochasticity originates in the random perturbations
in the fiber itself, and the inhomogeneous one, when the
stochasticity is present in the input pulse to the fiber. In the
latter case, the propagation is entirely deterministic; only the
initial parameters of the pulse are random quantities. One
major source of the inhomogeneous stochasticity is the am-
plified spontaneous emission (ASE) noise. The ASE noise
produces a soliton timing jitter (the Gordon-Haus effect) and
the theory of this effect has been given in [14] for bright
solitons and in [15] for dark ones.

In this paper we study the dark-soliton timing jitter caused
by fluctuations in the soliton initial parameters when such a
soliton propagates in a monomode optical fiber in the pres-
ence of the SRS. We focus on the influence of the SRS on
dark-soliton timing jitter because, as it is well known, the
SRS has the most deleterious effects for dark-soliton propa-
gation in optical fibers.

For the normal (positive) GVD the propagation of pico-
second optical pulses in monomode optical fibers is gov-
erned by the famous nonlinear Schrodinger equation
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where z is the normalized distance along the fiber, 7 is the
normalized time, and ¢ is the normalized complex amplitude
of the pulse envelope. The normalized units are well known:
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2 = BoZITyandt =(T—Z/v,)/T,, where B, is the GVD
coefficient, T is the pulse width (Tgwpym= 1.763T,, where
FWHM is the full width at half maximum), v, is the group-
velocity, and Z and T are the physical distance and time,
respectively.

When we deal with subpicosecond optical pulses, an ac-
curate treatment of their propagation calls for the introduc-
tion of new terms in Eq. (1). Thus, to take into account the
SRS, we have to modify Eq. (1) as follows:
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where o0=Ty /T, and Ty is related to the slope of the Raman
gain (Tx=6 fs) [16].

It is well known that Eq. (1) supports the modulationally
stable continuous-wave (cw) background ¢= pe["zz, p being
the background amplitude. Because the Raman term tends to
zero when f— * oo, it does not affect the background ampli-
tude p. Now, in order to simplify our further analysis, we
make the transformation w(z,t)=ei”22u(z,t). Thus Eq. (2)
becomes

du 1 *u
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A dark soliton of Eq. (3) without the Raman term
(o=0) is a kink-type soliton that connects two stable back-
ground waves with the same amplitude but with different
phases and has the form

uy(z,t) = p(cosgtanh{ —ising), 4)
where ¢=n(t—Qz), p=pcose, and Q=psin¢. Such a
soliton is characterized by its phase angle ¢ (|¢|<w/2),
which describes the darkness of the soliton through the
simple relation

|uy|?=p%(1—cos®¢ sech??). (5)
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This represents a dip with the depth equal to
n?=p*cos’¢ and the velocity Q= psin¢, which moves on a
background intensity with the amplitude p. When ¢<<1 we
call this soliton a dark-gray one and when
¢=*m/2% €, €<1, we call it a light-gray one [8]. From
Eq. (4) we see that the dark-gray soliton has a small velocity
and large amplitude while the light-gray one has a large ve-
locity and small amplitude so that it could be considered as a
small excitation on the cw background.

For the dark soliton (4) the shift in the inverse group
velocity is 8,Q2/T, that is, 1/V,=1/v,+ B,Q0/T,. Thus the
soliton arrival time 7° in the absence of the Raman term is
given by the formula

zdz' Z sin
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where ¢, represents the soliton initial phase angle. Equation
(6) can be put in its dimensionless form as

o__Z .
t =UgT0 + psin( ¢g)z. @)

Now, let us suppose that either the soliton initial phase
angle ¢, or the background amplitude p exhibits fluctuations
with standard deviations A ¢, and Ap, respectively. As a
consequence, the soliton arrival time ¢° exhibits fluctuations
(the so-called soliton timing jitter) given by

At%=pcos(¢o)zA¢o, At2=lsin¢>olep- ®)

Next we calculate the soliton timing jitter due to fluctua-
tions in either the soliton initial phase angle ¢, or the back-
ground amplitude p in the presence of the SRS. For this
purpose we have to establish the dependence of the phase
angle ¢ on the normalized propagation distance z. In order
to derive this dependence we use the Hamiltonian approach
(see, e.g., Ref. [17] and the references therein). It is well
known that Eq. (3), with 0=0 and finite boundary condi-
tions, is a Hamiltonian dynamical system. This means that it
is equivalent to the Hamilton equations

u " wu* Hou¥ 9
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where the Poisson brackets are defined as
© [ 6F 6G OoF 6G
{F,G}=if 7 5 Su* dt, (10)

where F and G are functionals of ¥ and u* and the Hamil-
tonian H is taken as

H 1 J‘ du du*
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In these formulas the asterisk stands for the complex conju-
gate.

It is known that in the case of dark solitons the presence

of certain perturbations could lead to the creation of new

solitons with small amplitudes and large velocities. These
new solitons correspond to zeros of the scattering matrix

+(lul>*=p*)? }d: (11)

situated at the edges of the allowed discrete spectrum of the
inverse problem. In the presence of the Raman term Eq. (3)
ceases to be a Hamiltonian system, so that the phase angle
¢ is no longer a constant parameter becoming a z-dependent
function. We suppose that the Raman term is a small pertur-
bation so that we can apply the adiabatic approximation. In
this approximation the emission of radiation and the creation
of new solitons are disregarded. Thus we start from the
Hamiltonian of the unperturbed system (o=0), which for
the dark-soliton solution (4) takes the value

4 3
HS=Tpcos3¢. (12)

Next, by using Egs. (3) and (11), we calculate the derivative
of H with respect to z,

dH ,(rfw 3*(|ul®) LU u* 4 3
dz "7 Te M T4 (13)
For the dark-soliton solution this equation gives

dH;, 16 |
az 150’p cos® ¢sing, (14)

so that the resulting equation describing the evolution of the
soliton phase angle ¢ with respect to z can be written as
(8,9]

dg 4 s
T " 1570 08’ (15)

This expression shows us that the soliton phase angle ¢ can
only increase with distance under the Raman perturbation, so
if the initial phase angle ¢, is positive (soliton with positive
velocity), the soliton depth 7 decreases, leading to the soli-
ton decay, and if the initial phase angle ¢, is negative (soli-
ton with negative velocity), the soliton, in a first stage, will
turn into a black one (soliton with zero velocity) and then its
phase angle continues to grow, leading also to soliton decay.
In other words, Eq. (15) shows that the SRS leads to a soli-
ton self-frequency shift and soliton decay. These effects have
been observed experimentally in [3] and explained analyti-
cally in [18] in the small-amplitude limit.

By integrating Eq. (15) with respect to z we obtain the
phase angle ¢= ¢(z, ) as the solution of the implicit equa-
tion

¢ 1+ ¢ i
F(B.2.60.0)= oy +inmos® = S0
1+sing, 8
“lnm 150'p zZ= 0 (16)

where ¢o= ¢(0) is the soliton initial phase angle. The ar-
rival time 77 in the presence of the perturbation is

2dZ' Z  Bp
= —+ = z'
T jo v, = T, squd a7
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or in its dimensionless form
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0,7, +pf sing(z')dz’ (18)

When either the soliton initial phase angle ¢, or the back-
ground amplitude p fluctuates, it is obvious from Eq. (18)
that the soliton arrival time ¢ fluctuates, that is, a soliton
timing jitter arises.

In the case of soliton timing jitter caused by fluctuations
in the soliton initial phase angle ¢, we have, from Eq. (18)

¢
Atg=p f cos(qﬁ)sz Ady. (19)
Taking into account that from Eq. (16) we have
7] cos?
o o2, 20)
d¢py cos’ ¢

we obtain

Arg= (;{q; [ eostoyaz ) A

5 . ,
—m[31n¢(z)—s1n¢o]A¢o. (21)
We note that in deriving this result we made use of Eq. (15).
In order to compare the timing Jltter AtG 4 in the presence of
the SRS with the timing jitter At¢ in its absence we consider
the difference between them

COos

Arg—Arg= [ rm f [cos*(z") —cos* poldz’ ]A¢o

(22)

Bearing in mind that the phase angle ¢ is an increasing
function of z, we deduce from Eq. (22) that, for positive
values of ¢, the timing jitter At¢ is less than the timing
jitter Atd,, while for negative values of &¢ there is a thresh-
old value of the propagation distance z{ so that for distances
under this threshold AzS po ALY, » and for distances above this
threshold At¢<At¢. This is illustrated in Figs. 1(a) and
1(b). In Figs. 1(a) and 1(b) the soliton initial phase angle is
¢o= /6 and ¢po= — 7/9, respectively. The other parameters
are p=1 and o=0 (dashed lines) or o=0.1 (solid lines).
From Fig. 1(b) we evaluate zfﬁ*—*45.

In the case of soliton timing jitter caused by fluctuations
in the background amplitude p, from Eq. (18) we have

z z a
Atg=U sin¢(z')dz'+pf cos(gb)—d)dz’ Ap. (23)
0 0 dp
Taking into account that from Eq. (16) we have
i B 4 4
E =350p 2zcos3 ¢, (24)
after simple calculations Eq. (23) becomes
Ay =|3zsing(z) - ZJ singp(z’)dz’ (25)
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FIG. 1. Normalized soliton timing jitter caused by fluctuations
in the soliton initial phase angle. Here p=1, =0 (dashed lines),
and 0=0.1 (solid lines). (a) ¢o= 7/6 and (b) o= — 7/9.

Now we compare the soliton timing jitter with and with-
out SRS. The analysis depends on the sign of the soliton

initial phase angle ¢ .
In the case ¢y>0 we have

At2= sin( ¢g)zAp (26)
and

Az (3zsm¢(z) ZJ sing(z')dz’ )Ap, 27

so that
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FIG. 2. Normalized soliton timing jitter caused by fluctuations
in the background amplitude. Here p=1, 0 =0 (dashed lines), and
o=0.1 (solid lines). (a) ¢y=7/6 and (b) ¢y=— /4.

Arg— Az2= [z[singb(z) —singyg ]

z
+2(zsin¢(z)—f sinqﬁ(z’)dz’”ﬁ\p.
0
(28)
This formula and the fact that ¢ is an increasing function of

z show us that in this case Atg>At2. This is illustrated in
Fig. 2(a).
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In the case ¢y<<O we consider the function f(z) defined
as

F(z)=3zsing(2) —2 jozsinqs(z')dz'. (29)

The derivative of this function with respect to z is
' (2)=sing(z) +3zcosh(z)d’ (z), where the prime means dif-
ferentiation with respect to z. From this expression it can be
seen that f’(0)<<0, so that, by taking into account that
f(0)=0, we conclude that for small values of z the function
f(2) is negative. In turn, for large values of z the function
f(z) becomes positive. So there exists a value z, at which
f(z9)=0, that is, A[Z(Zo) =0.

Now let us compare the jitters A,y and Atg. For
0<z<zy we have

o__ 0__
Arg—At,=

2( fzsin¢(z')dz'~—zsin¢(z))
0

+z(singpy—sing) |Ap, (30)

so that A< Atg. For z>z, we have

z

Arg— At2=[3zsin¢(z) -2 fo sing(z')dz’ +zsin¢O}Ap.
(31

From this expression it can be inferred that there exists a
threshold propagation distance z{>z, so that AZZ<AZ2
when z<zf, and Atg>At2 when z>zf . This behavior is
illustrated in Fig. 2(b). From this figure we evaluate z,=27
and zf=40.

Finally, we briefly discuss the soliton timing jitters
At; ,At% ,Atg ,Atg in the limit cases of dark-gray and light-
gray solitons.

In the case of dark-gray solitons (¢y<<1) the formulas (8)
become
2

At%:p(l—%)zAd)o, A[2:I¢0[2Ap (32)

In order to find the expressions for soliton timing jitters in
the presence of SRS we first solve Eq. (15) in the limit
@, po<<1. After simple calculations we obtain

NN E
ot gtanh( '2-'—15 agp’ Z)
= NN

1+ E(ﬁotanh( 3159P z)

By introducing this expression in Egs. (21) and (25) we ob-
tain

(33)

Af’:m"—imp 22A o+ O(0?) (34)
& 3~ 15 opP < 0

and
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o 0 8 5, 2
Atp=Atp+sgn(¢0)EO'p z°Ap+0(o?), (35)

where sgn(¢g)=1 for ¢y>0 and sgn(¢y)=-1 for ¢4<0.

We study the light-gray soliton case (¢o==*7/2
€y, €y<<1) with positive velocity (¢o=7/2— €y,
€9<<1). The analysis of the other case is similar. From the
formulas (8) we deduce

2
A= A Ad=[1-22]. 36
1= pPEpz &o, tp > zZAp. (36)

As before, we derive the expression for the small parameter
€, which corresponds to the soliton phase angle ¢,

8 —-12
e=60(1+—1§0p36(2)z) (37)

and for the timing jitters in the presence of the SRS

8

Arg=Aly— ssop* ez’ Ao+ O(a?), (38)
8

Atgz Atﬁ—{— Eo‘p3€822Ap+ 0(0’2). (39)

In conclusion, we have studied the dark-soliton timing
jitter caused by fluctuations in the soliton initial pulse shape.
In our analysis we first supposed that the dark-solitons
propagate unperturbed and we have calculated the soliton

timing jitters caused by fluctuations in either the soliton ini-
tial phase angle ¢, that is, At% , or the background ampli-
tude p, that is, Atg. Then we have calculated the same jit-
ters, supposing that the dark solitons propagate under the
influence of the SRS, that is, Aty and Atz;. It has been
established that for dark solitons with a positive soliton ini-
tial phase angle (¢,>0) the soliton timing jitter caused by
fluctuations in soliton initial phase angle is smaller in the
presence of SRS than in the unperturbed case, while the soli-
ton timing jitter caused by fluctuations in background ampli-
tude is larger in the presence of SRS than in the unperturbed
case. Furthermore, for solitons with ¢¢>0 both jitters are
always strictly positive. For dark solitons with a negative
soliton initial phase angle (¢,<<0), it has been established
that there exists a threshold propagation distance z{f‘ so that
AtG>ArS for 0<z<z§ and Ar5<At} for z>z{ and a
threshold propagation distance zf so that Atz<Atg for
0<z<zf, and At;> Atg for z>z% . In addition, it has been
demonstrated that, for solitons with ¢,<<0, there exists a
propagation distance z, at which Atg becomes zero while
Atg is strictly positive. Finally, we have calculated the soli-
ton timing jitters in the two limit cases: dark-gray and light-
gray solitons.
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