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This paper analyses the extraction of spectroscopic information on an atom via use of field fluctuations in a
diode laser, wherein the statistics of diode-laser radiation are modeled by a phase-diffusion process. Using
Monte Carlo methods, we solve density-matrix equations for a three-level V system, driven by this fluctuating
field, tuned approximately to the two allowed transitions. The model is very general and allows us to incor-

porate arbitrary field strengths and bandwidths. We suggest two different signal detection schemes, each of
which provides insight into different aspects of the energy-level structure in an atomic sample. Specifically, if
intensity fluctuations in the field radiated from the sample are spectrally analyzed, via a homodyne technique,
one can isolate contributions that are linear and quadratic in the radiated field, and these reveal resonances at
the allowed transition frequencies of the atom. If we employ direct detection instead of the homodyne method,
then the crossover transition is also revealed in the signal. The strengths of these resonances are very sensitive

to the bandwidth of the field fluctuations, as well as the details of the field statistics. We also discuss the role
of Stark shifts at higher intensities.

PACS number(s): 42.50.—p, 42.65.Dr

I. INTRODUCTION

Diode lasers are becoming increasingly popular as spec-
troscopic tools, primarily due to their low cost and compact
size. Now it is routinely possible to have single-mode diode
lasers with a wide tunability range, which has increased their
utility in nonlinear optics and spectroscopy. Continuous-
wave (cw) diode lasers, when operated far above threshold,
are characterized by a very stable amplitude, but have large
phase fluctuations. In fact, the field power spectrum of these
lasers may have a full width at half maximum (FWHM) of
5—20 MHz, but the spectrum is accompanied by very long
tails which may extend up to nearly 1 GHz. In other words,
there is sufficient spectral density in the tails of the spectrum
to excite an atomic transition. One can then envision using
these lasers to excite a transition by tuning the laser approxi-
mately in the vicinity of the transition frequency, since the
power in the wings of the spectrum can still resonantly excite
the atom. This feature of diode lasers was exploited in the
experiments of Yabuzaki and co-workers [1], where they
demonstrated that the field fluctuations can be useful in ex-
tracting spectroscopic information on atoms and molecules.
Subsequent experiments by Fairchild and co-workers [2]
have further illustrated the utility of diode-laser noise in
spectroscopy.

The study of atom interactions with noisy fields has a long
history [3—5]. Renewed interest in this subject has been mo-
tivated by the technique of incoherent spectroscopy [6] and
the recent work of Zoller, Cooper, and co-workers [7], who
have theoretically addressed the issue of employing fluctuat-
ing fields in spectroscopy, with the goal of using the sensi-
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tivity of atom response to different field statistics as an indi-
cator of the field statistics themselves. Some of the
predictions made by these authors were experimentally veri-
fied by Smith and co-workers [8].The dependence of atomic
observables on details of field statistics has also been studied
in the context of four-wave mixing in two-level atoms [9].
While the focus of most of the earlier works that dealt with
stochastic fields in atom-field interactions was on comparing
atom response in fluctuating fields with that in monochro-
matic fields, or on investigating atom response in fields with
different statistics (i.e., amplitude noise versus frequency
noise), the experiments of Yabuzaki et al. [1] and of Fair-
child et al. [2] started a new line of investigation, where
diode-laser noise, in conjunction with electronic spectrum
analyzers, was recognized as a powerful spectroscopic tool.
The central idea is that one starts with a field which has a
stable amplitude but large phase fluctuations, as found natu-
rally in diode lasers. When such a field propagates through
an atomic medium, the atomic resonances convert phase
fluctuations into amplitude fluctuations, and thus the trans-
mitted field has excess intensity fluctuations, compared to the
input field. Since these excess fluctuations arise from the
presence of atomic resonances, the frequency content of
these fluctuations must contain information about the atomic
lines. The experiments of Refs. [2] and [3] where theoreti-
cally modeled in Ref. [10].

More recently, Jyotsna, Agarwal, and Vemuri [11] pre-
sented a simple analytical frame work, based on a linear-
response theory, to understand the use of noisy fields for
spectroscopy. This work relied on the fact that a fluctuating
field would induce a fluctuating polarization in the atomic
medium, which in turn would give rise to a fluctuating radi-
ated field. By spectrally analyzing the fluctuations in the ra-
diated field, these authors showed that one can obtain infor-
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mation about the energy-level structure of atoms. Reference
[11]suggested detection of the radiated field by homodyning
it with the incident field [12]and examining the power spec-
trum of the resulting intensity-intensity correlation function.
By including a phase shifter in the detection apparatus, it was
shown that one can isolate contributions to the intensity-
intensity correlation function that are linear and quadratic in
the radiated field. While the quadratic contribution was
shown to lead to Lorentzian shaped resonances, the linear
contribution exhibited dispersive shaped resonances. In the
case of the V system modeled in Ref. [11],there were always
two resonances in the spectrum, corresponding to the two
allowed transitions.

There are several open questions that need to be ad-
dressed, and so in this paper we extend the work of Ref. [11]
to consider additional aspects of diode-laser-based fIuctua-
tion spectroscopy that are relevant to experiments. Briefly,
the experimental scheme we have in mind is the following: a

fluctuating field, derived from a diode laser, is used to irra-
diate an atomic sample. The transmitted field, after propaga-
tion through a vapor cell, is homodyned with the incident
field, and the resulting photocurrent from a photodiode spec-
trally analyzed (with a radio frequency spectrum analyzer).
This spectrum constitutes our signal, and we have shown in
Ref. [11] that using a homodyne scheme, one can isolate
some important contributions to the signal. Some of the is-
sues we address are as follows. (i) While the work of Ref.
[11],based on a linear-response theory, was valid for weak
driving fields, it is important to analyze the influence of
strong, saturating fields. (ii) The signal in Ref. [11]revealed
only the allowed transitions, but not the ones that are dipole
forbidden. However, for fluctuation spectroscopy to become
an effective tool, it is necessary to explore methods that
would highlight all transitions in the spectrum, including the
unallowed ones. (iii) Reference [11]dealt with fields with a
Lorentzian field spectrum, but made no attempt to delineate
the effect of field statistics on the resulting signal. While the
assumptions of phase-diffusion statistics, and hence a
Lorentzian held spectrum, are quite adequate for a diode
laser, it would be interesting to investigate the effects of
non-Lorentzian line shapes on the signal, as well as the im-
pact of using fields with amplitude fIuctuations.

The atom-field system of interest to us is the three-level V
system in Fig. 1, driven by a stochastic field that is tuned
approximately to the two allowed transitions. We derive the
equations describing the time evolution of the relevant
density-matrix equations, solve the equations via a Monte
Carlo procedure [13],calculate the spectrum of the intensity-
intensity correlation function of the radiated field, and show
the presence of resonances that correspond to the various
atomic transitions. The Monte Carlo method provides maxi-
mum fIexibility in allowing us to investigate an arbitrary
parameter range for the field strengths and bandwidths. A
detailed study of the effect of the noise parameters of the
field is reported, and finally we also study the effect that an
amplitude fIuctuating field has on noise spectroscopy. The
organization of the rest of the paper is as follows. In Sec. II
is the theoretical model, consisting of the density-matrix
equations, that describes the three-level V system driven by a
fluctuating field. This section also contains a brief discussion
on phase-diffusing fields and chaotic fields. Section III deals

7%

2p f

FIG. 1. Schematic representation of a three-level V system with
ground state 13) and two excited states 11) and 12). The spontane-
ous decay rates from 11) to 13) and 12) to 13) are 2y, and 2yz,
respectively. The transition from 11) to 12) is not allowed. col is the
central frequency of the exciting field.

with the results of our calculations, specihcally, the spectrum
obtained from the homodyne process. The linear and qua-
dratic contributions to the spectrum, as well as the spectrum
via direct detection, are presented for a wide range of atom
and field parameters. The paper concludes with a brief sum-
mary, in Sec. IV, of the major results and their significance.

II. THEORETICAL MODEL

As previously stated, the atomic system of interest to us is
the three-level U system shown in Fig. 1. The two excited
states 11) and 12) decay into state 13) with radiative widths
of 2y, and 2yz, respectively. The

I
l)~12) transition is

dipole forbidden. A stochastic driving field, derived from a
diode laser, drives the atom and couples the 11)~13) and

12) &-+13) transitions. The semiclassical Hamiltonian for this
atom-field system is given by

0
~131»(11+~u231»&21+ ~(t)e "~'11)(31

+ a(t)e ' "12)(31+H.c., (2.1)

n(t) =Q, e (2.2)

where n(t) represents contributions from the stochastic field
(which includes the dipole moment transition matrix ele-
ment) at frequency coi, and co,3 and cu23 are the atomic tran-
sition frequencies for the 11)~13) and 12)~13) transitions,
respectively. We now have to make a choice regarding the
statistics of the stochastic field. The output of a diode laser is
characterized by a stable amplitude, but has large phase Auc-
tuations. Further, the dominant noise mechanism in these la-
sers is spontaneous emission noise, which would indicate a
Lorentzian field power spectrum, unlike dye or Ti:sapphire
lasers which are dominated by technical noise and hence
have Gaussian field spectra. The statistics of cw diode-laser
radiation are hence well-described by a phase-diffusion
model (PDM) [14], which is known to mimic the output of
single-mode lasers that are operated well above threshold.
This implies that n(t) can be written as
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where II is the Rabi frequency of the field and P(t) is its
random phase. The stochastic frequency p, (t) is given by

= p, (t), (2.3)

where p, (t) is assumed to be a Gaussian-Markovian random
process with zero mean and a correlation function given by

(p(t) p(t'))=bpe (2.4)

In Eq. (2.4), b is the strength of the frequency fluctuations,
and physically describes the spectral density within the field
power spectrum, while P is the bandwidth of the fiuctua-
tions. One can identify two distinct regimes based on the
relative values of b and p. When p&) b, the correlation func-
tion in Eq. (2.4) reduces to a 8-correlated function, i.e.,

(p(t) p(t')) =2b8'(t —t'). (2 5)

(z(t)z*(t ') ) = DI'e (2.6)

In Eq. (2.6), D is the strength of the fluctuations and I' ' is
the correlation time of the noise. This field has a Lorentzian
spectral profile with a FWHM given by 2 I . The product
Dl gives a measure of the variance of the Gaussian random
process and is physically identified with the intensity of the
field.

In a frame rotating at the fast optical frequency co&, the
Hamiltonian in Eq. (2.1) becomes

q
= ~11»(1I+~212)(2I+ ~(t)

I 1)(3I+~(t) l»(31+c c'
(2 7)

where b, , = ~,3
—~& and b, 2

= ~23 —~, . From Eq. (2.7), the
following density-matrix equations are easily obtained:

Pii= —271P11—tn(t)P31+ ™(t)P,13

P22 Y2P22 t~(t) p32+i~ ( )P23

P12 ( Yl+ Y2) P12 t (~1 ~2) P12 1 ~(t) P32

+ in*(t)P13 ~

(2.8a)

(2.8b)

(2.8c)

P»= —y, P» —tA, P» —t~(t)P33+t~(t)P12, (2.8d)

In this case, the field has a Lorentzian spectral profile with a
FWHM given by 2b. This is the situation most appropriate
for describing the radiation from diode lasers. In the opposite
limit, when b&) p, one obtains a Gaussian field line shape,
with a FWHM related to the product bp. This situation is
appropriate for lasers where the dominant noise mechanism
is technical or pump noise, instead of quantum noise.

Since we will compare the results of a phase-diffusing
field with one that has amplitude fluctuations, we discuss that
model also. A chaotic field model (CFM) is often used to
describe amplitude fiuctuating fields [4,9] and this model
mimics the output from a multimode or pulsed laser. In the
CFM, n(t) =z(t) is the fiuctuating complex process, with
zero mean and an autocorrelation function given by

I(t) lu(t)+ p13(t)+ p23(t) I'. (2.9)

We have now absorbed all the inessential scale factors such
as atom density, dipole moment matrix elements, etc. , in
a(t). Thus, the two-time intensity correlation function
C(7) is given by

C(r) = (I(t)I(t+ r)). (2.10)

The final spectrum P(co) that we wish to calculate is
given by the Fourier transform of Eq. (2.10) and formally is

P(co) = drC(r)e'"'. (2.11)

It is clear from Eqs. (2.9) and (2.10) that the intensity
correlation function will have terms that are independent of
the radiated field, and others that are first, second, third, and
fourth order in the radiated field. It was established in Ref.
[11]that by including a phase shifter in the homodyne pro-
cess, one can isolate the linear and quadratic contributions in
the signal. On the other hand, if direct detection [i.e., set
a=0 in (2.9)] instead of homodyne detection is employed,
one would essentially measure the fourth-order contribution.
In what follows, we will discuss these various orders sepa-
rately.

The numerical procedure for solving Eq. (2.8) is based on
a Monte Carlo approach, which is described in detail else-
where and will not be reported here [13]. In essence, the
technique consists of numerically simulating Gaussian dis-
tributed random numbers, with the desired statistics and cor-
relation time. The first-order ordinary differential equations
in Eq. (2.8) can be solved accurately by either a Runge-Kutta
or Euler method with a sufficiently small step size. The
quantities to be solved for are p&3 and p23 . Once the steady-
state values have been obtained, one can determine the in-
tensity at the detector via Eq. (2.9), and hence the correlation
function from Eq. (2.10). Finally a fast Fourier transform
(FFT) routine would yield the desired spectrum, given by Eq.
(2.11). However, calculating the correlation function as in

Eq. (2.10) and then performing the FFT was very time con-
suming. To reduce the computational time and effort needed,
we used the following theorem [15], which is true for two
real functions A(t) and B(t):

dr(A(t)B(t+ r))e' '=(A(cu)B*(co)), (2.12)

where A(co) and B(co) are Fourier transforms of A(t) and

B(t), respectively. This method avoids the necessity of cal-
culating the correlation function first and then taking the

P2s= —7zP23 —i~2P23 —~( )Ps3+t~(t)P21. ( 8e)

The density-matrix equations are Langevin equations
where the stochastic field appears as multiplicative noise.
The fluctuating driving field produces a fluctuating polariza-
tion in the medium, which in turn produces a fluctuating
radiated field, and is given by the sum of the off-diagonal
density-matrix elements pi3 and p23 . The net polarization in
the medium is proportional to the density of atoms. Our de-
tection scheme is based on homodyning the radiated field
with the incident field and so we write the total intensity at
the photodetector as
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Fourier transform. For our purpose, A(t) and B(t) are sim-

ply the intensities as determined from Eq. (2.9). The final

signal displayed in our results is an ensemble average over
the field fluctuations, and was obtained by numerically aver-

aging the signal over several thousand iterations, each with a
different set of independent random numbers. This ensured
that the results were not affected by small number statistics.

In the following, for brevity, we denote [p,3(t)+pp3(r)]
as p(t), and the various contributions to C(r) by C,(r),
where i =0,1,2,3,4. The subscript i refers to the order of the
radiated field that appears in the correlation function. Thus

C,(.) =(l~(r) I'l~(r+ ~) I' ), (2.13a)

C, (~) =(2 Re[n*(t)p(t+ 7)])

+terms with t and t+ r interchanged,

(2.13b)

C (r) = (I ~(»I'IS (r+ ~) I')

+4(Re(n*(t) p(t))Re(xi*(t+ r) p(t+ r)))

+terms with t and t+7. interchanged,

(2.13c)

C, (r) = (2i p(t) i
Re(a*(t+ r) p(t+ r)))

+terms with t and t+ v. interchanged,

C,(r) =(I((i(&)I'I p(r+ &) I').

(2.13d)

(2.13e)

The intensity-intensity correlation C(r) is thus given by

C(r) = C,(r)+ C, (~)+ C,(r)+ C, (r)+ C, (~) (2.14)

Note that the third- and fourth-order terms were not dis-
cussed in Ref. [11],and as we will show in the next section,
the fourth-order contribution contains significant spectro-
scopic information. For each of the C;(r), we denote the
corresponding Fourier transforms by P, (co). Hence the total
power spectrum is given by

P ( cu) =
P o( cu) + P, ( cu) + P2( o) ) + P 3 ( co) + P4 ( ((~) (2.15)

and it is these power spectra that constitute our signal.

III. RESULTS

We now present the results for the homodyne spectrum, as
defined by Eq. (2.11), when a diode-laser field propagates
through an atomic sample. In particular, we discuss the be-
havior of the various orders of P(co) and their sensitivity to
the fluctuation characteristics of the driving field. All rates in
our work are normalized to units of yi . We also assume that
y2= yi, though it is fairly straightforward to include un-

equal values for these radiative widths. For all of the results
presented here, we take Ai =20 and 52=30.

We begin with the results for a field that follows the
PDM, since these results are most relevant to fluctuation
spectroscopy with diode lasers. The relevant noise param-
eters in this model ar the strength of the noise, b, and the

bandwidth of the frequency fiuctuations, P. In Fig. 2(a) is
the spectrum P(cu) when P = 100 and b = 1, and since
P&) b, the field line shape is a Lorentzian. The driving field is

weak and has a Rabi frequency of 0= $0.2. The spectrum
clearly reveals two peaks at 20 and 30, which correspond to
the detunings of the field from ~1) and ~2), and agrees well
with the analytic results of Ref. [11].Note that in this spec-
trum, the crossover response corresponding to the

~
1)~ ~2)

transition is not visible. Since the basis for this spectroscopy
lies in utilizing the spectral density in the wings of the laser
power spectrum, we next look at the effect of reducing the
spectral density in these wings. This can be done easily in
our model by reducing P to 10, while keeping b= 1. This
still corresponds to a field spectrum that is close to Lorentz-
ian, but with less spectral density in the wings than the field
in Fig. 2(a). The results of using a field with a sharper cutoff
frequency are shown in Fig. 2(b), which still reveal the pres-
ence of the two peaks, however diminished in size. This
reduction in the signal is a direct consequence of exciting the
transitions with smaller laser power [while the numbers on
the vertical axis are in arbitrary units, one can compare the
relative size of the numbers in Figs. 2(a) and 2(b) to get an
estimate of the relative strengths of the resonances].

As previously stated, the utility of the Monte Carlo lies in
its ability to accommodate a wide range of field strengths
and bandwidths. While the work of Ref. [11]was restricted
to weak driving fields, since it was based on a linear-
response theory, here we can study the effect of strong fields
that saturate the two transitions. In Fig. 2(c), 0 is increased
to ~20, while keeping P=10 and b= l. The two peaks at
detunings of 20 and 30 are still prominent, as is the crossover
resonance by its absence. A careful look at the spectrum
indicates that the two peaks are now shifted to higher fre-
quencies. This shift in the position of the peaks can be ex-
plained on the basis of the Stark effect. The expected shift in
frequency is given by the ratio 2A /6, where 5 is the de-

tunings of the relevant transition. Thus, for II= ~20 and

Ai =20, we expect the shift in frequency to be 2, which
agrees well with our results. In the presence of strong fields,
fluctuation spectroscopy is thus not only useful in extracting
atomic level structure information, but also in determining
the extent of the Stark splitting.

While the results presented so far could be derived ana-
lytically [11],following techniques developed for multiplica-
tive stochastic process, we now consider parameters where
analytical solutions are either very difficult or impossible.
One example is the Brownian motion phase-diffusion pro-
cess which describes fields with frequency fluctuations on a
time scale comparable to atom relaxation rates. In Fig. 2(d)
is the spectrum when fI= $0.2 and we choose P= 1 and
b= 10. The noise variance, which is the product of bP, is
thus the same as for the results in Fig. 2(b). However, the
physical situation is quite different, since the field spectrum
now is a Gaussian (since b&)P), with a FWHM related to
the product of bP. A Gaussian spectrum has a sharp cutoff
and so we expect the signal to diminish significantly, which
is precisely the effect shown in Fig. 2(d). One still finds the
two allowed resonances, but they are much weaker than in
Fig. 2(b). The result of Figs. 2(a), 2(b), and 2(d) drive home
the importance of having long tails to the driving field spec-
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tion here that the kind of spectroscopy discussed here works
best when the field bandwidth is comparable to the atom
relaxation rates (i.e. , spectrally colored fields). Monochro-
matic fields do not have the frequency spread to drive all the
atomic transitions, while broadband fields produce very
weak resonances. This is the reason that the allowed transi-
tions are almost nonexistent in Fig. 3(d), since even if one
assumes that the parameters correspond to pure PDM, the
field FWHM is 10 times the atomic natural width. Finally,
we also mention that we have checked that P, (co), which
gives the linear contribution to Eq. (2.11),produces only a dc
contribution and is zero at all other frequencies (for PDM).
This result can be shown analytically [11],and in fact is one
of the mayor differences in atom response when exposed to
fields obeying the PDM versus the CFM.

Though the CFM is not directly relevant to cw diode la-
sers, it is interesting nonetheless to study the differences in
the homodyne signal when the driving field has amplitude
fIuctuations instead of frequency fIuctuations. We find that
the results are significantly different if one uses a chaotic
field instead of a phase-diffusing field. Once again we sepa-
rate the signal into linear, quadratic, and fourth-order contri-
butions. For weak fields (DI'=0.2), the quadratic term is
shown in Fig. 4(a), with the two resonances at 20 and 30.
The linear contribution, which only had a dc contribution for
the PDM, now has the structure shown in Fig. 4(b). The

ey are now ispersiveresonances are still at 20 and 30 but the d
instead of Lorentzian. This dispersive contribution can be
enhanced in experiments by increasing the atom density, or

by increasing the laser beam spot size so that the field inter-
actions with more atoms inside the vapor cell. Neither Fig.

(a) nor 4(b) indicate the crossover resonance, which can be
revealed only through the fourth-order contribution (just as
for PDM~. This isor ). is is shown in Fig. 4(c) for the same parameter
values as Figs. 4(a) and 4(b), and the crossover transition is
clearly seen. We have also calculated the third-order contri-
bution, but the results are not shown since that term does not
contain any information not already contained in the qua-
dratic term. The results for the strong fields indicate behavior
very similar to that seen for PDM, where we find the Stark
shifts of the atomic levels refIected in the spectra.

Finally, we note that even for the CFM, it is desirable to
have a large field bandwidth to extract the crossover reso-
nance in the fourth-order spectrum. This is clear from com-
paring Figs. 4(c) and 4(d), where I has been changed from 1

to 10. For the CFM, as define by us in Eq. (2.6), the field
spectrum is always a Lorentzian with a FWHM iven b

us, in ig. 4(c), the field bandwidth is comparabl t
atomic width, while Fig. 4(d) corresponds to a broadband

ra eo
field. The croe . e crossover peak gets larger by orders of magnitude
when I is increased, but the allowed resonances disappear
for such large bandwidths.

IV. SUMMARY

In this paper we have presented a very general model to
study the possibility of using diode-laser noise as a spectro-
scopic tool for extracting energy-level information on atoms
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